Features

- Single supply with operation down to 2.5V
- Completely implements DDC1™/DDC2™ interface for monitor identification, including recovery to DDC1
- Improved noise immunity
- Separate high speed 2-wire bus for microcontroller access to 4K-bit Serial EEPROM
- Low-power CMOS technology
- 2 mA active current typical
- 20 µA standby current typical at 5.5V
- Dual 2-wire serial interface bus, I²C™ compatible
- Hardware write-protect for Microcontroller Access Port
- Self-timed write cycle (including auto-erase)
- Page write buffer for up to 8 bytes (DDC port) or 16 bytes (4K Port)
- 100 kHz (2.5V) and 400 kHz (5V) compatibility
- 1,000,000 erase/write cycles
- Data retention > 40 years
- 8-pin PDIP package
- Available for extended temperature ranges
 - Commercial (C): 0°C to +70°C
 - Industrial (I): -40°C to +85°C

Description

The Microchip Technology Inc. 24LC41A is a dual port 128 x 8 and 512 x 8-bit Electrically Erasable PROM (EEPROM). This device is designed for use in applications requiring storage and serial transmission of configuration and control information. Three modes of operation have been implemented:

- Transmit-only mode for the DDC Monitor Port
- Bidirectional mode for the DDC Monitor Port
- Bidirectional, industry-standard 2-wire bus for the 4K Microcontroller Access Port

Upon power-up, the DDC Monitor Port will be in the Transmit-only mode, repeatedly sending a serial bit stream of the entire memory array contents, clocked by the VCLK pin. A valid high-to-low transition on the DSCL pin will cause the device to enter the transition mode, an look for a valid control byte on the I²C bus. If it detects a valid control byte from the master, it will switch to Bidirectional mode, with byte selectable read/write capability of the memory array using DSCL. If no control byte is received, the device will revert to the Transmit-only mode after it received 128 consecutive VCLK Package Type pulses while the DSCL pin is idle.

The 4K-bit microcontroller port is completely independent of the DDC port, therefore, it can be accessed continuously by a microcontroller without interrupting DDC transmission activity. The 24LC41A is available in a standard 8-pin PDIP package in both commercial and industrial temperature ranges.

Package Type

<table>
<thead>
<tr>
<th>Pin</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSCL</td>
<td>Serial Clock for DDC Bidirectional mode (DDC2)</td>
</tr>
<tr>
<td>DSDA</td>
<td>Serial Address and Data I/O (DDC Bus)</td>
</tr>
<tr>
<td>VCLK</td>
<td>Serial Clock for DDC Transmit-only mode (DDC1)</td>
</tr>
<tr>
<td>MSCL</td>
<td>Serial clock for 4K-bit MCU port</td>
</tr>
<tr>
<td>MSDA</td>
<td>Serial Address and Data I/O for 4K-bit MCU port</td>
</tr>
<tr>
<td>MWP</td>
<td>Hardware write-protect for Microcontroller Access Port</td>
</tr>
<tr>
<td>Vss</td>
<td>Ground</td>
</tr>
<tr>
<td>Vcc</td>
<td>+2.5V to +5.5V power supply</td>
</tr>
</tbody>
</table>

DDC is a trademark of Video Electronics Standards Association.
I²C is a trademark of Philips Corporation.
1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings†

- **Vcc**: 6.5V
- All inputs and outputs w.r.t. Vss: -0.6V to Vcc +1.0V
- Storage temperature: -65°C to +150°C
- Ambient temperature with power applied: -65°C to +125°C
- ESD protection on all pins: ≥ 4 kV

† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 1-1: DC CHARACTERISTICS

<table>
<thead>
<tr>
<th>DC CHARACTERISTICS</th>
<th>Vcc = +2.5V to 5.5V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial (C): Ta = 0°C to +70°C</td>
<td></td>
</tr>
<tr>
<td>Industrial (I): Ta = -40°C to +85°C</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSCL, DSDA, MSCL & MSDA pins:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High-level input voltage</td>
<td>VH</td>
<td>.7 Vcc</td>
<td>—</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Low-level input voltage</td>
<td>VL</td>
<td>—</td>
<td>.3 Vcc</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Input levels on VCLK pin:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High-level input voltage</td>
<td>VH</td>
<td>2.0</td>
<td>.8</td>
<td>V</td>
<td>Vcc ≥ 2.7V (Note)</td>
</tr>
<tr>
<td>Low-level input voltage</td>
<td>VL</td>
<td>—</td>
<td>.2 Vcc</td>
<td>V</td>
<td>Vcc < 2.7V (Note)</td>
</tr>
<tr>
<td>Hysteresis of Schmitt Trigger inputs</td>
<td>VHYS</td>
<td>.05 Vcc</td>
<td>—</td>
<td>V</td>
<td>(Note)</td>
</tr>
<tr>
<td>Low-level output voltage</td>
<td>VOL1</td>
<td>—</td>
<td>.4</td>
<td>V</td>
<td>IOL = 3 mA, Vcc = 2.5V (Note)</td>
</tr>
<tr>
<td>Low-level output voltage</td>
<td>VOL2</td>
<td>—</td>
<td>.6</td>
<td>V</td>
<td>IOL = 6 mA, Vcc = 2.5V</td>
</tr>
<tr>
<td>Input leakage current</td>
<td>IIL</td>
<td>—</td>
<td>±1</td>
<td>μA</td>
<td>VIN = 1V to Vcc</td>
</tr>
<tr>
<td>Output leakage current</td>
<td>IOL</td>
<td>—</td>
<td>±1</td>
<td>μA</td>
<td>VOUT = 1V to Vcc</td>
</tr>
<tr>
<td>Pin capacitance (all inputs/outputs)</td>
<td>CIN, COUT</td>
<td>—</td>
<td>10</td>
<td>pF</td>
<td>Vcc = 5.0V (Note), Ta = 25°C, FCLK = 1 MHz</td>
</tr>
<tr>
<td>Operating current</td>
<td>ICC Write</td>
<td>—</td>
<td>3</td>
<td>mA</td>
<td>Vcc = 5.5V, DSCL or MSCL = 400 kHz</td>
</tr>
<tr>
<td></td>
<td>ICC Read</td>
<td>—</td>
<td>1</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Standby current</td>
<td>ICCS</td>
<td>—</td>
<td>60</td>
<td>μA</td>
<td>Vcc = 3.0V, DSDA or MSDA = DSCL or MSCL = Vcc</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>200</td>
<td>μA</td>
<td>Vcc = 5.5V, DSDA or MSDA = DSCL or MSCL = VccVCLK = Vss</td>
</tr>
</tbody>
</table>

Note: This parameter is periodically sampled and not 100% tested.
TABLE 1-2: AC CHARACTERISTICS (DDC MONITOR AND MICROCONTROLLER ACCESS PORTS)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Standard Mode</th>
<th>Vcc = 4.5 - 5.5V Fast Mode</th>
<th>Units</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min</td>
<td>Max</td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>Clock frequency (DSCL and MSCL)</td>
<td>FCLK</td>
<td></td>
<td>100</td>
<td></td>
<td>400</td>
</tr>
<tr>
<td>Clock high time (DSCL and MSCL)</td>
<td>THIGH</td>
<td>4000</td>
<td></td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>Clock low time (DSCL and MSCL)</td>
<td>TLOW</td>
<td>4700</td>
<td></td>
<td>1300</td>
<td></td>
</tr>
<tr>
<td>DSCL, DSDA, MSCL & MSDA rise time</td>
<td>TR</td>
<td></td>
<td>1000</td>
<td></td>
<td>300</td>
</tr>
<tr>
<td>DSCL, DSDA, MSCL & MSDA fall time</td>
<td>TF</td>
<td></td>
<td>300</td>
<td></td>
<td>300</td>
</tr>
<tr>
<td>Start condition hold time</td>
<td>THD:STA</td>
<td>4000</td>
<td></td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>Start condition setup time</td>
<td>TSU:STA</td>
<td>4700</td>
<td></td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>Data input hold time</td>
<td>THD:DAT</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Data input setup time</td>
<td>TSU:DAT</td>
<td>250</td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Stop condition setup time</td>
<td>TSU:STO</td>
<td>4000</td>
<td></td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>Output valid from clock</td>
<td>TAA</td>
<td></td>
<td>3500</td>
<td></td>
<td>900</td>
</tr>
<tr>
<td>Bus free time</td>
<td>TBUF</td>
<td>4700</td>
<td></td>
<td>1300</td>
<td></td>
</tr>
<tr>
<td>Output fall time from ViH min to Vl max</td>
<td>TOF</td>
<td></td>
<td>250</td>
<td></td>
<td>20 + .1 Gb 250 ns</td>
</tr>
<tr>
<td>Input filter spike suppression (DSCL, DSDA, MSCL & MSDA pins)</td>
<td>TSP</td>
<td></td>
<td>50</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>Write cycle time</td>
<td>TWR</td>
<td></td>
<td>10</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Endurance</td>
<td></td>
<td>1M</td>
<td></td>
<td>1M</td>
<td></td>
</tr>
</tbody>
</table>

