TC120

PWM/PFM Step-Down Combination Regulator/Controller

Features
- Internal Switching Transistor Supports 600mA Output Current
- External Switching Transistor Control for Output Currents of 2A+
- 300kHz Oscillator Frequency Supports Small Inductor Size
- Short Circuit Protection
- Built-In Undervoltage Lockout
- 95% Typical Efficiency
- Automatic Switchover to Current-Saving PFM Mode at Low Output Loads
- Automatic Output Capacitor Discharge While in Shutdown
- Programmable Soft-Start
- Power-Saving Shutdown Mode
- Small 8-Pin SOP Package

Applications
- Portable Test Equipment
- Local Logic Supplies
- Portable Audio Systems
- Portable Scanners
- Palmtops
- Electronic Organizers

Device Selection Table

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Output Voltage (V)</th>
<th>Package</th>
<th>Operating Temp. Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC120503EHA</td>
<td>5.0</td>
<td>8-Pin SOP</td>
<td>-40°C to +85°C</td>
</tr>
<tr>
<td>TC120333EHA</td>
<td>3.3</td>
<td>8-Pin SOP</td>
<td>-40°C to +85°C</td>
</tr>
<tr>
<td>TC120303EHA</td>
<td>3.0</td>
<td>8-Pin SOP</td>
<td>-40°C to +85°C</td>
</tr>
</tbody>
</table>

Functional Block Diagram

General Description

TC120 is a 300kHz PFM/PWM step-down (Buck) DC/DC regulator/controller combination for use in systems operating from two or more cells, or in line-powered applications. It uses PWM as the primary modulation scheme, but automatically converts to PFM at low output loads for greater efficiency. It requires only an external inductor, Schottky diode, and two capacitors to implement a step-down converter having a maximum output current of 600mA (VIN = 5V, VOUT = 3.3V). An external switching transistor (P-channel MOSFET) can be added to increase output current capability to support output loads of 2A or more.

The TC120 consumes only 55µA (max) of supply current (VOUT = 3.3V) and can be placed in shutdown mode by bringing the shutdown input (SHDN) low. During shutdown, the regulator is disabled, supply current is reduced to 2.5µA (max), and VOUT is internally pulled to ground, discharging the output capacitor. Normal operation resumes when SHDN is brought high. Other features include a built-in undervoltage lockout (UVLO), an externally programmable soft start time, and output short circuit protection. The TC120 operates from a maximum input voltage of 10V and is available in a low-profile 8-Pin SOP package.
1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings*

Power Supply Voltage (VIN).................... -0.3V to +12V Voltage on VOUT Pin -0.3V to +12V Voltage on LX, Boost Pins (VIN – 12V) to (VIN +0.3V) Voltage on EXT1, EXT2, SHDN Pins (-0.3V) to (VIN +0.3V) LX Pin Current 700mA pk EXT1, EXT2 Pin Current ±50mA Continuous Power Dissipation 300mW Operating Temperature Range............. -40°C to +85°C Storage Temperature Range -40°C to +150°C

