The Microchip Technology Inc. 24LCS61/62 is a 1K/2K bit Serial EEPROM developed for applications that require many devices on the same bus but do not have the I/O pins required to address each one individually. These devices contain an 8 bit address register that is set upon power-up and allows the connection of up to 255 devices on the same bus. When the process of assigning ID values to each device is in progress, the device will automatically handle bus arbitration if more than one device is operating on the bus. In addition, an external open drain output pin is available that can be used to enable other circuitry associated with each individual system. Low current design permits operation with typical standby and active currents of only 10 µA and 1 mA respectively. The device has a page write capability for up to 16 bytes of data. The device is available in the standard 8-pin PDIP, SOIC (150 mil), and TSSOP packages.

I²C is a trademark of Philips Corporation.
1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings(†)

Vcc .. 7.0V
All inputs and outputs w.r.t. Vss ... -0.6V to Vcc +1.0V
Storage temperature .. -65°C to +150°C
Ambient temperature with power applied ... -65°C to +125°C
ESD protection on all pins .. ≥ 4 kV

† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to
the device. This is a stress rating only and functional operation of the device at those or any other conditions
above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating
conditions for extended periods may affect device reliability.

TABLE 1-1: DC CHARACTERISTICS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-level input voltage</td>
<td>VIL</td>
<td>—</td>
<td>.3 VCC</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Low-level input voltage</td>
<td>VIL</td>
<td>—</td>
<td>.3 VCC</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Hysteresis of Schmitt Trigger inputs</td>
<td>VIL</td>
<td>—</td>
<td>.3 VCC</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Low-level output voltage</td>
<td>VOL</td>
<td>—</td>
<td>.40 V</td>
<td>IOL = 12 mA, VCC = 4.5V</td>
<td></td>
</tr>
<tr>
<td>(SDA and EDS pins)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input leakage current</td>
<td>ILI</td>
<td>—</td>
<td>±1 µA</td>
<td>VIN = Vss or Vcc</td>
<td></td>
</tr>
<tr>
<td>Output leakage current</td>
<td>ILO</td>
<td>—</td>
<td>±1 µA</td>
<td>VOUT = Vss or Vcc</td>
<td></td>
</tr>
<tr>
<td>Pin capacitance (all inputs/outputs)</td>
<td>CIN, COUT</td>
<td>—</td>
<td>10 pF</td>
<td>VCC = 5.0V (Note)</td>
<td></td>
</tr>
<tr>
<td>Operating current</td>
<td>ICC Write</td>
<td>—</td>
<td>4 mA</td>
<td>VCC = 5.5V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ICC Read</td>
<td>—</td>
<td>1 mA</td>
<td>VCC = 5.5V, SCL = 400 kHz</td>
<td></td>
</tr>
<tr>
<td>Standby current</td>
<td>ICCS</td>
<td>—</td>
<td>50 µA</td>
<td>VCC = 5.5V, SDA = SCL = Vcc</td>
<td></td>
</tr>
</tbody>
</table>

Note: This parameter is periodically sampled and not 100% tested.
TABLE 1-2: AC CHARACTERISTICS

All parameters apply across the specified operating ranges unless otherwise noted. Vcc = +2.5V to 5.5V
Industrial (I): TA = -40°C to +85°C

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Vcc = 2.5V - 5.5V STD MODE</th>
<th>Vcc = 4.5V - 5.5V FAST MODE</th>
<th>Units</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clock frequency</td>
<td>FCLK</td>
<td>—</td>
<td>100</td>
<td>400</td>
<td>kHz</td>
</tr>
<tr>
<td>Clock high time</td>
<td>THIGH</td>
<td>4000</td>
<td>600</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>Clock low time</td>
<td>TLOW</td>
<td>4700</td>
<td>1300</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>SDA and SCL rise time</td>
<td>TR</td>
<td>—</td>
<td>1000</td>
<td>300</td>
<td>ns</td>
</tr>
<tr>
<td>SDA and SCL fall time</td>
<td>TF</td>
<td>—</td>
<td>300</td>
<td>300</td>
<td>ns</td>
</tr>
<tr>
<td>Start condition hold time</td>
<td>THD:STA</td>
<td>4000</td>
<td>600</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>Start condition setup time</td>
<td>TSU:STA</td>
<td>4700</td>
<td>600</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>Data input hold time</td>
<td>THD:DAT</td>
<td>0</td>
<td>0</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>Data input setup time</td>
<td>TSU:DAT</td>
<td>250</td>
<td>100</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>Stop condition setup time</td>
<td>TSU:STO</td>
<td>4000</td>
<td>600</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>Output valid from clock</td>
<td>TAA</td>
<td>—</td>
<td>3500</td>
<td>900</td>
<td>ns</td>
</tr>
<tr>
<td>Bus free time</td>
<td>TBUF</td>
<td>4700</td>
<td>1300</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>Output fall time</td>
<td>TOF</td>
<td>—</td>
<td>250</td>
<td>20+0.1</td>
<td>ns</td>
</tr>
<tr>
<td>Input filter spike suppression (SDA and SCL pins)</td>
<td>TSP</td>
<td>—</td>
<td>50</td>
<td>50</td>
<td>ns</td>
</tr>
<tr>
<td>Write cycle time</td>
<td>TWC</td>
<td>—</td>
<td>10</td>
<td>—</td>
<td>10 ms</td>
</tr>
<tr>
<td>Endurance</td>
<td></td>
<td></td>
<td>1M</td>
<td>1M</td>
<td>cycles 25°C, Vcc = 5.0V, Block mode (Note 4)</td>
</tr>
</tbody>
</table>