DDC Monitor Port Transmit-only mode Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min</th>
<th>Max</th>
<th>units</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output valid from VCLK</td>
<td>TVAA</td>
<td>2000</td>
<td></td>
<td>1000</td>
<td>ns</td>
</tr>
<tr>
<td>VCLK high time</td>
<td>TVHIGH</td>
<td>4000</td>
<td></td>
<td>600</td>
<td>ns</td>
</tr>
<tr>
<td>VCLK low time</td>
<td>TVLOW</td>
<td>4700</td>
<td></td>
<td>1300</td>
<td>ns</td>
</tr>
<tr>
<td>VCLK setup time</td>
<td>TVHST</td>
<td>0</td>
<td></td>
<td>0</td>
<td>ns</td>
</tr>
<tr>
<td>VCLK hold time</td>
<td>TSPVL</td>
<td>4000</td>
<td></td>
<td>600</td>
<td>ns</td>
</tr>
<tr>
<td>Mode transition time</td>
<td>TVHZ</td>
<td></td>
<td>500</td>
<td></td>
<td>500 ns</td>
</tr>
<tr>
<td>Transmit-only power-up time</td>
<td>TVPU</td>
<td>0</td>
<td></td>
<td>0</td>
<td>ns</td>
</tr>
<tr>
<td>Input filter spike suppression (VCLK pin)</td>
<td>TSPV</td>
<td></td>
<td>100</td>
<td></td>
<td>100 ns</td>
</tr>
</tbody>
</table>

Note 1: Not 100% tested. Cb = total capacitance of one bus line in pF.

2. As a transmitter, the device must provide an internal minimum delay time to bridge the undefined region (minimum 300 ns) of the falling edge of DSCL or MSCL to avoid unintended generation of Start or Stop conditions.

3. The combined TSP and VHYS specifications are due to new Schmitt Trigger inputs which provide improved noise and spike suppression. This eliminates the need for a T1 specification for standard operation.

4. This parameter is not tested but ensured by characterization. For endurance estimates in a specific application, please consult the Total Endurance™ Model which can be obtained at www.microchip.com.
2.0 FUNCTIONAL DESCRIPTION

2.1 DDC Monitor Port

The DDC Monitor Port operates in two modes, the Transmit-only mode and the Bidirectional mode. There is a separate 2-wire protocol to support each mode, each having a separate clock input and sharing a common data line (DSDA). The device enters the Transmit-only mode upon power-up. In this mode, the device transmits data bits on the DSDA pin in response to a clock signal on the VCLK pin. The device will remain in this mode until a valid high-to-low transition is placed on the DSCL input. When a valid transition on DSCL is recognized, the device will switch into the Bidirectional mode and look for its control byte to be sent by the master. If it detects its control byte, it will stay in the Bidirectional mode. Otherwise, it will revert to the Transmit-only mode after it sees 128 VCLK pulses.

2.1.1 TRANSMIT-ONLY MODE

The device will power-up in the Transmit-only mode at address 00H. This mode supports a unidirectional 2-wire protocol for transmission of the contents of the memory array.