TC120 ELECTRICAL SPECIFICATIONS

Electrical Characteristics: Test circuit of Figure 3-1, TA = 25°C, VIN = VR x 1.2, Note 1 unless otherwise noted.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOUT</td>
<td>Output Voltage</td>
<td>VR x 0.975</td>
<td>VR ± 0.5%</td>
<td>VR x 1.025</td>
<td>V</td>
<td>VOUT = 3.0V, IOUT = 120mA (Note 1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VOUT = 3.3V, IOUT = 132mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VOUT = 5.0V, IOUT = 200mA</td>
</tr>
<tr>
<td>VIN</td>
<td>Input Voltage</td>
<td>1.8</td>
<td>—</td>
<td>10.0</td>
<td>V</td>
<td>VOUT = 3.0V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VOUT = 3.3V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VOUT = 5.0V</td>
</tr>
<tr>
<td>IOUTMAX</td>
<td>Maximum Output Current</td>
<td>500</td>
<td>—</td>
<td>—</td>
<td>mA</td>
<td>VOUT = 3.0V, IIN = VR x 1.05, no load</td>
</tr>
<tr>
<td></td>
<td></td>
<td>600</td>
<td>—</td>
<td>—</td>
<td></td>
<td>VOUT = 3.3V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>600</td>
<td>—</td>
<td>—</td>
<td></td>
<td>VOUT = 5.0V</td>
</tr>
<tr>
<td>IIN</td>
<td>Supply Current</td>
<td>—</td>
<td>52</td>
<td>82</td>
<td>µA</td>
<td>IN = 3.0V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>55</td>
<td>86</td>
<td></td>
<td>IIN = 3.3V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>71</td>
<td>110</td>
<td></td>
<td>IIN = 5.0V</td>
</tr>
<tr>
<td>ISHDN</td>
<td>Shutdown Supply Current</td>
<td>—</td>
<td>1.5</td>
<td>2.5</td>
<td>µA</td>
<td>No load, SHDN = 0V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IOUT = VR x 0.9 (Note 2)</td>
</tr>
<tr>
<td>ILX</td>
<td>LX Pin Leakage Current</td>
<td>—</td>
<td>—</td>
<td>2</td>
<td>µA</td>
<td>Measured at EXT1 Pin (Note 2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.5</td>
<td></td>
<td>Measured at EXT1 Pin (Note 2)</td>
</tr>
<tr>
<td>RDSON(LX)</td>
<td>LX Pin ON Resistance</td>
<td>—</td>
<td>0.69</td>
<td>0.94</td>
<td>Ω</td>
<td>VOUT = 3.0V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>0.64</td>
<td>0.85</td>
<td></td>
<td>VOUT = 3.3V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>0.44</td>
<td>0.58</td>
<td></td>
<td>VOUT = 5.0V</td>
</tr>
<tr>
<td>REXTH</td>
<td>EXT1, EXT2 On Resistance to VIN</td>
<td>—</td>
<td>38</td>
<td>52</td>
<td>Ω</td>
<td>VOUT = 3.0V, VOUT = VR x 0.9 (Note 2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>35</td>
<td>47</td>
<td></td>
<td>VOUT = 3.3V, VOUT = VR x 0.2V, 10Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>24</td>
<td>32</td>
<td></td>
<td>VOUT = 5.0V VOUT = VR x 1.05, no load, SHDN = 0V (Note 2)</td>
</tr>
<tr>
<td>REXTL</td>
<td>EXT1, EXT2 On Resistance to GND</td>
<td>—</td>
<td>31</td>
<td>41</td>
<td>Ω</td>
<td>VOUT = 3.0V, VOUT = VR x 0.9 (Note 2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>29</td>
<td>37</td>
<td></td>
<td>VOUT = 3.3V, VOUT = VR x 0.2V, 10Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>20</td>
<td>26</td>
<td></td>
<td>VOUT = 5.0V VOUT = VR x 1.05, no load, SHDN = 0V (Note 2)</td>
</tr>
<tr>
<td>IO SC</td>
<td>Oscillator Frequency</td>
<td>255</td>
<td>300</td>
<td>345</td>
<td>kHz</td>
<td>Measured at EXT1 Pin, VOUT = 0.3V, ION = 20mA (Note 3)</td>
</tr>
<tr>
<td>DPWM</td>
<td>Maximum PWM Duty Cycle</td>
<td>—</td>
<td>—</td>
<td>100</td>
<td>%</td>
<td>Measured at EXT1 Pin, VOUT = 0.3V, ION = 20mA (Note 3)</td>
</tr>
<tr>
<td>DP FM</td>
<td>PFM Duty Cycle</td>
<td>15</td>
<td>25</td>
<td>35</td>
<td>%</td>
<td>No load</td>
</tr>
<tr>
<td>η</td>
<td>Efficiency</td>
<td>—</td>
<td>95</td>
<td>—</td>
<td>%</td>
<td>VIN > VR x 1.2</td>
</tr>
</tbody>
</table>

