Features

- High Efficiency at Low Output Load Currents via PFM Mode
- Assured Start-up at 0.9V
- 80 µA (Typ) Supply Current
- 85% Typical Efficiency at 100 mA
- 140 mA Typical Output Current @ \(V_{IN} = 2.0V \)
- Low Power Shutdown Mode
- No External Switching Transistor Needed
- Space-Saving SOT-89 Package

Applications

- Pagers
- Cellular Phones
- Palmtops
- 1-Cell to 3-Cell Battery Powered Systems
- Cameras, Video Recorders
- Local +3V to +5V Supplies

Package Type

![Package Diagram](image)

General Description

The TC115 is a high-efficiency step-up DC/DC converter for small, low input voltage or battery-powered systems. This device has a start-up voltage of 0.9V and a typical supply current of 80 µA. Phase compensation and soft-start circuitry are included on-chip. Unlike conventional PWM step-up converters, the TC115 automatically shifts to pulse frequency modulation (PFM) at low loads, resulting in reduced supply current and improved efficiency.

The TC115 requires only an external diode, an inductor and a capacitor, while supporting typical output currents of 140 mA. Supply current is reduced to less than 0.5 µA (max) when SHDN input is brought low.

Small size, low installed cost and low supply current make the TC115 step-up converter ideal for use in a wide range of battery-powered systems.

Functional Block Diagram

![Block Diagram](image)
1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings†

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply Voltage (PS)</td>
<td>—</td>
<td>—</td>
<td>12V</td>
<td></td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>—</td>
<td>—</td>
<td>500 mW</td>
<td></td>
</tr>
<tr>
<td>LX Sink Current</td>
<td>—</td>
<td>400 mA pk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHDN Input Voltage</td>
<td>—</td>
<td>—</td>
<td>12V</td>
<td></td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>-40°C</td>
<td>—</td>
<td>+85°C</td>
<td></td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>-40°C</td>
<td>—</td>
<td>+125°C</td>
<td></td>
</tr>
</tbody>
</table>

† Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

DC CHARACTERISTICS

Electrical Specifications: Unless otherwise noted, VOUT = 5V, TA = +25°C. Circuit configuration is illustrated in Figure 5-1.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Supply Voltage</td>
<td>VIN</td>
<td>0.9</td>
<td>—</td>
<td>10.0</td>
<td>V</td>
</tr>
<tr>
<td>Start-Up Supply Voltage</td>
<td>VSTART</td>
<td>—</td>
<td>—</td>
<td>0.9</td>
<td>V</td>
</tr>
<tr>
<td>LX Maximum Sink Current</td>
<td>ILXMAX</td>
<td>—</td>
<td>—</td>
<td>350</td>
<td>mA</td>
</tr>
<tr>
<td>LX Limit Frequency</td>
<td>fLIM</td>
<td>—</td>
<td>200</td>
<td>—</td>
<td>kHz</td>
</tr>
<tr>
<td>LX Limit Voltage</td>
<td>VLXLIM</td>
<td>0.7</td>
<td>—</td>
<td>1.3</td>
<td>V</td>
</tr>
<tr>
<td>No Load Supply Current</td>
<td>IDD</td>
<td>—</td>
<td>13</td>
<td>26</td>
<td>μA</td>
</tr>
<tr>
<td>Boost Mode Supply Current</td>
<td>ICC</td>
<td>—</td>
<td>80</td>
<td>135</td>
<td>μA</td>
</tr>
<tr>
<td>Standby Supply Current</td>
<td>ISTBY</td>
<td>—</td>
<td>9</td>
<td>17</td>
<td>μA</td>
</tr>
<tr>
<td>Shutdown Supply Current</td>
<td>ISD</td>
<td>—</td>
<td>0.5</td>
<td>1μA</td>
<td>SHDN = 0V</td>
</tr>
<tr>
<td>Oscillator Frequency</td>
<td>fOSC</td>
<td>85</td>
<td>100</td>
<td>115</td>
<td>kHz</td>
</tr>
<tr>
<td>Output Voltage</td>
<td>VOUT</td>
<td>Vr x 0.975</td>
<td>Vr x 1.025</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>LX Output ON Resistance</td>
<td>Rswon</td>
<td>1.4</td>
<td>2.4</td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td>Duty Cycle (PFM Operating Mode)</td>
<td>PFMDUTY</td>
<td>10</td>
<td>17</td>
<td>25%</td>
<td>No external components</td>
</tr>
<tr>
<td>Maximum Duty Cycle</td>
<td>MAXDUTY</td>
<td>80</td>
<td>87</td>
<td>92</td>
<td>%</td>
</tr>
<tr>
<td>Soft Start Time</td>
<td>tSS</td>
<td>4</td>
<td>10</td>
<td>20</td>
<td>msec</td>
</tr>
<tr>
<td>Efficiency</td>
<td>h</td>
<td>—</td>
<td>85</td>
<td>—</td>
<td>%</td>
</tr>
<tr>
<td>SHDN Input Logic High</td>
<td>VIN</td>
<td>0.75</td>
<td>—</td>
<td>—</td>
<td>V</td>
</tr>
<tr>
<td>SHDN Input Logic Low</td>
<td>VIIL</td>
<td>—</td>
<td>0.20</td>
<td>—</td>
<td>V</td>
</tr>
</tbody>
</table>