Note 1: Not 100% tested. CB = total capacitance of one bus line in pF.

2: As a transmitter, the device must provide an internal minimum delay time to bridge the undefined region (minimum 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

3: The combined Tsp and Vhys specifications are due to Schmitt Trigger inputs which provide improved noise spike suppression. This eliminates the need for a TI specification for standard operation.

4: This parameter is not tested but ensured by characterization. For endurance estimates in a specific application, please consult the Total Endurance™ Model which can be obtained from our web site.

FIGURE 1-1: BUS TIMING DATA
2.0 PIN DESCRIPTIONS

2.1 SDA (Serial Data)

This is a bidirectional pin used to transfer addresses and data into and data out of the device. It is an open drain terminal, therefore the SDA bus requires a pull-up resistor to VCC (typical 10 kΩ for 100 kHz, 2 kΩ for 400 kHz).

For normal data transfer SDA is allowed to change only during SCL low. Changes during SCL high are reserved for indicating the Start and Stop conditions. The SDA pin has Schmitt Trigger and filter circuits which suppress noise spikes to assure proper device operation even on a noisy bus.

2.2 SCL (Serial Clock)

This input is used to synchronize the data transfer from and to the device. The SCL pin has Schmitt Trigger and filter circuits which suppress noise spikes to assure proper device operation even on a noisy bus.

2.3 EDS (External Device Select)

The External Device Select (EDS) pin is an open drain output that is controlled by using the OE bit in the control byte. It can be used to enable other circuitry when the device is selected. A pull-up resistor must be added to this pin for proper operation. This pin should not be pulled up to a voltage higher than Vcc+1V. See Section 9.0 “External Device Select (EDS) Pin and Output Enable (OE) Bit” for more details.

3.0 BUS CHARACTERISTICS

The following bus protocol has been defined:

- Data transfer may be initiated only when the bus is not busy.
- During data transfer, the data line must remain stable whenever the clock line is high. Changes in the data line while the clock line is high will be interpreted as a Start or Stop condition.

Accordingly, the following bus conditions have been defined (Figure 3-1).

3.1 Bus not Busy (A)

Both data and clock lines remain high.

3.2 Start Data Transfer (B)

A high-to-low transition of the SDA line while the clock (SCL) is high determines a Start condition. All commands must be preceded by a Start condition.

3.3 Stop Data Transfer (C)

A low-to-high transition of the SDA line while the clock (SCL) is high determines a Stop condition. All operations must be ended with a Stop condition.

3.4 Data Valid (D)

The state of the data line represents valid data when, after a Start condition, the data line is stable for the duration of the high period of the clock signal.

The data on the line must be changed during the low period of the clock signal. There is one bit of data per clock pulse.

Each data transfer is initiated with a Start condition and terminated with a Stop condition. The number of data bytes transferred between the Start and Stop conditions is determined by the master device and is theoretically unlimited, although only the last sixteen will be stored when doing a write operation. When an overwrite does occur it will replace data in a first in first out fashion.
3.5 Acknowledge

Each receiving device, when addressed, is required to generate an acknowledge after the reception of each byte. The master device must generate an extra clock pulse which is associated with this Acknowledge bit.

Note: The 24LCS61/62 does not generate any Acknowledge bits if an internal programming cycle is in progress.