Note 1: VR is the factory-programmed output voltage setting.
2: No external components connected, except CIN.
3: While operating in PWM Mode.
Electrical Characteristics: Test circuit of Figure 3-1, $T_A = 25^\circ C$, $V_{IN} = V_R \times 1.2$, Note 1 unless otherwise noted.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{UVLO}</td>
<td>Minimum Operating Voltage</td>
<td>0.9</td>
<td>—</td>
<td>1.8</td>
<td>V</td>
<td>$V_{OUT} = V_R \times 0.9$ (Note 2), $SHDN = V_{IN}$, Measured with internal transistor in OFF state and V_{IN} falling</td>
</tr>
<tr>
<td>V_{IH}</td>
<td>SHDN Input Logic High, Threshold Voltage</td>
<td>0.65</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>$V_{OUT} = 0V$, (Note 2)</td>
</tr>
<tr>
<td>V_{IL}</td>
<td>SHDN Input Logic Low, Threshold Voltage</td>
<td>—</td>
<td>—</td>
<td>0.20</td>
<td>V</td>
<td>$V_{OUT} = 0V$, (Note 2)</td>
</tr>
<tr>
<td>t_{PRO}</td>
<td>Short Circuit Protection Response Time</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>msec</td>
<td>Time from $V_{OUT} = 0V$ to $SHDN = V_{IL}$ (Note 2)</td>
</tr>
<tr>
<td>t_{SS}</td>
<td>Soft Start Time</td>
<td>6</td>
<td>10</td>
<td>16</td>
<td>msec</td>
<td></td>
</tr>
</tbody>
</table>

Note

1: V_R is the factory-programmed output voltage setting.
2: No external components connected, except CSS.
3: While operating in PWM Mode.
2.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 2-1.

TABLE 2-1: PIN FUNCTION TABLE

<table>
<thead>
<tr>
<th>Pin No. (8-Pin SOP)</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V<sub>IN</sub></td>
<td>Unregulated supply input.</td>
</tr>
<tr>
<td>2</td>
<td>EXTW</td>
<td>Extended external switching transistor drive output. This output follows the timing on the EXT output with an additional 100nsec blanking time on both the leading and trailing edges. That is, this output transitions from high-to-low 100 nsec prior to the same transition on EXT; and transitions low-to-high 100nsec after the same transition on EXT; resulting in a longer external switch ON time. (See Section 3.9 External Switching Transistor Selection).</td>
</tr>
<tr>
<td>3</td>
<td>CPC</td>
<td>Charge pump capacitor input. An inverting charge pump is formed by attaching a capacitor and diode to this input. (See Section 3.5 Improving High Load Efficiency In Regulator Operating Mode).</td>
</tr>
<tr>
<td>4</td>
<td>SHDN/SS</td>
<td>Shutdown and soft-start control input. A soft start capacitor of 100pF (min) must be connected to this input. The soft start capacitor is charged by an internal μA current source that gently ramps the TC120 into service. Shutdown control is best implemented with an external open collector (or open drain) switch. The TC120 enters shutdown when this input is low. During shutdown, the regulator is disabled, and supply current is reduced to less than 2.5μA. Normal operation is restored when this input is open-circuited, and allowed to float high. (See Section 3.6 Low Power Shutdown Mode/Soft Start Input).</td>
</tr>
<tr>
<td>5</td>
<td>SENSE</td>
<td>Voltage sense input. This input must be connected to the output voltage node at the physical location that requires the tightest voltage regulation.</td>
</tr>
<tr>
<td>6</td>
<td>GND</td>
<td>Ground terminal.</td>
</tr>
<tr>
<td>7</td>
<td>EXT</td>
<td>External switching transistor drive output. This output connects directly to the gate of an external P-channel MOSFET for applications requiring output currents greater than 600mA. The timing of this output exactly matches that of the gate drive for the internal P-channel transistor. This output can drive a maximum capacitance of 1000pF. (See Section 3.9 External Switching Transistor Selection).</td>
</tr>
<tr>
<td>8</td>
<td>Lx</td>
<td>Inductor terminal. This pin is connected to the drain of the internal P-channel switching transistor. If the TC120 is operated as a regulator (i.e., using the internal switch); the inductor must be connected between this pin and the SENSE pin.</td>
</tr>
</tbody>
</table>
3.0 DETAILED DESCRIPTION