Note 1: VR is the nominal factory-programmed output voltage setting.

Note 2: VLXLIM is the voltage on the LX pin (with internal switch ON) that will cause the oscillator to run at twice nominal frequency in to limit the switch current through the internal N-channel switching transistor.

Note 3: Measured with D1 = MA735 (reverse current < 1 μA at a reverse voltage of 10V).

Note 4: With TC115 operating in PWM mode.

Note 5: See Section 4.4, "Behavior When VIN is Greater Than the Factory-Programmed VOUT Setting".
2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

Note: Unless otherwise indicated, \(V_{OUT} = 5V, \ T_A = +25^\circ C \).

FIGURE 2-1: Output Voltage vs. Output Current.

FIGURE 2-2: No Load Input Current vs. Input Voltage.

FIGURE 2-3: Efficiency vs. Output Current.

FIGURE 2-4: Ripple Voltage vs. Output Current.
3.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 3-1.

TABLE 3-1: PIN FUNCTION TABLE

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NC</td>
<td>Not connected</td>
</tr>
<tr>
<td>2</td>
<td>PS</td>
<td>Power and voltage sense input</td>
</tr>
<tr>
<td>3</td>
<td>SHDN</td>
<td>Shutdown input</td>
</tr>
<tr>
<td>4</td>
<td>LX</td>
<td>Inductor switch output</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>Ground terminal</td>
</tr>
</tbody>
</table>

3.1 Power and Voltage Sense Input (PS)

PS is a dual function input that provides both feedback voltage sensing and internal chip power. It should be connected to the regulator output (See Section 5.0, “Applications”).

3.2 Shutdown Input (SHDN)

A logic-low on SHDN suspends device operation and supply current is reduced to less than 0.5 µA. The device resumes normal operation when SHDN is again brought high.

3.3 Inductor Switch Output (LX)

LX is the drain of an internal N-channel switching transistor. This terminal drives the external inductor, which ultimately provides current to the load.

3.4 Ground Terminal (GND)

Connect to circuit ground.

3.5 No Connect (NC)

No internal connection.
4.0 DETAILED DESCRIPTION

The TC115 is a combination PFM/PWM step-up (boost) regulator. It is particularly useful in battery-powered 1, 2 and 3 cell applications where the required output current is 140 mA or less, and size/cost issues are a concern. The device operates in PWM mode when the output load is sufficient to demand a 10% (or greater) duty cycle. While in PWM mode, the TC115 behaves as any other PWM switching regulator to a maximum duty cycle of 92%. At low output loads (i.e., output loads requiring < 10% duty cycle to support), the TC115 automatically switches to pulse frequency modulation (PFM) operating mode with a fixed duty cycle of 25% (max) (17%, typical). While in PFM mode, the inductor is modulated with individual fixed width pulses only as needed to maintain output voltage. This action reduces supply current, thereby improving power efficiency at low output loads.

