Features

- 10-bit resolution
- ±1 LSB max DNL
- ±1 LSB max INL
- Analog inputs programmable as single-ended or pseudo-differential pairs
- On-chip sample and hold
- SPI™ serial interface (modes 0,0 and 1,1)
- Single supply operation: 2.7V - 5.5V
- 200 ksp s max sampling rate at $V_{DD} = 5V$
- 75 ksp s max sampling rate at $V_{DD} = 2.7V$
- Low power CMOS technology:
 - 5 nA typical standby current, 2 µA max
 - 550 µA max. active current at 5V
- Industrial temp range: -40°C to +85°C
- 8-pin MSOP, PDIP, SOIC and TSSOP packages

Applications

- Sensor Interface
- Process Control
- Data Acquisition
- Battery Operated Systems

Description

The Microchip Technology Inc. MCP3002 is a successive approximation 10-bit Analog-to-Digital (A/D) Converter with on-board sample and hold circuitry. The MCP3002 is programmable to provide a single pseudo-differential input pair or dual single-ended inputs. Differential Nonlinearity (DNL) and Integral Nonlinearity (INL) are both specified at ±1 LSB. Communication with the device is done using a simple serial interface compatible with the SPI protocol. The device is capable of conversion rates of up to 200 ksp s at 5V and 75 ksp s at 2.7V. The MCP3002 device operates over a broad voltage range (2.7V - 5.5V). Low current design permits operation with a typical standby current of 5 nA and a typical active current of 375 µA. The MCP3002 is offered in 8-pin MSOP, PDIP, TSSOP and 150 mil SOIC packages.
1.0 ELECTRICAL CHARACTERISTICS

1.1 Maximum Ratings*

- **VDD**: 7.0V
- All inputs and outputs w.r.t. VSS: -0.6V to VDD +0.6V
- Storage temperature: -65°C to +150°C
- Ambient temp. with power applied: -65°C to +125°C
- ESD protection on all pins (HBM): > 4kV

*Notice: Stresses above those listed under “Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

PIN FUNCTION TABLE

<table>
<thead>
<tr>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDD/VREF</td>
<td>+2.7V to 5.5V Power Supply and Reference Voltage Input</td>
</tr>
<tr>
<td>CH0</td>
<td>Channel 0 Analog Input</td>
</tr>
<tr>
<td>CH1</td>
<td>Channel 1 Analog Input</td>
</tr>
<tr>
<td>CLK</td>
<td>Serial Clock</td>
</tr>
<tr>
<td>D_IN</td>
<td>Serial Data In</td>
</tr>
<tr>
<td>D_OUT</td>
<td>Serial Data Out</td>
</tr>
<tr>
<td>CS/SHDN</td>
<td>Chip Select/ShUTDOWN Input</td>
</tr>
</tbody>
</table>

ELECTRICAL CHARACTERISTICS

All parameters apply at VDD = 5V, TAMB = -40°C to +85°C, fSAMPLE = 200 ksp and fCLK = 16*fSAMPLE unless otherwise noted.

Typical values apply for VDD = 5V, TAMB = 25°C unless otherwise noted.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYM</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
<th>CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conversion Rate:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conversion Time</td>
<td>tCONV</td>
<td>—</td>
<td>—</td>
<td>10</td>
<td>clock cycles</td>
<td></td>
</tr>
<tr>
<td>Analog Input Sample Time</td>
<td>tSAMPLE</td>
<td>1.5</td>
<td>—</td>
<td></td>
<td>clock cycles</td>
<td></td>
</tr>
<tr>
<td>Throughput Rate</td>
<td>fSAMPLE</td>
<td>—</td>
<td>—</td>
<td>200</td>
<td>ksp</td>
<td>VDD = 5V</td>
</tr>
<tr>
<td>DC Accuracy:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resolution</td>
<td>10</td>
<td>—</td>
<td>—</td>
<td></td>
<td>bits</td>
<td></td>
</tr>
<tr>
<td>Integral Nonlinearity</td>
<td>INL</td>
<td>±0.5</td>
<td>±1</td>
<td>—</td>
<td>LSB</td>
<td></td>
</tr>
<tr>
<td>Differential Nonlinearity</td>
<td>DNL</td>
<td>±0.25</td>
<td>±1</td>
<td>—</td>
<td>LSB</td>
<td>No missing codes over temperature</td>
</tr>
<tr>
<td>Offset Error</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>±1.5</td>
<td>LSB</td>
<td></td>
</tr>
<tr>
<td>Gain Error</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>±1</td>
<td>LSB</td>
<td></td>
</tr>
<tr>
<td>Dynamic Performance:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Harmonic Distortion</td>
<td>THD</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>dB</td>
<td>V_IN = 0.1V to 4.9V@1 kHz</td>
</tr>
<tr>
<td>Signal to Noise and Distortion (SINAD)</td>
<td>SINAD</td>
<td>—</td>
<td>61</td>
<td>—</td>
<td>dB</td>
<td>V_IN = 0.1V to 4.9V@1 kHz</td>
</tr>
<tr>
<td>Spurious Free Dynamic Range</td>
<td>SFDR</td>
<td>—</td>
<td>78</td>
<td>—</td>
<td>dB</td>
<td>V_IN = 0.1V to 4.9V@1 kHz</td>
</tr>
<tr>
<td>Analog Inputs:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Voltage Range for CH0 or CH1 in Single-Ended Mode</td>
<td>VSS</td>
<td>—</td>
<td>VDD</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Voltage Range for IN+ In pseudo-differential Mode</td>
<td>IN+</td>
<td>—</td>
<td>IN-</td>
<td>VDD+IN-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Voltage Range for IN- In pseudo-differential Mode</td>
<td>IN-</td>
<td>VSS-100</td>
<td>—</td>
<td>VSS+100</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>Leakage Current</td>
<td>—</td>
<td>0.001</td>
<td>±1</td>
<td>—</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>Switch Resistance</td>
<td>R_SS</td>
<td>—</td>
<td>1K</td>
<td>—</td>
<td>Ω</td>
<td>See Figure 4-1</td>
</tr>
<tr>
<td>Sample Capacitor</td>
<td>CSAMPLE</td>
<td>—</td>
<td>20</td>
<td>—</td>
<td>pF</td>
<td>See Figure 4-1</td>
</tr>
</tbody>
</table>