The TC120 can be operated as an integrated step-down regulator (using the internal switching transistor); or as a step-down regulator controller (using an external switching transistor). When operating as an integrated regulator, the only required external components are a Schottky diode, inductor and an output capacitor. Operating in this configuration, the TC120 is capable of supporting output load currents to a maximum of 600mA with operating efficiencies above 85%. Efficiencies at high loads can be further improved by using the on-board charge pump circuit to pull the gate of the internal switching transistor below ground for the lowest possible ON resistance. (For more information, see Section 3.5 Improving High Load Efficiency in Regulator Operating Mode).

Higher output currents are achieved by operating the TC120 with an external P-channel switching transistor (controller mode). In this operating configuration, the maximum output current is determined primarily by the ON resistance of the P-channel switch and the series resistance of the inductor.

3.1 Inductor Selection

Selecting the proper inductor value is a trade-off between physical size and power conversion requirements. Lower value inductors cost less, but result in higher ripple current and core losses. They are also more prone to saturate since the coil current ramps faster and could overshoot the desired peak value. This not only reduces efficiency, but could also cause the current rating of the external components to be exceeded. Larger inductor values reduce both ripple current and core losses, but are larger in physical size and tend to increase the start-up time slightly. A 22µH inductor is the best overall compromise and is recommended for use with the TC120. For highest efficiency, use inductors with a low DC resistance (less than 20mΩ). To minimize radiated noise, consider using a toroid, pot core or shielded-bobbin inductor.

3.2 Input Bypass Capacitor

Using an input bypass capacitor reduces peak current transients drawn from the input supply, and reduces the switching noise generated by the regulator. The source impedance of the input supply determines the size of the capacitor that should be used.

3.3 Output Capacitor

The effective series resistance of the output capacitor directly affects the amplitude of the output voltage ripple. (The product of the peak inductor current and the ESR determines output ripple amplitude.) Therefore, a capacitor with the lowest possible ESR should be selected. Smaller capacitors are acceptable for light loads or in applications where ripple is not a concern. A 47µF Tantalum capacitor is recommended for most applications. The Sprague 595D series of tantalum capacitors are amongst the smallest of all low ESR surface mount capacitors available. Table 3-1 lists suggested components and suppliers.

3.4 Catch Diode

The high operating frequency of the TC120 requires a high-speed diode. Schottky diodes such as the MA737 or 1N5817 through 1N5823 (and the equivalent surface mount versions) are recommended. Select a diode whose average current rating is greater than the peak inductor current; and whose voltage rating is higher than \(V_{\text{INMAX}} \).

3.5 Improving High Load Efficiency in Regulator Operating Mode

If the TC120 is operated at high output loads most (or all) of the time, efficiency can be improved with the addition of two components. Ordinarily, the voltage swing on the gate of the internal P-channel transistor is from ground to \(V_{\text{IN}} \). By adding a capacitor and diode as shown in Figure 3-2, an inverting charge pump is formed, enabling the internal gate voltage to swing from a negative voltage to \(+V_{\text{IN}} \). This increased drive lowers the \(R_{\text{DSon}} \) of the internal transistor, improving efficiency at high output currents. Care must be taken to ensure the voltage measured between \(V_{\text{IN}} \) and CPC does not exceed an absolute value of 10V. While this is not a problem at values of \(V_{\text{IN}} \) at (or below) 5V, higher \(V_{\text{IN}} \) values will require the addition of a clamping mechanism (such as a Zener diode) to limit the voltage as described. While this technique improves efficiency at high output loads, it is at the expense of low load efficiency because energy is expended charging and discharging the charge pump capacitor. This technique is therefore not recommended for applications that operate the TC120 at low output currents for extended time periods. If unused, CPC must be grounded.
3.6 Low Power Shutdown Mode/Soft Start Input