4.1 Input Power and Sensing

The TC115 is powered from the PS input, which must be connected to the regulated output, as shown in Figure 5-1. PS also senses output voltage for closed-loop regulation. Start-up current is furnished through the inductor when input voltage is initially applied. This action starts the oscillator, causing the voltage at the PS input to rise, bootstrapping the regulator into full operation.

4.2 Output Diode

For best results, use a Schottky diode, such as the MA735, 1N5817, EC10 or equivalent. Connect the diode between the PS and LX pins as close to the IC as possible. While ultra fast diodes can be used, lower efficiency will result due to their higher forward voltage drop. Ordinary rectifiers should be avoided because of their slow recovery characteristics.

4.3 Low Power Shutdown Mode

The TC115 enters a low power shutdown mode when SHDN is brought low. While in shutdown, the oscillator is disabled and the internal switch is shut off. Normal regulator operation resumes when SHDN is brought high. SHDN may be tied to the input supply if not used.

4.4 Behavior When \(V_{IN} \) is Greater Than the Factory-Programmed \(V_{OUT} \) Setting

The TC115 is designed to operate as a step-up regulator only. As such, \(V_{IN} \) is assumed to always be less than the factory-programmed \(V_{OUT} \) setting (\(V_{R} \)). Operating the TC115 with \(V_{IN} > V_{R} \) causes regulating action to be suspended (and corresponding supply current reduction to 9 µA, typical) until \(V_{IN} \) is again less than \(V_{R} \). While regulating action is suspended, \(V_{IN} \) is connected to \(V_{OUT} \) through the series combination of the inductor and Schottky diode. Care must be taken to add the appropriate isolation (MOSFET output switch or post LDO with shutdown) during system design if this \(V_{IN}/V_{OUT} \) leakage path is problematic.

Note: Because the TC115 uses an external diode, a leakage path between the input voltage and the output node (through the inductor and diode) exists while the regulator is in shutdown. Care must be taken in system design to assure the input supply is isolated from the load during shutdown.
5.0 APPLICATIONS

5.1 Input Bypass Capacitors

Using an input bypass capacitor reduces peak current transients drawn from the input supply and reduces the switching noise generated by the regulator. The source impedance of the input supply determines the size of the capacitor that should be used.

![Diagram of TC115 Typical Application](image)

FIGURE 5-1: TC115 Typical Application.

5.2 Inductor Selection

Selecting the proper inductor value is a trade-off between physical size and power conversion requirements. Lower value inductors cost less, but result in higher ripple current and core losses. They are also more prone to saturate since the coil current ramps to a higher value. Larger inductor values reduce both ripple current and core losses, but are larger in physical size and tend to increase the start-up time slightly.

Practical inductor values, therefore, range from 50 µH to 300 µH. Inductors with a ferrite core (or equivalent) are recommended. For highest efficiency, use an inductor with a series resistance less than 0.1Ω.

The inductor value directly affects the output ripple voltage. Equation 5-3 is derived as shown below, and can be used to calculate an inductor value, given the required output ripple voltage \(V_{RIPPLE} \) and output capacitor series resistance:

EQUATION 5-1:

\[
V_{RIPPLE} = ESR(di)
\]

Where:
- ESR: the equivalent series resistance of the output filter capacitor; \(V_{RIPPLE} \) is in volts.
- \(di \): represents the peak to peak ripple current in the inductor.

Expressing \(di \) in terms of switch ON resistance and time:

EQUATION 5-2:

\[
V_{RIPPLE} = \frac{[(V_{IN} - V_{SW})T_{ON}]}{L}
\]

Where:
- \(V_{SW} \): voltage drop across the switch.
- \(T_{ON} \): the amount of time the switch is ON.

Solving for \(L \):

EQUATION 5-3:

\[
L = \frac{[(V_{IN} - V_{SW})T_{ON}]}{V_{RIPPLE}}
\]

Care must be taken to ensure the inductor can handle peak switching currents, which can be several times load currents. Exceeding rated peak current will result in core saturation and loss of inductance. The inductor should be selected to withstand currents greater than \(I_{PK} \) (Equation 5-10) without saturating.

