Features:

- Single supply with operation down to 1.7V for 24AA00 devices, 2.5V for 24LC00 devices
- Low-power CMOS technology:
 - Read current 500 μA, typical
 - Standby current 100 nA, typical
- 2-wire serial interface, \(\text{I}^2\text{C} \)™ compatible
- Schmitt Trigger inputs for noise suppression
- Output slope control to eliminate ground bounce
- 100 kHz and 400 kHz clock compatibility
- Page write time 3 ms, typical
- Self-timed erase/write cycle
- ESD protection >4000V
- More than 1 million erase/write cycles
- Data retention >200 years
- Factory programming available
- Packages include 8-lead PDIP, SOIC, TSSOP, DFN and 5-lead SOT-23
- Pb-free and RoHS compliant
- Temperature ranges available:
 - Industrial (I): -40°C to +85°C
 - Automotive (E): -40°C to +125°C

Description:

The Microchip Technology Inc. 24AA00/24LC00/24C00 (24XX00*) is a 128-bit Electrically Erasable PROM memory organized as 16 x 8 with a 2-wire serial interface. Low-voltage design permits operation down to 1.7 volts for the 24AA00 version, and every version maintains a maximum standby current of only 1 μA and typical active current of only 500 μA. This device was designed for where a small amount of EEPROM is needed for the storage of calibration values, ID numbers or manufacturing information, etc. The 24XX00 is available in 8-pin PDIP, 8-pin SOIC (3.90 mm), 8-pin TSSOP, 8-pin 2x3 DFN and the 5-pin SOT-23 packages.

*24XX00 is used in this document as a generic part number for the 24AA00/24LC00/24C00 devices.

\(\text{I}^2\text{C} \)™ is a trademark of Philips Corporation.
1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings†

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vcc</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>All inputs and outputs w.r.t. Vss</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Storage temperature</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambient temperature with power applied</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESD protection on all pins</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-4 kV</td>
</tr>
</tbody>
</table>

† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 1-1: DC CHARACTERISTICS

All Parameters apply across the recommended operating ranges unless otherwise noted

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCL and SDA pins:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High-level input voltage</td>
<td>VIH</td>
<td>0.7 Vcc</td>
<td>—</td>
<td>V</td>
<td>(Note) Industrial (I): TA = -40°C to +85°C, VCC = 1.8V to 5.5V</td>
</tr>
<tr>
<td>Low-level input voltage</td>
<td>VIL</td>
<td>—</td>
<td>0.3 Vcc</td>
<td>V</td>
<td>(Note)</td>
</tr>
<tr>
<td>Hysteresis of Schmitt Trigger inputs</td>
<td>VHYS</td>
<td>0.05 VCC</td>
<td>—</td>
<td>V</td>
<td>VCC ≥ 2.5V (Note)</td>
</tr>
<tr>
<td>Low-level output voltage</td>
<td>VOL</td>
<td>—</td>
<td>0.4 V</td>
<td>IOL = 3.0 mA, VCC = 4.5V IOL = 2.1 mA, VCC = 2.5V</td>
<td></td>
</tr>
<tr>
<td>Input leakage current</td>
<td>ILI</td>
<td>—</td>
<td>±1 μA</td>
<td>Vin = Vcc or Vss</td>
<td></td>
</tr>
<tr>
<td>Output leakage current</td>
<td>ILO</td>
<td>—</td>
<td>±1 μA</td>
<td>Vout = Vcc or Vss</td>
<td></td>
</tr>
<tr>
<td>Pin capacitance (all inputs/outputs)</td>
<td>CIN, COUT</td>
<td>—</td>
<td>10</td>
<td>pF</td>
<td>VCC = 5.0V (Note)</td>
</tr>
<tr>
<td>Operating current</td>
<td>ICC Write</td>
<td>—</td>
<td>2 mA</td>
<td>Vcc = 5.5V, SCL = 400 kHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ICC Read</td>
<td>—</td>
<td>1 mA</td>
<td>Vcc = 5.5V, SCL = 400 kHz</td>
<td></td>
</tr>
<tr>
<td>Standby current</td>
<td>ICCS</td>
<td>—</td>
<td>1 μA</td>
<td>Vcc = 5.5V, SDA = SCL = Vcc</td>
<td></td>
</tr>
</tbody>
</table>

Note: This parameter is periodically sampled and not 100% tested.