Note 1: This parameter is established by characterization and not 100% tested.

Note 2: The sample cap will eventually lose charge, especially at elevated temperatures, therefore fCLK ≥10 kHz for temperatures at or above 70°C.
ELECTRICAL CHARACTERISTICS (CONTINUED)

All parameters apply at $V_{DD} = 5V$, $T_{AMB} = -40^\circ C$ to $+85^\circ C$, $f_{SAMPLE} = 200$ ksps and $f_{CLK} = 16*f_{SAMPLE}$ unless otherwise noted. Typical values apply for $V_{DD} = 5V$, $T_{AMB} = 25^\circ C$ unless otherwise noted.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYM</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
<th>CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital Input/Output:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Coding Format</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Straight Binary</td>
</tr>
<tr>
<td>High Level Input Voltage</td>
<td>V_{IH}</td>
<td>0.7 V_{DD}</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Low Level Input Voltage</td>
<td>V_{IL}</td>
<td>—</td>
<td>—</td>
<td>0.3 V_{DD}</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>High Level Output Voltage</td>
<td>V_{OH}</td>
<td>4.1</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>$I_{OH} = -1 \text{ mA}, V_{DD} = 4.5V$</td>
</tr>
<tr>
<td>Low Level Output Voltage</td>
<td>V_{OL}</td>
<td>—</td>
<td>—</td>
<td>0.4</td>
<td>V</td>
<td>$I_{OL} = 1 \text{ mA}, V_{DD} = 4.5V$</td>
</tr>
<tr>
<td>Input Leakage Current</td>
<td>I_{LI}</td>
<td>-10</td>
<td>—</td>
<td>—</td>
<td>10 μA</td>
<td>$V_{IN} = V_{SS}$ or V_{DD}</td>
</tr>
<tr>
<td>Output Leakage Current</td>
<td>I_{LO}</td>
<td>-10</td>
<td>—</td>
<td>—</td>
<td>10 μA</td>
<td>$V_{OUT} = V_{SS}$ or V_{DD}</td>
</tr>
<tr>
<td>Pin Capacitance</td>
<td>C_{IN}, C_{OUT}</td>
<td>—</td>
<td>—</td>
<td>10</td>
<td>pF</td>
<td>$V_{DD} = 5.0V$ (Note 1) $T_{AMB} = 25^\circ C$, $f = 1 \text{ MHz}$</td>
</tr>
</tbody>
</table>

Timing Parameters:

<table>
<thead>
<tr>
<th></th>
<th>SYM</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
<th>CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clock Frequency</td>
<td>f_{CLK}</td>
<td>—</td>
<td>—</td>
<td>3.2</td>
<td>1.2 MHz</td>
<td>$V_{DD} = 5V$ (Note 2) $T_{AMB} = -40^\circ C$</td>
</tr>
<tr>
<td>Clock High Time</td>
<td>t_{HI}</td>
<td>140</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td>$V_{DD} = 5V$ (Note 2) $T_{AMB} = 25^\circ C$</td>
</tr>
<tr>
<td>Clock Low Time</td>
<td>t_{LO}</td>
<td>140</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td>$V_{DD} = 5V$ (Note 2) $T_{AMB} = 25^\circ C$</td>
</tr>
<tr>
<td>CS Fall To First Rising CLK Edge</td>
<td>t_{SUSC}</td>
<td>100</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td>$V_{DD} = 5V$ (Note 2) $T_{AMB} = 25^\circ C$</td>
</tr>
<tr>
<td>Data Input Setup Time</td>
<td>t_{SU}</td>
<td>—</td>
<td>—</td>
<td>50</td>
<td>ns</td>
<td>$V_{DD} = 5V$ (Note 2) $T_{AMB} = 25^\circ C$</td>
</tr>
<tr>
<td>Data Input Hold Time</td>
<td>t_{ID}</td>
<td>—</td>
<td>—</td>
<td>50</td>
<td>ns</td>
<td>$V_{DD} = 5V$ (Note 2) $T_{AMB} = 25^\circ C$</td>
</tr>
<tr>
<td>CLK Fall To Output Data Valid</td>
<td>t_{DO}</td>
<td>—</td>
<td>—</td>
<td>125</td>
<td>200 ns</td>
<td>$V_{DD} = 5V$, see Figure 1-2 $T_{AMB} = 25^\circ C$</td>
</tr>
<tr>
<td>CLK Fall To Output Enable</td>
<td>t_{EN}</td>
<td>—</td>
<td>—</td>
<td>125</td>
<td>200 ns</td>
<td>$V_{DD} = 5V$, see Figure 1-2 $T_{AMB} = 25^\circ C$</td>
</tr>
<tr>
<td>CS Rise To Output Disable</td>
<td>t_{DIS}</td>
<td>—</td>
<td>—</td>
<td>100</td>
<td>ns</td>
<td>$V_{DD} = 5V$, see Figure 1-2 $T_{AMB} = 25^\circ C$</td>
</tr>
<tr>
<td>CS Disable Time</td>
<td>t_{CSH}</td>
<td>310</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td>$V_{DD} = 5V$, see Figure 1-2 $T_{AMB} = 25^\circ C$</td>
</tr>
<tr>
<td>D_{OUT} Rise Time</td>
<td>t_{R}</td>
<td>—</td>
<td>—</td>
<td>100</td>
<td>ns</td>
<td>$V_{DD} = 5V$, see Figure 1-2 $T_{AMB} = 25^\circ C$</td>
</tr>
<tr>
<td>D_{OUT} Fall Time</td>
<td>t_{F}</td>
<td>—</td>
<td>—</td>
<td>100</td>
<td>ns</td>
<td>$V_{DD} = 5V$, see Figure 1-2 $T_{AMB} = 25^\circ C$</td>
</tr>
</tbody>
</table>

Power Requirements:

<table>
<thead>
<tr>
<th></th>
<th>SYM</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
<th>CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Voltage</td>
<td>V_{DD}</td>
<td>2.7</td>
<td>—</td>
<td>5.5</td>
<td>V</td>
<td>$V_{DD} = 5V$, D_{OUT} unloaded $T_{AMB} = 25^\circ C$</td>
</tr>
<tr>
<td>Operating Current</td>
<td>I_{DD}</td>
<td>—</td>
<td>525</td>
<td>300</td>
<td>650 μA</td>
<td>$V_{DD} = 5V$, D_{OUT} unloaded $T_{AMB} = 25^\circ C$</td>
</tr>
<tr>
<td>Standby Current</td>
<td>I_{DDS}</td>
<td>—</td>
<td>0.005</td>
<td>2</td>
<td>μA</td>
<td>$CS = V_{DD} = 5V$ $T_{AMB} = 25^\circ C$</td>
</tr>
</tbody>
</table>

Temperature Ranges:

<table>
<thead>
<tr>
<th></th>
<th>SYM</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
<th>CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specified Temperature Range</td>
<td>T_{A}</td>
<td>-40</td>
<td>—</td>
<td>+85</td>
<td>$^\circ C$</td>
<td>$V_{DD} = 5V$, D_{OUT} unloaded $T_{AMB} = 25^\circ C$</td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>T_{A}</td>
<td>-40</td>
<td>—</td>
<td>+85</td>
<td>$^\circ C$</td>
<td>$V_{DD} = 5V$, D_{OUT} unloaded $T_{AMB} = 25^\circ C$</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>T_{A}</td>
<td>-65</td>
<td>—</td>
<td>+150</td>
<td>$^\circ C$</td>
<td>$V_{DD} = 5V$, D_{OUT} unloaded $T_{AMB} = 25^\circ C$</td>
</tr>
</tbody>
</table>

Thermal Package Resistance:

<table>
<thead>
<tr>
<th></th>
<th>SYM</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
<th>CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Resistance, 8L-PDIP</td>
<td>θ_{JA}</td>
<td>—</td>
<td>85</td>
<td>—</td>
<td>$^\circ C/W$</td>
<td>$V_{DD} = 5V$, D_{OUT} unloaded $T_{AMB} = 25^\circ C$</td>
</tr>
<tr>
<td>Thermal Resistance, 8L-SOIC</td>
<td>θ_{JA}</td>
<td>—</td>
<td>163</td>
<td>—</td>
<td>$^\circ C/W$</td>
<td>$V_{DD} = 5V$, D_{OUT} unloaded $T_{AMB} = 25^\circ C$</td>
</tr>
<tr>
<td>Thermal Resistance, 8L-MSOP</td>
<td>θ_{JA}</td>
<td>—</td>
<td>206</td>
<td>—</td>
<td>$^\circ C/W$</td>
<td>$V_{DD} = 5V$, D_{OUT} unloaded $T_{AMB} = 25^\circ C$</td>
</tr>
<tr>
<td>Thermal Resistance, 8L-TSSOP</td>
<td>θ_{JA}</td>
<td>—</td>
<td>124</td>
<td>—</td>
<td>$^\circ C/W$</td>
<td>$V_{DD} = 5V$, D_{OUT} unloaded $T_{AMB} = 25^\circ C$</td>
</tr>
</tbody>
</table>

Note 1: This parameter is established by characterization and not 100% tested.

Note 2: The sample cap will eventually lose charge, especially at elevated temperatures, therefore $f_{CLK} \geq 10 \text{ kHz}$ for temperatures at or above 70°C.
FIGURE 1-1: Serial Timing.

Load circuit for \(t_R, t_f, t_{DO} \)

Load circuit for \(t_{DIS} \) and \(t_{EN} \)

Voltage Waveforms for \(t_R, t_f \)

Voltage Waveforms for \(t_{DO} \)

Voltage Waveforms for \(t_{EN} \)

Voltage Waveforms for \(t_{DIS} \)

* Waveform 1 is for an output with internal conditions such that the output is high, unless disabled by the output control.

† Waveform 2 is for an output with internal conditions such that the output is low, unless disabled by the output control.

FIGURE 1-2: Test Circuits.
2.0 TYPICAL PERFORMANCE CHARACTERISTICS

Note: The graphs provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

Note: Unless otherwise indicated, $V_{DD} = 5V$, $f_{SAMPLE} = 200$ kspss, $f_{CLK} = 16 \times f_{SAMPLE}$, $T_A = 25^\circ C$

FIGURE 2-1: Integral Nonlinearity (INL) vs. Sample Rate.

FIGURE 2-2: Integral Nonlinearity (INL) vs. Code.

FIGURE 2-3: Integral Nonlinearity (INL) vs. Temperature.

FIGURE 2-4: Integral Nonlinearity (INL) vs. Sample Rate ($V_{DD} = 2.7V$).

FIGURE 2-5: Integral Nonlinearity (INL) vs. Code ($V_{DD} = 2.7V$).

FIGURE 2-6: Integral Nonlinearity (INL) vs. Temperature ($V_{DD} = 2.7V$).
Note: Unless otherwise indicated, $V_{DD} = 5V$, $f_{\text{SAMPLE}} = 200$ ksps, $f_{\text{CLK}} = 16 \times f_{\text{SAMPLE}}$, $T_A = 25°C$

FIGURE 2-7: Integral Nonlinearity (INL) vs. V_{DD}.

FIGURE 2-8: Differential Nonlinearity (DNL) vs. Sample Rate.

FIGURE 2-9: Differential Nonlinearity (DNL) vs. Code (Representative Part).

FIGURE 2-10: Differential Nonlinearity (DNL) vs. V_{DD}.

FIGURE 2-11: Differential Nonlinearity (DNL) vs. Sample Rate ($V_{DD} = 2.7V$).

FIGURE 2-12: Differential Nonlinearity (DNL) vs. Code (Representative Part, $V_{DD} = 2.7V$).
Note: Unless otherwise indicated, $V_{DD} = 5V$, $f_{SAMPLE} = 200$ ksamples, $f_{CLK} = 16 \times f_{SAMPLE}$, $T_A = 25^\circ C$
Note: Unless otherwise indicated, \(V_{DD} = 5V \), \(f_{\text{SAMPLE}} = 200 \text{ ksp} \), \(f_{\text{CLK}} = 16 \times f_{\text{SAMPLE}} \), \(T_A = 25^\circ \text{C} \)

FIGURE 2-19: Signal to Noise Ratio (SNR) vs. Input Frequency.