The device that acknowledges has to pull down the SDA line during the Acknowledge clock pulse in such a way that the SDA line is stable low during the high period of the acknowledge related clock pulse. Of course, setup and hold times must be taken into account. A master must signal an end of data to the slave by not generating an Acknowledge bit on the last byte that has been clocked out of the slave. In this case, the slave must leave the data line high to enable the master to generate the Stop condition (Figure 3-2).

FIGURE 3-2: ACKNOWLEDGE TIMING

Transmitter must release the SDA line at this point allowing the Receiver to pull the SDA line low to acknowledge the previous eight bits of data.

Receiver must release the SDA line at this point so the Transmitter can continue sending data.
4.0 FUNCTIONAL DESCRIPTION

The 24LCS61/62 supports a bidirectional 2-wire bus and data transmission protocol compatible with the I²C protocol. The device is configured to reside on a common I²C bus with up to 255 total 24LCS61/62 devices on the bus. Each device has a unique serial number assigned to it when delivered from the factory. In an actual system, this serial number will be used to assign a separate 8-bit ID byte to each device in the system. After an ID byte is assigned to each device in the system, standard Read and Write commands can be sent to each device individually.

4.1 Device Serial Number

The device serial number is stored in a 48-bit (6 byte) register that is separate from the data array. The serial number register is nonvolatile and cannot be changed by the user. Before shipment from the factory, this register is programmed with a unique value for every device. The 48 bit register allows for \(2.8 \times 10^{14}\) different combinations. The serial number is used at power-up to assign the device an ID byte which is then used for all standard Read and Write commands sent to that specific device.

4.2 Device ID Byte

The Device ID byte is an 8-bit value that provides the means for every device on the bus to be accessed individually. The ID byte is stored in a RAM register separate from the data array. The ID byte register will always default to address 00 upon power-up.

4.3 Device Addressing

Each command to the device must begin with a Start bit. A control byte is the first byte received following the Start condition from the master device (Figure 4-1). The control byte consists of a four-bit control code, the OE bit, and three command select bits. For the 24LCS61/62, the control code is set to ‘0110’ binary for all operations. The device will not acknowledge any commands sent with any other control code. The next bit is the Output Enable (OE) bit. This bit controls the operation of the EDS pin. See Section 9.0 “External Device Select (EDS) Pin and Output Enable (OE) Bit” for more details. The last three bits of the control byte are the command select bits (C0-C2). The command select bits determine which command will be executed. See Table 4-1. Following a valid control byte, the 24LCS61/62 will acknowledge the command.
5.0 ASSIGNING THE ID BYTE

The 24LCS61/62 device contains a special register which holds an 8-bit ID byte that is used as an address to communicate with a specific device on the bus. All Read and Write commands to the device must include this ID address byte. Upon power-up, the ID byte will default to 00h. Communicating with the device using the default address is typically done only at testing or programming time and not when it is connected to a bus with more than one device. Before the device can be used on a common bus with other devices, a unique ID byte address must be assigned to every device.

5.1 Assign Address Command

The ID byte is assigned by sending the Assign Address command. This command queries any device connected to the bus and utilizing the automatic bus arbitration feature, assigns an ID byte to the device that remains on the bus after arbitration is complete. Once a device has been assigned an ID byte, it will no longer respond to Assign Address commands until power is cycled or the Clear Address command is sent. The Assign Address command must be repeated for each device on the bus until all devices have been assigned an ID byte.

The format for the Assign Address command is shown in Figure 5-1. The command consists of the control byte, the ID byte to be assigned to the device remaining when the arbitration is complete, and 48 bits of data being transmitted by devices on the bus. If the OE bit is set to a 1, then any device who has not been assigned an address will assert their respective EDS pin after the Acknowledge bit following the Device ID byte. After the control byte and ID byte are sent, each device will begin to transmit its unique 48-bit serial number. The 24LCS61/62 must acknowledge the control byte and the device ID byte, and the master must acknowledge each byte of the serial number transmitted by the device. As each bit is clocked out, each device will monitor the bus to detect if another device is also transmitting. If any device is outputting a logic ‘1’ on the bus and it detects that the bus is at a logic ‘0’, then it assumes that another device is controlling the bus. As soon as any device detects that it is not controlling the bus it will immediately stop transmitting data and return to Standby mode. The master must end the command by sending a no ACK after all 6 bytes of the serial number have been transmitted, followed by a Stop bit. Sending the Stop bit in any other position of the command will result in the command aborting and all devices releasing the bus with no address assigned. If a device transmits its entire 48 bit serial number without releasing the bus to another device, then the ID byte transmitted within the command is transferred to the internal ID byte register upon receipt of the Stop bit and it will now respond only to commands that contain this ID byte (or the Clear Address command). Once a device has been assigned an ID byte, it will no longer respond to Assign Address commands until power is cycled or the Clear Address command is sent.