Calculating the peak inductor current is straightforward. Inductor current consists of an AC (sawtooth) current centered on an average DC current (i.e., input current). Equation 5-6 calculates the average DC current. Note that minimum input voltage and maximum load current values should be used:

EQUATION 5-4:

\[
\text{Input Power} = \frac{\text{Output Power}}{\text{Efficiency}}
\]
Rewriting in terms of input and output currents and voltages:

EQUATION 5-5:

\[
(V_{\text{IN min}})(I_{\text{IN max}}) = \frac{(V_{\text{OUT max}})(I_{\text{OUT max}})}{\text{Efficiency}}
\]

Solving for input current:

EQUATION 5-6:

\[
I_{\text{IN max}} = \frac{(V_{\text{OUT max}})(I_{\text{OUT max}})}{(\text{Efficiency})(V_{\text{IN min}})}
\]

The sawtooth current is centered on the DC current level, swinging equally above and below the DC current calculated in Equation 5-6. The peak inductor current is the sum of the DC current plus half the ac current. Note that minimum input voltage should be used when calculating the ac inductor current (Equation 5-9).

EQUATION 5-7:

\[
V_L = L(di/dt)
\]

EQUATION 5-8:

\[di = V_L(di/dt)\]

EQUATION 5-9:

\[
di = \frac{(V_{\text{IN min}} - V_{\text{SW}})I_{\text{ON}}}{L}
\]

Where:

\[V_{\text{SW}} = \text{The voltage drop across the internal N-channel MOSFET.}\]

Combining the DC current calculated in Equation 5-6, with half the peak ac current calculated in Equation 5-9, the peak inductor current is given by:

EQUATION 5-10:

\[I_{P K} = I_{\text{IN max}} + 0.5(di)\]

5.3 Internal Transistor Switch

The LX pin has a typical ON resistance of 1.4Ω. Therefore, peak switch current is given by \((V_{\text{IN}}/1.4)\). The internal transistor switch has a maximum design rating of 350 mA. An oscillator frequency doubling circuit is an included guard against high switching currents. Should the voltage on the LX pin rise above 1.3V (max) while the internal N-channel switch is ON, the oscillator frequency automatically doubles to minimize ON time. Although reduced, switch current still flows because the PWM remains in operation. Therefore, the LX input is not internally current-limited and care must be taken never to exceed the 350 mA maximum limit. Failure to observe this will result in damage to the regulator.

5.4 Output Capacitor

The effective series resistance of the output capacitor directly affects the amplitude of the output voltage ripple (The product of the peak inductor current and the ESR determines output ripple amplitude). Therefore, a capacitor with the lowest possible ESR should be selected. Smaller capacitors are acceptable for light loads (or in applications where ripple is not a concern). The Sprague® 595D series of tantalum capacitors are among the smallest of all low ESR surface mount capacitors available. Table 5-1 lists suggested components and suppliers.

5.5 Board Layout Guidelines

As with all inductive switching regulators, the TC115 generates fast switching waveforms which radiate noise. Interconnecting lead lengths should be minimized to keep stray capacitance, trace resistance and radiated noise as low as possible. In addition, the GND pin, input bypass capacitor and output filter capacitor ground leads should be connected to a single point.

TABLE 5-1: SUGGESTED COMPONENTS AND SUPPLIERS

<table>
<thead>
<tr>
<th>Type</th>
<th>Inductors</th>
<th>Capacitors</th>
<th>Diodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface Mount</td>
<td>Sumida® CD54 Series</td>
<td>Matsuo® 267 Series</td>
<td>Nihon EC10 Series</td>
</tr>
<tr>
<td></td>
<td>CDR125 Series</td>
<td>Sprague® 595D Series</td>
<td>Matsushita™ MA735 Series</td>
</tr>
<tr>
<td></td>
<td>Coiltronics™ CTX Series</td>
<td>Nichicon™ F93 Series</td>
<td></td>
</tr>
<tr>
<td>Through-Hole</td>
<td>Sumida® RCH855 Series</td>
<td>Sanyo™ OS-CON Series</td>
<td>ON Semiconductor® 1N5817 - 1N5822</td>
</tr>
<tr>
<td></td>
<td>RCH110 Series</td>
<td>Nichicon™ PL Series</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Renco® RL1284-12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TC115301
$V_{IN} = 1.0\,V$
$\text{I}_{\text{LOAD}} = 10\,\text{mA}$
CH1: V_{OUT} (DC)
CH2: V_{OUT} (AC Ripple)
$L = 100\,\mu\text{H}$
$C = 47\,\mu\text{F}$
$D1 = \text{MA735}$