FIGURE 2-20: Total Harmonic Distortion (THD) vs. Input Frequency.

FIGURE 2-21: Effective number of bits (ENOB) vs. \(V_{DD} \).

FIGURE 2-22: Signal to Noise and Distortion (SINAD) vs. Input Frequency.

FIGURE 2-23: Signal to Noise and Distortion (SINAD) vs. Signal Level.

FIGURE 2-24: Effective Number of Bits (ENOB) vs. Input Frequency.
Note: Unless otherwise indicated, \(V_{DD} = 5\text{V}, f_{\text{SAMPLE}} = 200\text{ kspss, } f_{\text{CLK}} = 16\times f_{\text{SAMPLE}}; T_A = 25^\circ\text{C} \)

FIGURE 2-25: Spurious Free Dynamic Range (SFDR) vs. Input Frequency.

FIGURE 2-26: Frequency Spectrum of 10 kHz input (Representative Part).

FIGURE 2-27: Frequency Spectrum of 1 kHz input (Representative Part, \(V_{DD} = 2.7\text{V} \)).

FIGURE 2-28: \(I_{DD} \) vs. \(V_{DD} \).

FIGURE 2-29: \(I_{DD} \) vs. Clock Frequency.

FIGURE 2-30: \(I_{DD} \) vs. Temperature.
Note: Unless otherwise indicated, $V_{DD} = 5V$, $f_{SAMPLE} = 200$ ksp,$, f_{CLK} = 16 \times f_{SAMPLE}, T_A = 25^\circ C$

FIGURE 2-31: I_{DDS} vs. V_{DD}.

FIGURE 2-32: I_{DDS} vs. Temperature.

FIGURE 2-33: Analog Input leakage current vs. Temperature.
3.0 PIN DESCRIPTIONS

3.1 CH0/CH1

Analog inputs for channels 0 and 1 respectively. These channels can be programmed to be used as two independent channels in single ended-mode or as a single pseudo-differential input where one channel is IN+ and one channel is IN-. See Section 5.0 for information on programming the channel configuration.

3.2 Chip Select/Shutdown (CS/SHDN)

The CS/SHDN pin is used to initiate communication with the device when pulled low and will end a conversion and put the device in low power standby when pulled high. The CS/SHDN pin must be pulled high between conversions.

3.3 Serial Clock (CLK)

The SPI clock pin is used to initiate a conversion and to clock out each bit of the conversion as it takes place. See Section 6.2 for constraints on clock speed.

3.4 Serial Data Input (DIN)

The SPI port serial data input pin is used to clock in input channel configuration data.

3.5 Serial Data Output (DOUT)

The SPI serial data output pin is used to shift out the results of the A/D conversion. Data will always change on the falling edge of each clock as the conversion takes place.

4.0 DEVICE OPERATION

The MCP3002 A/D converter employs a conventional SAR architecture. With this architecture, a sample is acquired on an internal sample/hold capacitor for 1.5 clock cycles starting on the second rising edge of the serial clock after the start bit has been received. Following this sample time, the input switch of the converter opens and the device uses the collected charge on the internal sample and hold capacitor to produce a serial 10-bit digital output code. Conversion rates of 200 kspS are possible on the MCP3002. See Section 6.2 for information on minimum clock rates. Communication with the device is done using a 3-wire SPI compatible interface.

4.1 Analog Inputs

The MCP3002 device offers the choice of using the analog input channels configured as two single-ended inputs that are referenced to VSS or a single pseudo-differential input. The configuration setup is done as part of the serial command before each conversion begins. When used in the pseudo-differential mode, CH0 and CH1 are programmed as the IN+ and IN- inputs as part of the command string transmitted to the device. The IN+ input can range from IN- to the reference voltage, VDD. The IN- input is limited to ±100 mV from the VSS rail. The IN- input can be used to cancel small signal common-mode noise which is present on both the IN+ and IN- inputs.

For the A/D converter to meet specification, the charge holding capacitor (C SAMPLE) must be given enough time to acquire a 10-bit accurate voltage level during the 1.5 clock cycle sampling period. The analog input model is shown in Figure 4-1.

In this diagram, it is shown that the source impedance (R S) adds to the internal sampling switch (R SS) impedance, directly affecting the time that is required to charge the capacitor, C SAMPLE. Consequently, larger source impedances increase the offset, gain, and integral linearity errors of the conversion.

Ideally, the impedance of the signal source should be near zero. This is achievable with an operational amplifier such as the MCP601 which has a closed loop output impedance of tens of ohms. The adverse affects of higher source impedances are shown in Figure 4-2.