The SHDN/SS input acts as both the shutdown control and the node for the external soft start capacitor, which is charged by an internal 1µA current source. A value of 4700pF (100pF minimum) is recommended for the soft start capacitor. Failure to do this may cause large overshoot voltages and/or large inrush currents resulting in possible instability. The TC120 enters a low power shutdown mode when SHDN/SS is brought low. While in shutdown, the oscillator is disabled and the output discharge switch is turned on, discharging the output capacitor. Figure 3-3 shows the recommended interface circuits to the SHDN/SS input. As shown, the SHDN/SS input should be controlled using an open collector (or open drain) device, such that the SHDN/SS input is grounded for shutdown mode, and open-circuited for normal operation (Figure 3-3a). If a CMOS device is used to control shutdown (Figure 3-3b), the value of R1 and CSS should be chosen such that the voltage on SHDN/SS rises from ground to 0.65V in 1.5msec (Figure 3-4). If shutdown is not used, CSS must still be connected as shown in Figure 3-3c and Figure 3-3d. SHDN/SS may be pulled up with a resistor (Figure 3-3c) as long as the values of RSS and CSS provide the approximate charging characteristic on power up shown in Figure 3-4. CSS only may also be connected as shown in Figure 3-3d with CSS chosen at 4700pF (minimum 100pF).

3.7 Undervoltage Lockout (UVLO)

The TC120 is disabled whenever VIN is below the undervoltage lockout threshold. This threshold is equal to the guaranteed minimum operating voltage for the TC120 (i.e., 2.2V). When UVLO is active, the TC120 is completely disabled.

3.8 Short Circuit Protection

Upon detection of an output short circuit condition, the TC120 reduces the PWM duty cycle to a minimum value using its internal protection timer. The sequence of events is as follows: when an output voltage decrease to near zero is detected (as the result of an overload), the internal (5msec) protection timer is started. If the output voltage has not recovered to nominal value prior to the expiration of the protection timer, the TC120 is momentarily shut down by dedicated, internal circuitry. Immediately following this action, the soft start sequence is engaged in an attempt to re-start the TC120. If the output short circuit is removed, normal operation is automatically restored. If the short circuit is still present, the timed self-shutdown sequence described above is repeated.

3.9 External Switching Transistor Selection

EXT is a complimentary output with a maximum ON resistances of 32Ω to VDD when high and 26Ω to ground when low, at VOUT = 5V. It is designed to directly drive a P-channel MOSFET (Figure 3-5). The P-channel MOSFET selection is determined mainly by the on-resistance, gate-source threshold and gate charge requirements. Also, the drain-to-source and gate-to-source breakdown voltage ratings must be greater than VINMAX. The total gate charge specification should be less than 100nC for best efficiency. The MOSFET must be capable of handling the required peak inductor current, and should have a very low on-resistance at that current. For example, a Si9430 MOSFET has a drain-to-source rating of -20V, and a typical on-resistance rDSON of 0.07Ω at 2A, with VGS = -4.5V. (EXTW (Figure 3-6) may be gated with external circuitry to add blanking, or as an auxiliary timing signal.) Table 3-1 lists suggested components and suppliers.