TC115301
$V_{IN} = 2.0\,V$
$\text{I}_{\text{LOAD}} = 40\,\text{mA}$
CH1: V_{OUT} (DC)
CH2: V_{OUT} (AC Ripple)
$L = 100\,\mu\text{H}$
$C = 47\,\mu\text{F}$
$D1 = \text{MA735}$

TC115301
$V_{IN} = 2.5\,V$
$\text{I}_{\text{LOAD}} = 80\,\text{mA}$
CH1: V_{OUT} (DC)
CH2: V_{OUT} (AC Ripple)
$L = 100\,\mu\text{H}$
$C = 47\,\mu\text{F}$
$D1 = \text{MA735}$

FIGURE 5-2: Typical Ripple Waveforms.
6.0 PACKAGING INFORMATION

6.1 Package Marking Information

Example: For TC115331, the marking code is:

<table>
<thead>
<tr>
<th>Symbol (100 kHz)</th>
<th>Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.</td>
</tr>
<tr>
<td>2</td>
<td>2.</td>
</tr>
<tr>
<td>3</td>
<td>3.</td>
</tr>
<tr>
<td>4</td>
<td>4.</td>
</tr>
<tr>
<td>5</td>
<td>5.</td>
</tr>
<tr>
<td>6</td>
<td>6.</td>
</tr>
</tbody>
</table>

1 represents product classification; TC115 = 1
2 represents first integer of voltage and frequency

<table>
<thead>
<tr>
<th>Symbol (100 kHz)</th>
<th>Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>.0</td>
</tr>
<tr>
<td>1</td>
<td>.1</td>
</tr>
<tr>
<td>2</td>
<td>.2</td>
</tr>
<tr>
<td>3</td>
<td>.3</td>
</tr>
<tr>
<td>4</td>
<td>.4</td>
</tr>
<tr>
<td>5</td>
<td>.5</td>
</tr>
<tr>
<td>6</td>
<td>.6</td>
</tr>
<tr>
<td>7</td>
<td>.7</td>
</tr>
<tr>
<td>8</td>
<td>.8</td>
</tr>
<tr>
<td>9</td>
<td>.9</td>
</tr>
</tbody>
</table>

3 represents first decimal of voltage and frequency
4 represents production lot ID code

Example: For TC115331, the marking code is:
5-Lead Plastic Small Outline Transistor Header (MT) (SOT-89)

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .005" (0.127mm) per side.

Notes:

*Controlling Parameter

Drawing No. C04-030
PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>XX</th>
<th>X</th>
<th>X</th>
<th>XXXX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device</td>
<td>TC115: PFM/PWM Step-Up DC/DC Converter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Voltage:</td>
<td>30 = 3.0V</td>
<td>33 = 3.3V</td>
<td>50 = 5.0V</td>
<td></td>
</tr>
<tr>
<td>Oscillator Frequency:</td>
<td>1 = 100 kHz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature Range:</td>
<td>E = -40°C to +85°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Package:</td>
<td>MTTR = 5L SOT-89, Tape and Reel</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Examples:

a) TC115301EMTTR: 3.0V Converter
b) TC115331EMTTR: 3.3V Converter
c) TC115501EMTTR: 5.0V Converter

Sales and Support

Data Sheets
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

1. Your local Microchip sales office
2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277
3. The Microchip Worldwide Site (www.microchip.com)

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

Customer Notification System
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademark

The Microchip name and logo, the Microchip logo, KEELOQ, MPLAB, PIC, PICmicro, PICSTART, PRO MATE and PowerSmart are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, microID, MXDEV, MXLAB, PICMASTER, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Accuron, Application Maestro, dsPIC, dsPICDEM, dsPICDEM.net, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, PICC, PICkit, PICDEM, PICDEM.net, PowerCal, PowerInfo, PowerMate, PowerTool, rfLAB, rfPIC, Select Mode, SmartSensor, SmartShunt, SmartTel and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2003, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999 and Mountain View, California in March 2002. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, non-volatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001 certified.