FIGURE 1-1: BUS TIMING DATA
TABLE 1-2: AC CHARACTERISTICS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clock frequency</td>
<td>FCLK</td>
<td></td>
<td>100</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clock high time</td>
<td>THIGH</td>
<td>4000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>600</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clock low time</td>
<td>TLOW</td>
<td>4700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4700</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1300</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SDA and SCL rise time</td>
<td>TR</td>
<td></td>
<td>1000</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>(Note 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SDA and SCL fall time</td>
<td>TF</td>
<td></td>
<td>300</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>(Note 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start condition hold time</td>
<td>THD:STA</td>
<td>4000</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>4000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>600</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start condition setup time</td>
<td>TSU:STA</td>
<td>4700</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>4700</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>600</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data input hold time</td>
<td>THD:DAT</td>
<td></td>
<td>0</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>(Note 2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data input setup time</td>
<td>TSU:DAT</td>
<td></td>
<td>250</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stop condition setup time</td>
<td>TSU:STO</td>
<td>4000</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>4000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>600</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output valid from clock</td>
<td>TAA</td>
<td></td>
<td>3500</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>(Note 2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bus free time: Time the bus must be free before a new transmission can start</td>
<td>TBUF</td>
<td>4700</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>4700</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1300</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output fall time from Vih minimum to Vil maximum</td>
<td>TOF</td>
<td>20+0.1</td>
<td>CB</td>
<td>250</td>
<td>ns</td>
</tr>
<tr>
<td>(Note 1), CB ≤ 100 pF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input filter spike suppression (SDA and SCL pins)</td>
<td>TSP</td>
<td></td>
<td>50</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>(Notes 1, 3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Write cycle time</td>
<td>TWC</td>
<td></td>
<td>4</td>
<td></td>
<td>ms</td>
</tr>
<tr>
<td>Endurance</td>
<td>1M</td>
<td></td>
<td></td>
<td></td>
<td>cycles</td>
</tr>
</tbody>
</table>

Note 1: Not 100% tested. Cb = total capacitance of one bus line in pF.

Note 2: As a transmitter, the device must provide an internal minimum delay time to bridge the undefined region (minimum 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

Note 3: The combined Tsp and VHYS specifications are due to new Schmitt Trigger inputs which provide improved noise spike suppression. This eliminates the need for a TI specification for standard operation.

Note 4: This parameter is not tested but ensured by characterization. For endurance estimates in a specific application, please consult the Total Endurance™ Model which can be obtained at www.microchip.com.
2.0 PIN DESCRIPTIONS

2.1 SDA Serial Data
This is a bidirectional pin used to transfer addresses and data into and data out of the device. It is an open drain terminal, therefore the SDA bus requires a pull-up resistor to VCC (typical 10 kΩ for 100 kHz, 2 kΩ for 400 kHz).

For normal data transfer SDA is allowed to change only during SCL low. Changes during SCL high are reserved for indicating the Start and Stop conditions.

2.2 SCL Serial Clock
This input is used to synchronize the data transfer from and to the device.

2.3 Noise Protection
The SCL and SDA inputs have Schmitt Trigger and filter circuits which suppress noise spikes to assure proper device operation even on a noisy bus.

3.0 FUNCTIONAL DESCRIPTION
The 24XX00 supports a bidirectional 2-wire bus and data transmission protocol. A device that sends data onto the bus is defined as a transmitter, and a device receiving data as a receiver. The bus has to be controlled by a master device which generates the Serial Clock (SCL), controls the bus access, and generates the Start and Stop conditions, while the 24XX00 works as slave. Both master and slave can operate as transmitter or receiver, but the master device determines which mode is activated.

4.0 BUS CHARACTERISTICS
The following bus protocol has been defined:
- Data transfer may be initiated only when the bus is not busy.
- During data transfer, the data line must remain stable whenever the clock line is high. Changes in the data line while the clock line is high will be interpreted as a Start or Stop condition.

Accordingly, the following bus conditions have been defined (Figure 4-1).