This device requires that it be initialized prior to valid data being sent in the Transmit-only mode (see Section 2.1.2 “Initialization Procedure”). In this mode, data is transmitted on the DSDA pin in 8-bit bytes, each followed by a ninth, null bit (see Figure 2-1). The clock source for the Transmit-only mode is provided on the VCLK pin, and a data bit is output on the rising edge on this pin. The eight bits in each byte are transmitted by Most Significant bit first. Each byte within the memory array will be output in sequence. When the last byte in the memory array is transmitted, the output will wrap around to the first location and continue. The Bidirectional mode Clock (DSCL) pin must be held high for the device to remain in the Transmit-only mode.

2.1.2 INITIALIZATION PROCEDURE

After Vcc has stabilized, the device will be in the Transmit-only mode. Nine clock cycles on the VCLK pin must be given to the device for it to perform internal synchronization. During this period, the DSDA pin will be in a high-impedance state. On the rising edge of the tenth clock cycle, the device will output the first valid data bit which will be the Most Significant bit of a byte. The device will power-up at an indeterminate byte address (Figure 2-2).

FIGURE 2-1: TRANSMIT-ONLY MODE

FIGURE 2-2: DEVICE INITIALIZATION
2.1.3 BIDIRECTIONAL MODE

Before the 24LC41A can be switched into the Bidirectional mode (Figure 2-4), it must enter the transition mode, which is done by applying a valid high-to-low transition on the Bidirectional mode Clock (DSCL). As soon it enters the transition mode, it looks for a control byte 1010 000X on the I2C™ bus, and starts to count pulses on VCLK. Any high-to-low transition on the DSCL line will reset the count. If it sees a pulse count of 128 on VCLK while the DSCL line is idle, it will revert back to the Transmit-only mode, and transmit its contents starting with the Most Significant bit in address 00h. However, if it detects the control byte on the I2C bus, (Figure 2-3) it will switch to the in the Bidirectional mode. Once the device has made the transition to the Bidirectional mode, the only way to switch the device back to the Transmit-only mode is to remove power from the device. The mode transition process is shown in detail in Figure 2-4.

Once the device has switched into the Bidirectional mode, the VCLK input is disregarded, with the exception that a logic high level is required to enable write capability. This mode supports a two-wire bidirectional data transmission protocol (I2C). In this protocol, a device that sends data on the bus is defined to be the transmitter, and a device that receives data from the bus is defined to be the receiver. The bus must be controlled by a master device that generates the Bidirectional mode Clock (DSCL), controls access to the bus and generates the Start and Stop conditions, while the monitor port acts as the slave. Both master and slave can operate as transmitter or receiver, but the master device determines which mode is activated.

In the Bidirectional mode, the monitor port only responds to commands for device 1010 000X.

2.2 Microcontroller Access Port

The Microcontroller Access Port supports a bidirectional 2-wire bus and data transmission protocol. A device that sends data onto the bus is defined as transmitter, and a device receiving data as receiver. The bus has to be controlled by a master device which generates the serial clock (MSCL), controls the bus access, and generates the Start and Stop conditions, while the Microcontroller Access Port works as slave. Both master and slave can operate as transmitter or receiver, but the master device determines which mode is activated.

FIGURE 2-3: SUCCESSFUL MODE TRANSITION TO BIDIRECTIONAL MODE

<table>
<thead>
<tr>
<th>MODE</th>
<th>Transition mode with possibility to return to Transmit-only mode</th>
<th>Bidirectional permanently</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SDA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VCLK</td>
<td>VCLK count = 1 2 n 0 0 0 0 0 0 0 0 0 ACK</td>
<td></td>
</tr>
<tr>
<td></td>
<td>n < 128</td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 2-4: MODE TRANSITION WITH RECOVERY TO TRANSMIT-ONLY MODE

<table>
<thead>
<tr>
<th>MODE</th>
<th>Transmit-only</th>
<th>Bidirectional</th>
<th>Recovery to Transmit-only mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCL</td>
<td></td>
<td>TVHZ</td>
<td></td>
</tr>
<tr>
<td>SDA</td>
<td></td>
<td>(MSB of data in 00h)</td>
<td>Bit8</td>
</tr>
<tr>
<td>VCLK</td>
<td>VCLK count = 1 2 3 4 127 128</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 2-5: DISPLAY OPERATION PER DDC STANDARD PROPOSED BY VESA

The 24LC41A was designed to comply to the portion of flowchart inside dash box.