This process of assigning ID bytes is repeated by the controller until no more devices respond to the Assign Address command. At this point, all devices on the bus have been assigned an ID byte and standard Read and Write commands can be executed to each individual device.

The ID byte is stored in a volatile SRAM register, and if power is removed from the device or the Clear Address command is sent, then the ID byte will default to address 00 and the process of assigning an ID value must be repeated.

FIGURE 5-1: ASSIGN ADDRESS COMMAND

- A unique address must be assigned to each device on the bus
- The ID byte
- The 24LCS61/62 must acknowledge the control byte and the device ID byte, and the master must acknowledge each byte of the serial number transmitted by the device. As each bit is clocked out, each device will monitor the bus to detect if another device is also transmitting. If any device is outputting a logic ‘1’ on the bus and it detects that the bus is at a logic ‘0’, then it assumes that another device is controlling the bus. As soon as any device detects that it is not controlling the bus it will immediately stop transmitting data and return to Standby mode. The master must end the command by sending a no ACK after all 6 bytes of the serial number have been transmitted, followed by a Stop bit. Sending the Stop bit in any other position of the command will result in the command aborting and all devices releasing the bus with no address assigned. If a device transmits its entire 48 bit serial number without releasing the bus to another device, then the ID byte transmitted within the command is transferred to the internal ID byte register upon receipt of the Stop bit and it will now respond only to commands that contain this ID byte (or the Clear Address command). Once a device has been assigned an ID byte, it will no longer respond to Assign Address commands until power is cycled or the Clear Address command is sent.

- This process of assigning ID bytes is repeated by the controller until no more devices respond to the Assign Address command. At this point, all devices on the bus have been assigned an ID byte and standard Read and Write commands can be executed to each individual device.

- The ID byte is stored in a volatile SRAM register, and if power is removed from the device or the Clear Address command is sent, then the ID byte will default to address 00 and the process of assigning an ID value must be repeated.
5.2 Clear Address Command

The Clear Address command will clear the device ID byte from all devices on the bus and will enable all devices to respond to the Assign Address command. The master must end the command by sending an ACK after 8 don’t care bits have been transmitted, followed by a Stop bit. Sending the Stop bit in any other position of the command will result in the command aborting and the device releasing the bus.

FIGURE 5-2: CLEAR ADDRESS COMMAND

5.3 Operation State Diagram

The diagram below shows the state diagram for basic operation of the 24LCS61/62. This diagram shows possible states and operational flow once power is applied to the device. Table 5-1 summarizes operation of each command for the assigned and unassigned states.

FIGURE 5-3: OPERATIONAL STATE DIAGRAM
<table>
<thead>
<tr>
<th>Command</th>
<th>Result if Device Has Not Yet Been Assigned an ID Byte</th>
<th>Result if Device Has Already Been Assigned an ID Byte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assign Address command</td>
<td>If device wins arbitration, then ID byte will become xxh. If device loses arbitration, then ID byte will revert back to 00h.</td>
<td>Device will not acknowledge command.</td>
</tr>
<tr>
<td>Clear Address command</td>
<td>Device will remain with ID byte set to 00h.</td>
<td>Device ID byte will revert back to 00h and will then acknowledge Assign Address commands.</td>
</tr>
<tr>
<td>Read or Write command with ID byte set to 00h</td>
<td>Since the default ID byte for the device is 00h, the device will execute the command.</td>
<td>Device will acknowledge the control byte, but it will not acknowledge any further bytes and will not respond to the command.</td>
</tr>
<tr>
<td>Read or Write command with ID byte set to xxh (other than 00h)</td>
<td>Device will acknowledge the control byte, but it will not acknowledge any further bytes and will not respond to the command.</td>
<td>If the device ID byte matches the ID byte in the command (xxh), the device will execute the command. If the device ID byte does not match the ID byte in the command, then the device will acknowledge the control byte, but it will not acknowledge any further bytes and will not respond to the command.</td>
</tr>
<tr>
<td>Set Write-Protect command with ID byte set to 00h</td>
<td>Since the default ID address for the device is 00h, the device will execute the command.</td>
<td>Device will acknowledge the control byte, but it will not acknowledge any further bytes and will not respond to the command.</td>
</tr>
<tr>
<td>Set Write Protection command with ID byte set to xxh (other than 00h)</td>
<td>Device will acknowledge the control byte, but it will not acknowledge any further bytes and will not respond to the command.</td>
<td>If the device ID byte matches the ID byte in the command (xxh), the device will execute the command. If the device ID byte does not match the ID byte in the command, then the device will acknowledge the control byte, but it will not acknowledge any further bytes and will not respond to the command. Note: Once this command has been executed successfully for a device, the device will no longer acknowledge any part of this command again.</td>
</tr>
</tbody>
</table>
6.0 WRITE OPERATIONS