When operating in the pseudo-differential mode, if the voltage level of IN+ is equal to or less than IN-, the resultant code will be 000h. If the voltage at IN+ is equal to or greater than \(V_{DD} + (IN-) - 1 \text{ LSB} \), then the output code will be 3FFh. If the voltage level at IN- is more than 1 LSB below VSS, then the voltage level at the IN+ input will have to go below VSS to see the 000h output code. Conversely, if IN- is more than 1 LSB above VSS, then the 3FFh code will not be seen unless the IN+ input level goes above VDD level. If the voltage at IN+ is equal to or greater than \(V_{DD} + (IN-) - 1 \text{ LSB} \), then the output code will be 3FFh.

4.2 Digital Output Code

The digital output code produced by an A/D Converter is a function of the input signal and the reference voltage. For the MCP3002, VDD is used as the reference voltage.

\[
\text{LSB Size} = \frac{V_{REF}}{1024}
\]

As the VDD level is reduced, the LSB size is reduced accordingly. The theoretical digital output code produced by the A/D Converter is shown below.

\[
\text{Digital Output Code} = \frac{1024 \cdot V_{IN}}{V_{DD}}
\]

where:

\[
V_{IN} = \text{analog input voltage}
\]

\[
V_{DD} = \text{supply voltage}
\]
FIGURE 4-1: Analog Input Model.

Legend
- VA = signal source
- RS = source impedance
- CHx = input channel pad
- CPIN = input pin capacitance
- VT = threshold voltage
- ILEAKAGE = leakage current at the pin
due to various junctions
- SS = sampling switch
- R_s = sampling switch resistor
- CSAMPLE = sample/hold capacitance

FIGURE 4-2: Maximum Clock Frequency vs. Input resistance (R_s) to maintain less than a 0.1 LSB deviation in INL from nominal conditions.
5.0 SERIAL COMMUNICATIONS

5.1 Overview

Communication with the MCP3002 is done using a standard SPI-compatible serial interface. Initiating communication with the device is done by bringing the CS line low. See Figure 5-1. If the device was powered up with the CS pin low, it must be brought high and back low to initiate communication. The first clock received with CS low and DIN high will constitute a start bit. The SGL/DIFF bit and the ODD/SIGN bit follow the start bit and are used to select the input channel configuration. The SGL/DIFF is used to select single ended or pseudo-differential mode. The ODD/SIGN bit selects which channel is used in single ended mode, and is used to determine polarity in pseudo-differential mode. Following the ODD/SIGN bit, the MSBF bit is transmitted to and is used to enable the LSB first format for the device. If the MSBF bit is high, then the data will come from the device in MSB first format and any further clocks with CS low, will cause the device to output zeros. If the MSBF bit is low, then the device will output the converted word LSB first after the word has been transmitted in the MSB first format. Table 5-1 shows the configuration bits for the MCP3002. The device will begin to sample the analog input on the second rising edge of the clock, after the start bit has been received. The sample period will end on the falling edge of the third clock following the start bit.

On the falling edge of the clock for the MSBF bit, the device will output a low null bit. The next sequential 10 clocks will output the result of the conversion with MSB first as shown in Figure 5-1. Data is always output from the device on the falling edge of the clock. If all 10 data bits have been transmitted and the device continues to receive clocks while the CS is held low (and the MSBF bit is high), the device will output the conversion result LSB first as shown in Figure 5-2. If more clocks are provided to the device while CS is still low (after the LSB first data has been transmitted), the device will clock out zeros indefinitely.

If necessary, it is possible to bring CS low and clock in leading zeros on the DIN line before the start bit. This is often done when dealing with microcontroller-based SPI ports that must send 8 bits at a time. Refer to Section 6.1 for more details on using the MCP3002 devices with hardware SPI ports.

If it is desired, the CS can be raised to end the conversion period at any time during the transmission. Faster conversion rates can be obtained by using this technique if not all the bits are captured before starting a new cycle. Some system designers use this method by capturing only the highest order 8 bits and ‘throwing away’ the lower 2 bits.

<table>
<thead>
<tr>
<th>SGL/ DIFF</th>
<th>ODD/ SIGN</th>
<th>GND</th>
<th>CHANNEL SELECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>SINGLE ENDED MODE</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>SINGLE ENDED MODE</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>IN+</td>
<td>PSEUDO-DIFFERENTIAL MODE</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>IN-</td>
<td>PSEUDO-DIFFERENTIAL MODE</td>
</tr>
</tbody>
</table>
FIGURE 5-1: Communication with the MCP3002 using MSB first format only.

* After completing the data transfer, if further clocks are applied with CS low, the A/D Converter will output zeros indefinitely. See Figure 5-2 for details on obtaining LSB first data.

** tDATA: during this time, the bias current and the comparator powers down while the reference input becomes a high impedance node.

FIGURE 5-2: Communication with MCP3002 using LSB first format.