Communication is idle

- Is Vsync present?
 - No
 - Yes
 - Send EDID continuously using Vsync as clock
 - High-to-low transition on SCL?
 - No
 - Yes
 - Stop sending EDID. Switch to DDC2 mode.

- Display has optional transition state?
 - No
 - Yes
 - Set Vsync counter = 0 or start timer.
 - Change on SCL, SDA or VCLK lines?
 - No
 - Yes
 - High-to-low transition on SCL?
 - No
 - Yes
 - Reset Vsync counter = 0

- Valid DDC2 address received?
 - No
 - Yes
 - DDC2 communication idle. Display waiting for address byte.
 - DDC2B address received?
 - No
 - Yes
 - Is display Access.bus TM capable?
 - No
 - Yes
 - Valid Access.bus address?
 - No
 - Yes
 - See Access.bus specification to determine correct procedure.

Note 1: The base flowchart is copyright © 1993, 1994, 1995 Video Electronic Standard Association (VESA) from VESA's Display Data Channel (DDC) Standard Proposal ver. 2p rev. 0, used by permission of VESA.

2: The dash box and text “The 24LC41A and ... inside dash box.” are added by Microchip Technology Inc.

3: Vsync signal is normally used to derive a signal for VCLK pin on the 24LC41A.
3.0 BIDIRECTIONAL BUS CHARACTERISTICS

Characteristics for the Bidirectional bus are identical for both the DDC Monitor Port (in Bidirectional mode) and the Microcontroller Access Port. The following **bus protocol** has been defined:

- Data transfer may be initiated only when the bus is not busy.
- During data transfer, the data line must remain stable whenever the clock line is high. Changes in the data line while the clock line is high will be interpreted as a Start or Stop condition.

Accordingly, the following bus conditions have been defined (Figure 3-1).

3.1 Bus not Busy (A)
Both data and clock lines remain high.

3.2 Start Data Transfer (B)
A high-to-low transition of the DSDA or MSDA line while the clock (DSCL or MSCL) is high determines a Start condition. All commands must be preceded by a Start condition.

3.3 Stop Data Transfer (C)
A low-to-high transition of the DSDA or MSDA line while the clock (DSCL or MSCL) is high determines a Stop condition. All operations must be ended with a Stop condition.

3.4 Data Valid (D)
The state of the data line represents valid data when, after a Start condition, the data line is stable for the duration of the high period of the clock signal.

The data on the line must be changed during the low period of the clock signal. There is one clock pulse per bit of data.

Each data transfer is initiated with a Start condition and terminated with a Stop condition. The number of the data bytes transferred between the Start and Stop conditions is determined by the master device and is theoretically unlimited, although only the last eight will be stored when doing a write operation. When an overwrite does occur, it will replace data in a first in first out fashion.

3.5 Acknowledge
Each receiving device, when addressed, is obliged to generate an acknowledge after the reception of each byte. The master device must generate an extra clock pulse which is associated with this Acknowledge bit.

Note: The microcontroller access port and the DDC Monitor Port (in Bidirectional mode) will not generate any Acknowledge bits if an internal programming cycle is in progress.

The device that acknowledges has to pull down the DSDA or MSDA line during the Acknowledge clock pulse in such a way that the DSDA or MSDA line is stable low during the high period of the acknowledge related clock pulse. Of course, setup and hold times must be taken into account. A master must signal an end of data to the slave by not generating an Acknowledge bit on the last byte that has been clocked out of the slave. In this case, the slave must leave the data line high to enable the master to generate the Stop condition.