4.1 Bus Not Busy (A)
Both data and clock lines remain high.

4.2 Start Data Transfer (B)
A high-to-low transition of the SDA line while the clock (SCL) is high determines a Start condition. All commands must be preceded by a Start condition.

4.3 Stop Data Transfer (C)
A low-to-high transition of the SDA line while the clock (SCL) is high determines a Stop condition. All operations must be ended with a Stop condition.

4.4 Data Valid (D)
The state of the data line represents valid data when, after a Start condition, the data line is stable for the duration of the high period of the clock signal.

The data on the line must be changed during the low period of the clock signal. There is one bit of data per clock pulse.

Each data transfer is initiated with a Start condition and terminated with a Stop condition. The number of the data bytes transferred between the Start and Stop conditions is determined by the master device and is theoretically unlimited.
4.5 Acknowledge

Each receiving device, when addressed, is obliged to generate an acknowledge after the reception of each byte. The master device must generate an extra clock pulse which is associated with this Acknowledge bit.

Note: The 24XX00 does not generate any Acknowledge bits if an internal programming cycle is in progress.

The device that acknowledges has to pull down the SDA line during the Acknowledge clock pulse in such a way that the SDA line is stable low during the high period of the acknowledge related clock pulse. Of course, setup and hold times must be taken into account. A master must signal an end of data to the slave by not generating an Acknowledge bit on the last byte that has been clocked out of the slave. In this case, the slave must leave the data line high to enable the master to generate the Stop condition (Figure 4-2).

FIGURE 4-1: DATA TRANSFER SEQUENCE ON THE SERIAL BUS

FIGURE 4-2: ACKNOWLEDGE TIMING

Transmitter must release the SDA line at this point allowing the Receiver to pull the SDA line low to acknowledge the previous eight bits of data.

Receiver must release the SDA line at this point so the Transmitter can continue sending data.
5.0 DEVICE ADDRESSING

After generating a Start condition, the bus master transmits a control byte consisting of a slave address and a Read/Write bit that indicates what type of operation is to be performed. The slave address for the 24XX00 consists of a 4-bit device code '1010' followed by three "don't care" bits.

The last bit of the control byte determines the operation to be performed. When set to a one a read operation is selected, and when set to a zero a write operation is selected (Figure 5-1). The 24XX00 monitors the bus for its corresponding slave address all the time. It generates an Acknowledge bit if the slave address was true and it is not in a programming mode.

FIGURE 5-1: CONTROL BYTE FORMAT

6.0 WRITE OPERATIONS

6.1 Byte Write

Following the Start signal from the master, the device code (4 bits), the "don't care" bits (3 bits), and the R/W bit (which is a logic low) are placed onto the bus by the master transmitter. This indicates to the addressed slave receiver that a byte with a word address will follow after it has generated an Acknowledge bit during the ninth clock cycle. Therefore, the next byte transmitted by the master is the word address and will be written into the Address Pointer of the 24XX00. Only the lower four address bits are used by the device, and the upper four bits are "don't cares." The 24XX00 will acknowledge the address byte and the master device will then transmit the data word to be written into the addressed memory location. The 24XX00 acknowledges again and the master generates a Stop condition. This initiates the internal write cycle, and during this time the 24XX00 will not generate Acknowledge signals (Figure 7-2). After a byte Write command, the internal address counter will not be incremented and will point to the same address location that was just written. If a Stop bit is transmitted to the device at any point in the Write command sequence before the entire sequence is complete, then the command will abort and no data will be written. If more than 8 data bits are transmitted before the Stop bit is sent, then the device will clear the previously loaded byte and begin loading the data buffer again. If more than one data byte is transmitted to the device and a Stop bit is sent before a full eight data bits have been transmitted, then the Write command will abort and no data will be written. The 24XX00 employs a Vcc threshold detector circuit which disables the internal erase/write logic if the Vcc is below 1.5V (24AA00 and 24LC00) or 3.8V (24C00) at nominal conditions.
7.0 ACKNOWLEDGE POLLING

Since the device will not acknowledge during a write cycle, this can be used to determine when the cycle is complete (this feature can be used to maximize bus throughput). Once the Stop condition for a Write command has been issued from the master, the device initiates the internally timed write cycle. ACK polling can be initiated immediately. This involves the master sending a Start condition followed by the control byte for a Write command (R/W = 0). If the device is still busy with the write cycle, then no ACK will be returned. If no ACK is returned, then the Start bit and control byte must be re-sent. If the cycle is complete, then the device will return the ACK and the master can then proceed with the next Read or Write command. See Figure 7-1 for flow diagram.