* After completing the data transfer, if further clocks are applied with CS low, the A/D Converter will output zeros indefinitely.

** tDATA: During this time, the bias circuit and the comparator powers down while the reference input becomes a high impedance node, leaving the CLK running to clock out LSB first data or zeroes.
6.0 APPLICATIONS INFORMATION

6.1 Using the MCP3002 with Microcontroller (MCU) SPI Ports

With most microcontroller SPI ports, it is required to send groups of eight bits. It is also required that the microcontroller SPI port be configured to clock out data on the falling edge of clock and latch data in on the rising edge. Depending on how communication routines are used, it is very possible that the number of clocks required for communication will not be a multiple of eight. Therefore, it may be necessary for the MCU to send more clocks than are actually required. This is usually done by sending 'leading zeros' before the start bit, which are ignored by the device. As an example, Figure 6-1 and Figure 6-2 show how the MCP3002 can be interfaced to a MCU with a hardware SPI port. Figure 6-1 depicts the operation shown in SPI Mode 0,0, which requires that the SCLK from the MCU idles in the 'low' state, while Figure 6-2 shows the similar case of SPI Mode 1,1 where the clock idles in the 'high' state.

As shown in Figure 6-1, the first byte transmitted to the A/D Converter contains one leading zero before the start bit. Arranging the leading zero this way produces the output 10 bits to fall in positions easily manipulated by the MCU. When the first 8 bits are transmitted to the device, the MSB data bit is clocked out of the A/D Converter on the falling edge of clock number 6. After the second eight clocks have been sent to the device, the receive register will contain the lowest order eight bits of the conversion results. Easier manipulation of the converted data can be obtained by using this method.

FIGURE 6-1: SPI Communication with the MCP3002 using 8-bit segments (Mode 0,0: SCLK idles low).

FIGURE 6-2: SPI Communication with the MCP3002 using 8-bit segments (Mode 1,1: SCLK idles high).
6.2 Maintaining Minimum Clock Speed

When the MCP3002 initiates the sample period, charge is stored on the sample capacitor. When the sample period is complete, the device converts one bit for each clock that is received. It is important for the user to note that a slow clock rate will allow charge to bleed off the sample cap while the conversion is taking place. At 85°C (worst case condition), the part will maintain proper charge on the sample cap for 700 µs at \(V_{DD} = 2.7V \) and 1.5 ms at \(V_{DD} = 5V \). This means that at \(V_{DD} = 2.7V \), the time it takes to transmit the 1.5 clocks for the sample period and the 10 clocks for the actual conversion must not exceed 700 µs. Failure to meet this criteria may induce linearity errors into the conversion outside the rated specifications.

6.3 Buffering/Filtering the Analog Inputs

If the signal source for the A/D Converter is not a low impedance source, it will have to be buffered or inaccurate conversion results may occur. It is also recommended that a filter be used to eliminate any signals that may be aliased back in to the conversion results. This is illustrated in Figure 6-3 below where an op amp is used to drive, filter, and gain the analog input of the MCP3002. This amplifier provides a low impedance output for the converter input and a low pass filter, which eliminates unwanted high frequency noise.

Low pass (anti-aliasing) filters can be designed using Microchip’s interactive FilterLab™ software. FilterLab will calculate capacitor and resistor values, as well as, determine the number of poles that are required for the application. For more information on filtering signals, see the application note AN699 “Anti-Aliasing Analog Filters for Data Acquisition Systems.”

6.4 Layout Considerations

When laying out a printed circuit board for use with analog components, care should be taken to reduce noise wherever possible. A bypass capacitor should always be used with this device and should be placed as close as possible to the device pin. A bypass capacitor value of 1 µF is recommended.

Digital and analog traces should be separated as much as possible on the board and no traces should run underneath the device or the bypass capacitor. Extra precautions should be taken to keep traces with high frequency signals (such as clock lines) as far as possible from analog traces.

Use of an analog ground plane is recommended in order to keep the ground potential the same for all devices on the board. Providing \(V_{DD} \) connections to devices in a “star” configuration can also reduce noise by eliminating current return paths and associated errors. See Figure 6-4. For more information on layout tips when using A/D converters, refer to AN-688 “Layout Tips for 12-Bit A/D Converter Applications”.

FIGURE 6-3: Typical Anti-Aliasing Filter Circuit (2 pole Active Filter).