6.1 Byte Write

Following the Start signal from the master, the control byte for a Write command is sent by the master transmitter. The device will acknowledge this control byte during the ninth clock pulse. The next byte transmitted by the master is the ID byte for the device. After receiving another Acknowledge signal from the 24LCS61/62, the master device will transmit the address and then the data word to be written into the addressed memory location. The 24LCS61/62 acknowledges between each byte, and the master then generates a Stop condition. This initiates the internal write cycle, and during this time the 24LCS61/62 will not generate Acknowledge signals (Figure 6-1).

6.2 Page Write

The control byte, ID byte, word address, and the first data byte are transmitted to the 24LCS61/62 in the same way as in a byte write. But, instead of generating a Stop condition, the master transmits up to 15 additional data bytes to the 24LCS61/62, which are temporarily stored in the on-chip page buffer and will be written into the memory after the master has transmitted a Stop condition. If the master should transmit more than 16 bytes prior to generating the Stop condition, the address counter will roll over and the previously received data will be overwritten. As with the byte write operation, once the Stop condition is received an internal write cycle will begin (Figure 6-2) and the 24LCS61/62 will not generate acknowledge.

Note: Page write operations are limited to writing bytes within a single physical page, regardless of the number of bytes actually being written. Physical page boundaries start at addresses that are integer multiples of the page buffer size (or ‘page size’) and end at addresses that are integer multiples of [page size - 1]. If a Page Write command attempts to write across a physical page boundary, the result is that the data wraps around to the beginning of the current page (overwriting data previously stored there), instead of being written to the next page as might be expected. It is therefore necessary for the application software to prevent page write operations that would attempt to cross a page boundary.

6.3 Low Voltage Write Protection

The 24LCS61/62 employs a Vcc threshold detector circuit which disables the internal erase/write logic, if the Vcc is below 1.5 volts at nominal conditions.

6.4 Set Write Protection Command

The Set Write Protection command allows the user to write-protect a portion of the array. For the 24LCS51 this command will write-protect the entire array. For the 24LCS62 this command will protect the lower half of the array. This command is illustrated in Figure 6-3. This is a one time only command and cannot be reversed once the protection fuse has been set. Once the write-protect feature has been set, the device will no longer acknowledge the control byte (or any of the other bytes) of this command. The Stop bit of this command initiates an internal write cycle, and during this time the 24LCS61/62 will not generate Acknowledge signals.

FIGURE 6-1: BYTE WRITE

<table>
<thead>
<tr>
<th>BUS ACTIVITY</th>
<th>MASTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>START</td>
<td></td>
</tr>
<tr>
<td>SDA LINE</td>
<td></td>
</tr>
<tr>
<td>BUS ACTIVITY</td>
<td></td>
</tr>
<tr>
<td>CONTROL BYTE</td>
<td>DEVICE ID BYTE</td>
</tr>
<tr>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>K</td>
<td>K</td>
</tr>
</tbody>
</table>

OE Bit = EDS Pin Output Enable; see Section 9.0 "External Device Select (EDS) Pin and Output Enable (OE) Bit"
FIGURE 6-2: PAGE WRITE

<table>
<thead>
<tr>
<th>BUS ACTIVITY</th>
<th>MASTER START</th>
<th>CONTROL BYTE</th>
<th>DEVICE ID BYTE</th>
<th>ADDRESS BYTE</th>
<th>DATA BYTE 0</th>
<th>DATA BYTE 15</th>
<th>STOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDA LINE</td>
<td>S 0 1 1 0 E 0 0</td>
<td>A A A A</td>
<td>P</td>
</tr>
<tr>
<td>BUS ACTIVITY</td>
<td>S 0 1 1 0 E 0 0</td>
<td>A A A A</td>
<td>P</td>
</tr>
</tbody>
</table>