FIGURE 7-1: ACKNOWLEDGE POLLING FLOW

Send Write Command

Send Stop Condition to Initiate Write Cycle

Send Start

Send Control Byte with R/W = 0

Did Device Acknowledge (ACK = 0)?

No

Yes

Next Operation

FIGURE 7-2: BYTE WRITE

BUS ACTIVITY MASTER

START

S

Control Byte

0 1 0 x x x 0

Word Address

x x x

Data

STOP

SDA LINE

ACK

ACK

ACK

BUS ACTIVITY

x = “don’t care” bit
8.0 READ OPERATIONS

Read operations are initiated in the same way as write operations with the exception that the R/W bit of the slave address is set to one. There are three basic types of read operations: current address read, random read and sequential read.

8.1 Current Address Read

The 24XX00 contains an address counter that maintains the address of the last word accessed, internally incremented by one. Therefore, if the previous read access was to address n, the next current address read operation would access data from address n + 1. Upon receipt of the slave address with the R/W bit set to one, the device issues an acknowledge and transmits the eight-bit data word. The master will not acknowledge the transfer, but does generate a Stop condition and the device discontinues transmission (Figure 8-1).

8.2 Random Read

Random read operations allow the master to access any memory location in a random manner. To perform this type of read operation, first the word address must be set. This is done by sending the word address to the device as part of a write operation. After the word address is sent, the master generates a Start condition following the acknowledge. This terminates the write operation, but not before the internal Address Pointer is set. Then the master issues the control byte again, but with the R/W bit set to a one. The 24XX00 will then issue an acknowledge and transmits the eight bit data word. The master will not acknowledge the transfer, but does generate a Stop condition and the device discontinues transmission (Figure 8-2). After this command, the internal address counter will point to the address location following the one that was just read.

8.3 Sequential Read

Sequential reads are initiated in the same way as a random read except that after the device transmits the first data byte, the master issues an acknowledge as opposed to a Stop condition in a random read. This directs the device to transmit the next sequentially addressed 8-bit word (Figure 8-3).

To provide sequential reads the 24XX00 contains an internal Address Pointer which is incremented by one at the completion of each read operation. This Address Pointer allows the entire memory contents to be serially read during one operation.
FIGURE 8-2: RANDOM READ

```
<table>
<thead>
<tr>
<th>BUS ACTIVITY</th>
<th>START</th>
<th>Control Byte</th>
<th>Data (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MASTER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SDA LINE</td>
<td>S 1 0</td>
<td>1 0 x x x 0</td>
<td></td>
</tr>
<tr>
<td>BUS ACTIVITY</td>
<td>ACK</td>
<td>ACK</td>
<td>ACK</td>
</tr>
<tr>
<td>x = “don’t care” bit</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

FIGURE 8-3: SEQUENTIAL READ

```
<table>
<thead>
<tr>
<th>BUS ACTIVITY</th>
<th>Control Byte</th>
<th>Data n</th>
<th>Data n + 1</th>
<th>Data n + 2</th>
<th>Data n + x</th>
</tr>
</thead>
<tbody>
<tr>
<td>MASTER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SDA LINE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BUS ACTIVITY</td>
<td>ACK</td>
<td>ACK</td>
<td>ACK</td>
<td>ACK</td>
<td>ACK</td>
</tr>
</tbody>
</table>
```

© 2007 Microchip Technology Inc.
9.0 PACKAGING INFORMATION

9.1 Package Marking Information

8-Lead PDIP (300 mil)

Example:

```
XXXXXXXX
T/XXXNNN
YYWW
```

```
24LC00
I/P e3 13F
0527
```

8-Lead SOIC (3.90 mm)

Example:

```
XXXXXXXXXT
XXXXYYWW
NNN
```

```
24LC00I
SN e3 0527
13F
```

8-Lead TSSOP

Example:

```
XXXX
TYWW
NNN
```

```
4L00
I527
13F
```

8-Lead 2x3 DFN

Example:

```
XXX
YWW
NN
```

```
204
527
13
```

5-Lead SOT-23

Example:

```
XXNN
```

```
M03F
```
1st Line Marking Codes

<table>
<thead>
<tr>
<th>Part Number</th>
<th>TSSOP</th>
<th>SOT-23</th>
<th>DFN</th>
</tr>
</thead>
<tbody>
<tr>
<td>24AA00</td>
<td>4A00</td>
<td>B0NN</td>
<td>—</td>
</tr>
<tr>
<td>24LC00</td>
<td>4L00</td>
<td>M0NN</td>
<td>—</td>
</tr>
<tr>
<td>24C00</td>
<td>4C00</td>
<td>D0NN</td>
<td>E0NN</td>
</tr>
</tbody>
</table>

Note: NN = Alphanumeric traceability code

Legend:
- XX...X Part number or part number code
- T Temperature (I, E)
- Y Year code (last digit of calendar year)
- YY Year code (last 2 digits of calendar year)
- WW Week code (week of January 1 is week ‘01’)
- NNN Alphanumeric traceability code (2 characters for small packages)
- \(\text{e}3\) Pb-free JEDEC designator for Matte Tin (Sn)

Note:
For very small packages with no room for the Pb-free JEDEC designator \(\text{e}3\), the marking will only appear on the outer carton or reel label.

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.

Note: Please visit www.microchip.com/Pbfree for the latest information on Pb-free conversion.

Standard OTP marking consists of Microchip part number, year code, week code, and traceability code.
8-Lead Plastic Dual In-Line (P or PA) – 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

<table>
<thead>
<tr>
<th>Units</th>
<th>Dimension Limits</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Pins</td>
<td>N</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pitch</td>
<td>e</td>
<td>.100 BSC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Top to Seating Plane</td>
<td>A</td>
<td>–</td>
<td>–</td>
<td>.210</td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>A2</td>
<td>.115</td>
<td>.130</td>
<td>.195</td>
</tr>
<tr>
<td>Base to Seating Plane</td>
<td>A1</td>
<td>.015</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Shoulder to Shoulder Width</td>
<td>E</td>
<td>.290</td>
<td>.310</td>
<td>.325</td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>E1</td>
<td>.240</td>
<td>.250</td>
<td>.280</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
<td>.348</td>
<td>.365</td>
<td>.400</td>
</tr>
<tr>
<td>Tip to Seating Plane</td>
<td>L</td>
<td>.115</td>
<td>.130</td>
<td>.150</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
<td>.008</td>
<td>.010</td>
<td>.015</td>
</tr>
<tr>
<td>Upper Lead Width</td>
<td>b1</td>
<td>.040</td>
<td>.060</td>
<td>.070</td>
</tr>
<tr>
<td>Lower Lead Width</td>
<td>b</td>
<td>.014</td>
<td>.018</td>
<td>.022</td>
</tr>
<tr>
<td>Overall Row Spacing §</td>
<td>eB</td>
<td>–</td>
<td>–</td>
<td>.430</td>
</tr>
</tbody>
</table>

Notes:
1. Pin 1 visual index feature may vary, but must be located with the hatched area.
2. § Significant Characteristic.
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
4. Dimensioning and tolerancing per ASME Y14.5M.
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
8-Lead Plastic Small Outline (SN or OA) – Narrow, 3.90 mm Body [SOIC]

Notes:
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. § Significant Characteristic.
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.
4. Dimensioning and tolerancing per ASME Y14.5M.

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Limits</td>
<td>MIN</td>
</tr>
<tr>
<td>Number of Pins</td>
<td>N</td>
</tr>
<tr>
<td>Pitch</td>
<td>e</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>A2</td>
</tr>
<tr>
<td>Standoff §</td>
<td>A1</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>E1</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
</tr>
<tr>
<td>Chamfer (optional)</td>
<td>h</td>
</tr>
<tr>
<td>Foot Length</td>
<td>L</td>
</tr>
<tr>
<td>Footprint</td>
<td>L1</td>
</tr>
<tr>
<td>Foot Angle</td>
<td>φ</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
</tr>
<tr>
<td>Lead Width</td>
<td>b</td>
</tr>
<tr>
<td>Mold Draft Angle Top</td>
<td>α</td>
</tr>
<tr>
<td>Mold Draft Angle Bottom</td>
<td>β</td>
</tr>
</tbody>
</table>

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
REF: Reference Dimension, usually without tolerance, for information purposes only.