3.10 Board Layout Guidelines

As with all inductive switching regulators, the TC120 generates fast switching waveforms, which radiate noise. Interconnecting lead lengths should be minimized to keep stray capacitance, trace resistance and radiated noise as low as possible. In addition, the GND pin, input bypass capacitor and output filter capacitor ground leads should be connected to a single point. The input capacitor should be placed as close to power and ground pins of the TC120 as possible. The length of the EXT trace must also be kept as short as possible.
TABLE 3-1: SUGGESTED COMPONENTS AND SUPPLIERS

<table>
<thead>
<tr>
<th>Type</th>
<th>Inductors</th>
<th>Capacitors</th>
<th>Diodes</th>
<th>Transistors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface Mount</td>
<td>Sumida CD54 Series</td>
<td>AVX</td>
<td>ON Semiconductor MBRS340T3</td>
<td>Siliconix Little Foot MOSFET Series</td>
</tr>
<tr>
<td></td>
<td>Sumida CDRH Series</td>
<td>TPS Series</td>
<td>Nihon NSQ Series</td>
<td>Zetex FZT749</td>
</tr>
<tr>
<td></td>
<td>Coilcraft DO Series</td>
<td>Sprague 595D Series</td>
<td>Matsushita MA737</td>
<td>PNP Bipolar Transistor</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Toshiba 2SA1213 PNP Transistor</td>
</tr>
<tr>
<td>Miniature</td>
<td>Sumida RCH Series</td>
<td>Sanyo</td>
<td>IRC OAR Series</td>
<td></td>
</tr>
<tr>
<td>Through-Hole</td>
<td></td>
<td>OS-CON Series</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard</td>
<td>Coilcraft PCH Series</td>
<td>Nichicon</td>
<td></td>
<td>ON Semiconductor TMOS Power MOSFETs</td>
</tr>
<tr>
<td>Through-Hole</td>
<td></td>
<td>PL Series</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>United Chemi-Conv</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LXF Series</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 3-2: TC120 WITH ADDED COMPONENTS FOR IMPROVED EFFICIENCY AT HIGH OUTPUT CURRENTS

a) For $V_{IN} \leq 5V$

b) For $V_{IN} > 5V$
FIGURE 3-3: SHUTDOWN CONTROL CIRCUITS

a) Using an Open Collector Device

b) Using a Complementary Output Device

c) Shutdown Not Used – with Pull-Up

d) Shutdown Not Used – No Pull-Up

FIGURE 3-4: SOFT START TIMING
FIGURE 3-5: USING EXTERNAL TRANSISTOR SWITCH

FIGURE 3-6: EXTERNAL (EXT) AND EXTENDED EXTERNAL (EXTW) SWITCHING TRANSISTOR DRIVE OUTPUT
4.0 PACKAGING INFORMATION

4.1 Package Marking Information

Package marking data not available at this time.

4.2 Taping Form

Component Taping Orientation for 8-Pin SOP Devices

User Direction of Feed

PIN 1

Standard Reel Component Orientation for TR Suffix Device

8-Pin SOP

Carrier Tape, Number of Components Per Reel and Reel Size

<table>
<thead>
<tr>
<th>Package</th>
<th>Carrier Width (W)</th>
<th>Pitch (P)</th>
<th>Part Per Full Reel</th>
<th>Reel Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-Pin SOP</td>
<td>12 mm</td>
<td>8 mm</td>
<td>1000</td>
<td>7 in</td>
</tr>
</tbody>
</table>

4.3 Package Dimensions

8-Pin SOP

Dimensions: inches (mm)
Sales and Support

<table>
<thead>
<tr>
<th>Data Sheets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:</td>
</tr>
<tr>
<td>1. Your local Microchip sales office</td>
</tr>
<tr>
<td>2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277</td>
</tr>
<tr>
<td>3. The Microchip Worldwide Site (www.microchip.com)</td>
</tr>
</tbody>
</table>

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

New Customer Notification System

Register on our web site (www.microchip.com/cn) to receive the most current information on our products.
Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip’s products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademark

The Microchip name and logo, the Microchip logo, FilterLab, Keelloc, microID, MPLAB, PIC, PICmicro, PICMASTER, PICSTART, PRO MATE, SEEVAl and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, MXDEV, MXLAB, PICC, PICDEM, PICDEM.net, rPIC, Select Mode and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2002, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999 and Mountain View, California in March 2002. The Company’s quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, Keelloc® code hopping devices, Serial EEPROMs, microperipherals, non-volatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001 certified.
WORLDWIDE SALES AND SERVICE