FIGURE 6-3: SET WRITE PROTECTION COMMAND

<table>
<thead>
<tr>
<th>START</th>
<th>CONTROL BYTE</th>
<th>DEVICE ID BYTE</th>
<th>ADDRESS BYTE</th>
<th>DATA BYTE</th>
<th>STOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>S 0 1 1 0 E 0 0</td>
<td>A A A A</td>
<td>A A A A</td>
<td>A A A A</td>
<td>A A A A</td>
<td>P</td>
</tr>
<tr>
<td>A A A A</td>
<td>P</td>
</tr>
</tbody>
</table>
7.0 ACKNOWLEDGE POLLING

Since the device will not acknowledge during a write cycle, this can be used to determine when the cycle is complete (this feature can be used to maximize bus throughput). Once the Stop condition for a Write command has been issued from the master, the device initiates the internally timed write cycle. ACK polling can be initiated immediately. This involves the master sending a Start condition followed by the control byte for a Write command and then sending the Device ID byte for that particular device. If the device is still busy with the write cycle, then no ACK will be returned after the Device ID byte. If no ACK is returned, then the Start bit, control byte and ID byte must be re-sent. If the cycle is complete, then the device will return the ACK and the master can then proceed with the next command. See Figure 7-1 for flow diagram.

![FIGURE 7-1: ACKNOWLEDGE POLLING FLOW](image-url)
8.0 READ OPERATIONS

Read operations are initiated in a similar way as the write operations. There are three basic types of read operations: current address read, random read, and sequential read.

8.1 Current Address Read

The 24LCS61/62 contains an address counter that maintains the address of the last word accessed, internally incremented by one. Therefore, if the previous read access was to address n, the next current address read operation would access data from address n + 1. Upon receipt of the correct control byte and ID byte, the 24LCS61/62 issues an acknowledge and transmits the eight bit data word. The master will not acknowledge the transfer but does generate a Stop condition and the 24LCS61/62 discontinues transmission (Figure 8-1).

8.2 Random Read

Random read operations allow the master to access any memory location in a random manner. To perform this type of read operation, first the word address must be set. This is done by sending the word address to the 24LCS61/62 as part of a write operation.

After the ID byte and word address are sent, the master generates a Start condition following the acknowledge. This terminates the write operation, but not before the internal address pointer is set. Then the master sends the control byte and ID byte for a Read command. The 24LCS61/62 will then issue an acknowledge and transmits the eight bit data word. The master will not acknowledge the transfer but does generate a Stop condition and the 24LCS61/62 discontinues transmission (Figure 8-2).

8.3 Sequential Read

Sequential reads are initiated in the same way as a random read except that after the 24LCS61/62 transmits the first data byte, the master issues an acknowledge as opposed to a Stop condition in a random read. This directs the 24LCS61/62 to transmit the next sequentially addressed 8-bit word (Figure 8-3).

To provide sequential reads the 24LCS61/62 contains an internal address pointer which is incremented by one at the completion of each operation. This address pointer allows the entire memory contents to be serially read during one operation. The internal address pointer will automatically roll over from address 7Fh (24LCS51) or FFh (24LCS62) to address 00h.

After the ID byte and word address are sent, the master generates a Start condition following the acknowledge. This terminates the write operation, but not before the internal address pointer is set. Then the master sends the control byte and ID byte for a Read command. The 24LCS61/62 will then issue an acknowledge and transmits the eight bit data word. The master will not acknowledge the transfer but does generate a Stop condition and the 24LCS61/62 discontinues transmission (Figure 8-2).

FIGURE 8-1: CURRENT ADDRESS READ

<table>
<thead>
<tr>
<th>BUS ACTIVITY</th>
<th>START</th>
<th>CONTROL</th>
<th>DEVICE</th>
<th>DATA</th>
<th>STOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>MASTER</td>
<td>S 0 1</td>
<td>0 0 0</td>
<td>E 0 F</td>
<td>A C K</td>
<td>N A C K</td>
</tr>
<tr>
<td>SDA LINE</td>
<td>O E</td>
<td>O</td>
<td>0</td>
<td>A C K</td>
<td>N A C K</td>
</tr>
</tbody>
</table>

OE Bit = EDS Pin Output Enable; see Section 9.0 “External Device Select (EDS) Pin and Output Enable (OE) Bit”
FIGURE 8-2: RANDOM READ