8-Lead Plastic Thin Shrink Small Outline (ST) – 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Limits</td>
<td>MIN</td>
</tr>
<tr>
<td>Number of Pins</td>
<td>N</td>
</tr>
<tr>
<td>Pitch</td>
<td>e</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>A2</td>
</tr>
<tr>
<td>Standoff</td>
<td>A1</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>E1</td>
</tr>
<tr>
<td>Molded Package Length</td>
<td>D</td>
</tr>
<tr>
<td>Foot Length</td>
<td>L</td>
</tr>
<tr>
<td>Footprint</td>
<td>L1</td>
</tr>
<tr>
<td>Foot Angle</td>
<td>φ</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
</tr>
<tr>
<td>Lead Width</td>
<td>b</td>
</tr>
</tbody>
</table>

Notes:
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.
3. Dimensioning and tolerancing per ASME Y14.5M.
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-086B
8-Lead Plastic Dual Flat, No Lead Package (MC) – 2x3x0.9 mm Body [DFN]

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Package may have one or more exposed tie bars at ends.
3. Package is saw singulated.
4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
<th>Dimension Limits</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Pins</td>
<td>N</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pitch</td>
<td>e</td>
<td>0.50 BSC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
<td>0.80</td>
<td>0.90</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Standoff</td>
<td>A1</td>
<td>0.00</td>
<td>0.02</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>Contact Thickness</td>
<td>A3</td>
<td>0.20 REF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
<td>2.00 BSC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
<td>3.00 BSC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exposed Pad Length</td>
<td>D2</td>
<td>1.30</td>
<td>–</td>
<td>1.75</td>
<td></td>
</tr>
<tr>
<td>Exposed Pad Width</td>
<td>E2</td>
<td>1.50</td>
<td>–</td>
<td>1.90</td>
<td></td>
</tr>
<tr>
<td>Contact Width</td>
<td>b</td>
<td>0.18</td>
<td>0.25</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>Contact Length</td>
<td>L</td>
<td>0.30</td>
<td>0.40</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>Contact-to-Exposed Pad</td>
<td>K</td>
<td>0.20</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
</tbody>
</table>

For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging
5-Lead Plastic Small Outline Transistor (OT or CT) [SOT-23]

Notes:
1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.127 mm per side.
2. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Limits</td>
<td>MIN</td>
</tr>
<tr>
<td>Number of Pins</td>
<td>N</td>
</tr>
<tr>
<td>Lead Pitch</td>
<td>e</td>
</tr>
<tr>
<td>Outside Lead Pitch</td>
<td>e1</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>A2</td>
</tr>
<tr>
<td>Standoff</td>
<td>A1</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>E1</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
</tr>
<tr>
<td>Foot Length</td>
<td>L</td>
</tr>
<tr>
<td>Footprint</td>
<td>L1</td>
</tr>
<tr>
<td>Foot Angle</td>
<td>φ</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
</tr>
<tr>
<td>Lead Width</td>
<td>b</td>
</tr>
</tbody>
</table>

Microchip Technology Drawing C04-091B
APPENDIX A: REVISION HISTORY

Revision E
Added DFN package.

Revision F (02/2007)
Revised Device Selection Table; Features Section;
Changed 1.8V to 1.7V; Revised Tables 1-1, 1-2;
Revised Product ID System; Replaced Package
Drawings; Replaced On-line Support page.

Revision G (03/2007)
Replaced Package Drawings (Rev. AM).
THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** – Data sheets and errata, application notes and sample programs, design resources, user’s guides and hardware support documents, latest software releases and archived software
- **General Technical Support** – Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- **Business of Microchip** – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip’s customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com
READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

To: Technical Publications Manager Total Pages Sent ________
RE: Reader Response

From: Name __
 Company __
 Address _______________________________________
 City / State / ZIP / Country ___________________
 Telephone: (______) _________ - _________ FAX: (______) _________ - _________

Application (optional):

Would you like a reply? ___ Y ___ N