FIGURE 6-4: \(V_{DD} \) traces arranged in a ‘Star’ configuration in order to reduce errors caused by current return paths.
7.0 PACKAGING INFORMATION

7.1 Package Marking Information

Legend:

- **XX...X** Customer-specific information
- **Y** Year code (last digit of calendar year)
- **YY** Year code (last 2 digits of calendar year)
- **WW** Week code (week of January 1 is week '01')
- **NNN** Alphanumeric traceability code
- (e3) Pb-free JEDEC designator for Matte Tin (Sn)
- * This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.
Notes:
1. Pin 1 visual index feature may vary, but must be located with the hatched area.
2. § Significant Characteristic.
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010” per side.
4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-018B
8-Lead Plastic Small Outline (SN) – Narrow, 3.90 mm Body [SOIC]

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Limits</td>
<td>MIN</td>
</tr>
<tr>
<td>Number of Pins</td>
<td>N</td>
</tr>
<tr>
<td>Pitch</td>
<td>e</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>A2</td>
</tr>
<tr>
<td>Standoff §</td>
<td>A1</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>E1</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
</tr>
<tr>
<td>Chamfer (optional)</td>
<td>h</td>
</tr>
<tr>
<td>Foot Length</td>
<td>L</td>
</tr>
<tr>
<td>Footprint</td>
<td>L1</td>
</tr>
<tr>
<td>Foot Angle</td>
<td>φ</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
</tr>
<tr>
<td>Lead Width</td>
<td>b</td>
</tr>
<tr>
<td>Mold Draft Angle Top</td>
<td>α</td>
</tr>
<tr>
<td>Mold Draft Angle Bottom</td>
<td>β</td>
</tr>
</tbody>
</table>

Notes:
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. § Significant Characteristic.
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.
4. Dimensioning and tolerancing per ASME Y14.5M.
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-057B
8-Lead Plastic Micro Small Outline Package (MS) [MSOP]

Notes:
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.
3. Dimensioning and tolerancing per ASME Y14.5M.

 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-111B
8-Lead Plastic Thin Shrink Small Outline (ST) – 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Limits</td>
<td>MIN</td>
</tr>
<tr>
<td>Number of Pins</td>
<td>N</td>
</tr>
<tr>
<td>Pitch</td>
<td>e</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>A2</td>
</tr>
<tr>
<td>Standoff</td>
<td>A1</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>E1</td>
</tr>
<tr>
<td>Molded Package Length</td>
<td>D</td>
</tr>
<tr>
<td>Foot Length</td>
<td>L</td>
</tr>
<tr>
<td>Footprint</td>
<td>L1</td>
</tr>
<tr>
<td>Foot Angle</td>
<td>φ</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
</tr>
<tr>
<td>Lead Width</td>
<td>b</td>
</tr>
</tbody>
</table>

Notes:
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.
3. Dimensioning and tolerancing per ASME Y14.5M.
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-086B
APPENDIX A: REVISION HISTORY

Revision C (January 2007)
This revision includes updates to the packaging diagrams.
PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>X</th>
<th>XX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature Range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Package</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Device: | MCP3002: 10-Bit Serial A/D Converter
MCP3002T: 10-Bit Serial A/D Converter
(Tape and Reel) (SOIC and TSSOP only) |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Range:</td>
<td>I = -40°C to +85°C</td>
</tr>
</tbody>
</table>
| Package: | MS = Plastic Micro Small Outline (MSOP), 8-lead
P = Plastic DIP (300 mil Body), 8-lead
SN = Plastic SOIC (150 mil Body), 8-lead
ST = Plastic TSSOP (4.4 mm), 8-lead |

Examples:

a) MCP3002-I/P: Industrial Temperature, PDIP package.
b) MCP3002-I/SN: Industrial Temperature, SOIC package.
c) MCP3002-I/ST: Industrial Temperature, TSSOP package.
d) MCP3002-I/MS: Industrial Temperature, MSOP package.
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
World Wide Sales and Service

Americas
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 713-285-0071
Fax: 630-285-0075

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260

Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445

Toronto
Mississauga, Ontario, Canada
Tel: 905-673-0699
Fax: 905-673-6509

Asia/Pacific

Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431

Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5111
Fax: 86-28-8665-7889

China - Fuzhou
Tel: 86-591-8750-3506
Fax: 86-591-8750-3521

China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-2803-2660
Fax: 86-755-8203-1760

China - Shunde
Tel: 86-757-2839-5507
Fax: 86-757-2839-5571

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xian
Tel: 86-29-8833-7250
Fax: 86-29-8833-7256

Asia/Pacific

India - Bangalore
Tel: 91-80-4182-8400
Fax: 91-80-4182-8422

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513

Japan - Yokohama
Tel: 81-45-471-6166
Fax: 81-45-471-6122

Korea - Gumi
Tel: 82-54-473-4301
Fax: 82-54-473-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Penang
Tel: 60-4-646-8870
Fax: 60-4-646-5086

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-572-9526
Fax: 886-3-572-6459

Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803

Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

Europe

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

12/08/06