FIGURE 8-3: SEQUENTIAL READ
9.0 EXTERNAL DEVICE SELECT (EDS) PIN AND OUTPUT ENABLE (OE) BIT

The External Device Select (EDS) pin is an open drain, low active output and may be used by the system designer for functions such as enabling other circuitry when the 24LCS61/62 is being accessed. Because the pin is an open drain output, a pull-up resistor is required for proper operation of this pin. When the device is powered up, the EDS pin will always be in the high-impedance state (off). The EDS pin function is controlled by using the output enable (OE) bit in the control byte of each command. If the OE bit is high, the EDS pin is enabled and if the OE bit is low the pin is disabled. For the Assign Address command and standard Read or Write commands, the EDS pin will pull low (providing that the OE bit is set high) on the rising clock edge after the ack bit following the ID byte. See Figure 9-1. For commands such as the Clear Address command, the EDS pin will change states at the rising clock edge just before the Stop bit. It is also possible to control the EDS pin by sending a partial command such as the control byte and ID byte for a Write command followed by the Stop bit. The EDS pin would change states just before the Stop bit as shown in the lower portion of Figure 9-1. When the EDS pin has changed states, it is latched and will remain in a given state until another command is sent to the device with the OE bit set to change the state of the pin, or power to the device is removed.

FIGURE 9-1: EDS PIN OPERATION

For commands such as the Assign Address command or standard read and writes, the EDS pin will be asserted on this rising clock edge if the OE bit was set to a one in the control byte. If the OE bit is a zero and the previous command asserted it, then the EDS pin will be released by the device on this clock edge.

For commands such as the Clear Address command, the command is terminated at this point with a Stop bit. The EDS pin will be asserted on this rising clock edge if the OE bit was set to a one in the control byte. If the OE bit is a zero and the previous command asserted it, then the EDS pin will be released by the device at this point.
APPENDIX A: REVISION HISTORY

Revision D
Corrections to Section 1.0, Electrical Characteristics.

Revision E
Add “Obsolete Device” to document header.
ON-LINE SUPPORT

Microchip provides on-line support on the Microchip World Wide Web site.

The web site is used by Microchip as a means to make files and information easily available to customers. To view the site, the user must have access to the Internet and a web browser, such as Netscape® or Microsoft® Internet Explorer. Files are also available for FTP download from our FTP site.

Connecting to the Microchip Internet Web Site

The Microchip web site is available at the following URL:

www.microchip.com

The file transfer site is available by using an FTP service to connect to:

ftp://ftp.microchip.com

The web site and file transfer site provide a variety of services. Users may download files for the latest Development Tools, Data Sheets, Application Notes, User's Guides, Articles and Sample Programs. A variety of Microchip specific business information is also available, including listings of Microchip sales offices, distributors and factory representatives. Other data available for consideration is:

- Latest Microchip Press Releases
- Technical Support Section with Frequently Asked Questions
- Design Tips
- Device Errata
- Job Postings
- Microchip Consultant Program Member Listing
- Links to other useful web sites related to Microchip Products
- Conferences for products, Development Systems, technical information and more
- Listing of seminars and events

SYSTEMS INFORMATION AND UPGRADE HOT LINE

The Systems Information and Upgrade Line provides system users a listing of the latest versions of all of Microchip's development systems software products. Plus, this line provides information on how customers can receive the most current upgrade kits. The Hot Line Numbers are:

1-800-755-2345 for U.S. and most of Canada, and
1-480-792-7302 for the rest of the world.

042003
READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

To: Technical Publications Manager
From: Name ____________________________
Company ____________________________
Address ____________________________
City / State / ZIP / Country ____________
Telephone: (______) _________ - _________ FAX: (______) _________ - _________
Application (optional):

Would you like a reply? ___Y ___N

Device: 24LCS61/24LCS62 Literature Number: DS21226E

Questions:
1. What are the best features of this document?

2. How does this document meet your hardware and software development needs?

3. Do you find the organization of this document easy to follow? If not, why?

4. What additions to the document do you think would enhance the structure and subject?

5. What deletions from the document could be made without affecting the overall usefulness?

6. Is there any incorrect or misleading information (what and where)?

7. How would you improve this document?
PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>X</th>
<th>XX</th>
<th>XXX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device</td>
<td>Temperature Range</td>
<td>Package</td>
<td>Pattern</td>
</tr>
<tr>
<td>Device</td>
<td>24AA00 128 bit 1.8V I²C Serial EEPROM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24AA00T 128 bit 1.8V K I²C Serial EEPROM (Tape and Reel)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24LC00 128 bit 2.5V I²C Serial EEPROM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24LC00T 128 bit 2.5V K I²C Serial EEPROM (Tape and Reel)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24C00 128 bit 5.0V I²C Serial EEPROM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24C00T 128 bit 5.0V K I²C Serial EEPROM (Tape and Reel)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Temperature Range
- Blank = 0°C to +70°C
- I = -40°C to +85°C
- E = -40°C to +125°C