Device: 24AA00/24LC00/24C00 Literature Number: DS21178G

Questions:

1. What are the best features of this document? __

2. How does this document meet your hardware and software development needs? ____________________________

3. Do you find the organization of this document easy to follow? If not, why? ______________________________

4. What additions to the document do you think would enhance the structure and subject? __________________

5. What deletions from the document could be made without affecting the overall usefulness? ______________

6. Is there any incorrect or misleading information (what and where)? _________________________________

7. How would you improve this document? __
PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>Device</th>
<th>Temperature Range</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24AA00:</td>
<td>1.7V, 128 bit I2C™ Serial EEPROM</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>24AA00T:</td>
<td>1.7V, 128 bit I2C Serial EEPROM (Tape and Reel)</td>
<td>SN</td>
</tr>
<tr>
<td></td>
<td>24LC00:</td>
<td>2.5V, 128 bit I2C Serial EEPROM</td>
<td>ST</td>
</tr>
<tr>
<td></td>
<td>24LC00T:</td>
<td>2.5V, 128 bit I2C™ Serial EEPROM (Tape and Reel)</td>
<td>OT</td>
</tr>
<tr>
<td></td>
<td>24C00:</td>
<td>5V, 128 bit I2C™ Serial EEPROM</td>
<td>MC</td>
</tr>
<tr>
<td></td>
<td>24C00T:</td>
<td>5V, 128 bit I2C™ Serial EEPROM (Tape and Reel)</td>
<td></td>
</tr>
</tbody>
</table>

Temperature Range:
- I = -40°C to +85°C
- E = -40°C to +125°C

Package:
- P = Plastic DIP (300 mil body), 8-lead
- SN = Plastic SOIC (3.90 mm body), 8-lead
- ST = Plastic TSSOP (4.4 mm), 8-lead
- OT = SOT-23, 5-lead (Tape and Reel only)
- MC = 2x3 DFN, 8-lead

Examples:

a) 24AA00-I/P: Industrial Temperature, 1.8V PDIP package
b) 24AA00-I/SN: Industrial Temperature, 1.8V SOIC package
c) 24AA00T-I/OT: Industrial Temperature, 1.8V SOT-23 package, tape and reel
d) 24LC00-I/P: Industrial Temperature, 2.5V PDIP package
e) 24C00-E/SN: Extended Temperature, 5V SOIC package
f) 24LC00T-I/OT: Industrial Temperature, 2.5V SOT-23 package, tape and reel
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Trademarks
The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELoQ, KEELoQ logo, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC, and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.
AmpLab, FilterLab, Linear Active Thermistor, Migratable Memory, MXDEV, MXLAB, PS logo, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.
Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexLAB, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, rLAB, rfPICDEM, Select Mode, Smart Serial, SmartTel, Total Endurance, UNI/O, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.
SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.
All other trademarks mentioned herein are property of their respective companies.
© 2007, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.
Printed on recycled paper.

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona, Gresham, Oregon and Mountain View, California. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELoQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
AMERICAS

Corporate Office
2355 West Chandler Blvd, Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260

Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445

Toronto
Mississauga, Ontario, Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431

Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Fuzhou
Tel: 86-591-8750-3506
Fax: 86-591-8750-3521

China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760

China - Shunde
Tel: 86-757-2839-5507
Fax: 86-757-2839-5571

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xian
Tel: 86-29-8833-7250
Fax: 86-29-8833-7256

ASIA/PACIFIC

India - Bangalore
Tel: 91-80-4182-8400
Fax: 91-80-4182-8422

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513

Japan - Yokohama
Tel: 81-45-471-6166
Fax: 81-45-471-6122

Korea - Gumi
Tel: 82-54-473-4301
Fax: 82-54-473-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Penang
Tel: 60-4-646-8870
Fax: 60-4-646-5086

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-572-9526
Fax: 886-3-572-6459

Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803

Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

12/08/06