AMERICAS
Corporate Office
2335 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200 Fax: 480-792-7277
Technical Support: 480-792-7627
Web Address: http://www.microchip.com

Rocky Mountain
2335 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7966 Fax: 480-792-7456

Atlanta
500 Sugar Mill Road, Suite 200B
Atlanta, GA 30350
Tel: 770-640-0034 Fax: 770-640-0307

Boston
2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848 Fax: 978-692-3821

Chicago
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071 Fax: 630-285-0075

Dallas
4570 Westgrove Drive, Suite 160
Addison, TX 75001
Tel: 972-818-7924 Fax: 972-818-2924

Detroit
Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250 Fax: 248-538-2260

Kokomo
2767 S. Albright Road
Kokomo, Indiana 46902
Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888 Fax: 949-263-1338

New York
150 Motor Parkway, Suite 202
Hauppauge, NY 11788
Tel: 631-273-5307 Fax: 631-273-5335

San Jose
Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408-438-7950 Fax: 408-438-7955

Toronto
6285 Northame Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC
Australia
Microchip Technology Australia Pty Ltd
Suite 22, 41 Rawsen Street
Epping 2121, NSW
Australia
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing
Microchip Technology Consulting (Shanghai) Co., Ltd.
Unit 915
Beijing International Trade Center
Beijing, 100027, No. China
Tel: 86-10-85282100 Fax: 86-10-85282104

China - Chengdu
Microchip Technology Consulting (Shanghai) Co., Ltd.
Rm. 2401, 24th Floor
Ming Xing Financial Tower
No. 88 TIDU Street
Chengdu 610016, China
Tel: 86-28-86766200 Fax: 86-28-86766599

China - Fuzhou
Microchip Technology Consulting (Shanghai) Co., Ltd.
Unit 711, World Trade Plaza
Fuzhou 350001, China
Tel: 86-591-7503506 Fax: 86-591-7503521

China - Hong Kong SAR
Microchip Technology Hong Kong Ltd.
Unit 901-6, Tower 2, Metroplaza
223 Hing Fong Road
Kowloon, Hong Kong
Tel: 852-2401-1200 Fax: 852-2401-3431

India
Microchip Technology Inc.
India Office
Divyadasa Chambers
1 Floor, Wing A (A3/A4)
No. 11, O'Shaugnessy Road
Bangalore, 560 025, India
Tel: 91-80-2290061 Fax: 91-80-2290062

Japan
Microchip Technology Japan K.K.
Benex S-1 6F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa, 222-0033, Japan
Tel: 81-45-471-6168 Fax: 81-45-471-6122

Korea
Microchip Technology Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea 135-882
Tel: 82-2-554-7200 Fax: 82-2-558-5934

Singapore
Microchip Technology Singapore Pte Ltd.
200 Middle Road
#07-02 Prime Centre
Singapore, 188980
Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan
Microchip Technology Taiwan
11F-3, No. 207
Tung Hua North Road
Taipei, 105, Taiwan
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE

Denmark
Microchip Technology Nordic ApS
Regus Business Centre
Lautrup høj 1-3
Ballseth DK-2750 Denmark
Tel: 45 4420 9895 Fax: 45 4420 9910

France
Microchip Technology SARL
Parc d'Activite du Moulin de Massy
43 Rue du Saule Trapa
Batiement A - Ier Etage
91300 Massy, France
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany
Microchip Technology GmbH
Gustav-Heinemann Ring 125
D-81739 Munich, Germany
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44

Italy
Microchip Technology SRL
Centro Direzionale Colleoni
Palazzo Taurus 1 V. Le Colleoni 1
20041 Agrate Brianza
Milan, Italy
Tel: 39-039-65791-1 Fax: 39-039-6899883

United Kingdom
Microchip Ltd.
505 Eskevade Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44 118 921 5869 Fax: 44-118 921-5820

05/01/02