Package
- P = Plastic DIP (300 mil Body), 8-lead
- SN = Plastic SOIC (150 mil Body)
- ST = TSSOP 8-lead
- OT = SOT-23, 5-lead

Sales and Support

Data Sheets
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

1. Your local Microchip sales office
2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277
3. The Microchip Worldwide Site (www.microchip.com)

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

New Customer Notification System
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip’s products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Microchip received ISO/TS-16949:2002 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona and Mountain View, California in October 2003. The Company’s quality system processes and procedures are for its PICmicro® 8-bit MCUs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support: 480-792-7627
Web Address: www.microchip.com

Atlanta
3780 Mansell Road, Suite 130
Alpharetta, GA 30022
Tel: 770-640-0034
Fax: 770-640-0027

Boston
2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848
Fax: 978-692-3821

Chicago
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071
Fax: 630-285-0075

Dallas
16200 Addison Road, Suite 255
Addison Plaza
Addison, TX 75001
Tel: 972-818-7243
Fax: 972-818-7294

Detroit
Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250
Fax: 248-538-2260

Kokomo
2767 S. Albright Road
Kokomo, IN 46902
Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles
25950 Acero St., Suite 200
Mission Viejo, CA 92691
Tel: 949-633-8870
Fax: 949-633-8850

San Jose
1300 Terra Bella Avenue
Mountain View, CA 94043
Tel: 650-215-1444
Fax: 650-961-0286

Tokyo
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44-118-921-5869
Fax: 44-118-921-5820

ASIA/PACIFIC
Australia
Microchip Technology Australia Pty Ltd
Unit 32, 41 Rawson Street
Epping 2121, NSW
Sydney, Australia
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Unit 706B
Wan Tai Bei Hai Bldg., No. 6 Chaoyangmen Bei Str.
Beijing, 100027, China
Tel: 86-10-85282100
Fax: 86-10-85282104

China - Chengdu
Rm. 2401-2402, 24th Floor,
Ming Xing Financial Tower
No. 88 TIDU Street
Chengdu 610016, China
Tel: 86-28-86768200
Fax: 86-28-86766599

China - Fuzhou
Unit 28F, World Trade Plaza
No. 71 Wusi Road
Fuzhou 350001, China
Tel: 86-591-75035259
Fax: 86-591-75035271

China - Hong Kong SAR
Unit 901-6, Tower 2, Metroploza
233 Hing Fong Road
Kai Fong, N.T., Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431

China - Shanghai
Room 701, Bldg. B
Far East International Plaza
No. 317 Xian Xia Road
Shanghai, 200051, China
Tel: 86-21-6275-5700
Fax: 86-21-6275-5060

China - Shenzhen
Rm. 1812, 18/F, Building A, United Plaza
No. 5022 Binhe Road, Futian District
Shenzhen 518033, China
Tel: 86-755-82901380
Fax: 86-755-8295-1393

China - Shunde
Room 401, Hongjian Building, No. 2
Foshan City, Guangdong 528301, China
Tel: 86-757-28395267
Fax: 86-757-28395271

Chinese Taipei
Room 901-2, Tower 2, Metroplaza
223 Hing Fong Road
Kai Fong, N.T., Hong Kong
Tel: 886-2-2717-7175
Fax: 886-2-2545-0139

Singapore
200 Middle Road
#07-02 Prime Centre
Singapore, 188980
Tel: 65-6334-8870 Fax: 65-6334-8850

EUROPE
Austria
Durisolistrasse 2
A-4500 Wels
Austria
Tel: 43-7242-2244-399
Fax: 43-7242-2244-393

Denmark
Regus Business Centre
Lautrup hoj 1-3
Ballerup DK-2750 Denmark
Tel: 45-4420-9895 Fax: 45-4420-9910

France
Parc d’Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - 1er Etage
91300 Massy, France
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-63-20

Germany
Schenkelsstrasse 10
D-85737 Ismaning, Germany
Tel: 49-89-627-1440
Fax: 49-89-621-144-44

Italy
Via Salvatore Quasimodo, 12
20025 Legnano (MI)
Milan, Italy
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands
Waagenburgplein 4
NL-5152 JR, Drunen, Netherlands
Tel: 31-416-690399
Fax: 31-416-690340

United Kingdom
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44-118-921-5869
Fax: 44-118-921-5820

Worldwide Sales and Service