3.6 Device Addressing
A control byte is the first byte received following the Start condition from the master device. The first part of the control byte consists of a 4-bit control code. This control code is set as 1010 for both read and write operations and is the same for both the DDC Monitor Port and Microcontroller Access Port. The next three bits of the control byte are block select bits (B1, B2, and B0). All three of these bits are zero for the DDC Monitor Port. The B2 and B1 bits are don’t care bits for the Microcontroller Access Port, and the B0 bit is used by the Microcontroller Access Port to select which of the two 256 word blocks of memory are to be accessed (see Figure 3-4). The B0 bit is effectively the Most Significant bit of the word address. The last bit of the control byte defines the operation to be performed. When set to one, a read operation is selected; when set to zero, a write operation is selected. Following the Start condition, the device monitors the DSDA or MSDA bus checking the device type identifier being transmitted, upon a 1010 code the slave device outputs an Acknowledge signal on the SDA line. Depending on the state of the R/W bit, the device will select a read or a write operation. The DDC Monitor Port and Microcontroller Access Port can be accessed simultaneously because they are completely independent of one another.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Control Code</th>
<th>Block Select</th>
<th>R/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read</td>
<td>1010</td>
<td>B2B1B0</td>
<td>1</td>
</tr>
<tr>
<td>Write</td>
<td>1010</td>
<td>B2B1B0</td>
<td>0</td>
</tr>
</tbody>
</table>
FIGURE 3-1: DATA TRANSFER SEQUENCE ON THE SERIAL BUS

FIGURE 3-2: BUS TIMING START/STOP

FIGURE 3-3: BUS TIMING DATA

FIGURE 3-4: CONTROL BYTE ALLOCATION

B0, B1, and B2 are zeros for DDC Monitor Port. B1 and B2 are don't care bits for the Microcontroller Access Port, and B0 is used to select which of the two 256 word blocks of memory are to be accessed.
4.0 WRITE OPERATION

Write operations are identical for the DDC Monitor Port (when in Bidirectional mode) and the Microcontroller Access Port, with the exception of the VCLK and MWP pins noted in the next sections. Data can be written using either a Byte Write or Page Write command. Write commands for the DDC Monitor Port and the Microcontroller Access Port are completely independent of one another.

4.1 Byte Write

Following the Start signal from the master, the slave address (4-bits), the chip select bits (3-bits) and the R/W bit which is a logic low is placed onto the bus by the master transmitter. This indicates to the addressed slave receiver that a byte with a word address will follow after it has generated an Acknowledge bit during the ninth clock cycle. Therefore, the next byte transmitted by the master is the word address and will be written into the address pointer of the port. After receiving another Acknowledge signal from the port, the master device will transmit the data word to be written into the addressed memory location. The port acknowledges again and the master generates a Stop condition. This initiates the internal write cycle, and during this time, the port will not generate Acknowledge signals (see Figure 4-1).

For the DDC Monitor Port it is required that VCLK be held at a logic high level in order to program the device. This applies to byte write and page write operation. Note that VCLK can go low while the device is in its self-timed program operation and not affect programming. The MWP pin must be held high for the duration of the write protection.

4.2 Page Write

The write control byte, word address, and the first data byte are transmitted to the port in the same way as in a byte write. But, instead of generating a Stop condition, the master transmits up to eight data bytes to the DDC Monitor Port or 16 bytes to the Microcontroller Access Port, which are temporarily stored in the on-chip page buffer and will be written into the memory after the master has transmitted a Stop condition. After the receipt of each word, the three lower order address pointer bits are internally incremented by one. The higher order 5-bits of the word address remains constant. If the master should transmit more than eight words to the DDC Monitor Port or 16 words to the Microcontroller Access Port prior to generating the Stop condition, the address counter will roll over and the previously received data will be overwritten. As with the byte write operation, once the Stop condition is received an internal write cycle will begin (see Figure 4-2).

For the DDC Monitor Port, it is required that VCLK be held at a logic high level in order to program the device. This applies to byte write and page write operation. Note that VCLK can go low while the device is in its self-timed program operation and not affect programming. For the DDC Monitor Port, the MWP pin must be held high for the duration of the write cycle.

Note: Page write operations are limited to writing bytes within a single physical page, regardless of the number of bytes actually being written. Physical page boundaries start at addresses that are integer multiples of the page buffer size (or ‘page size’) and end at addresses that are integer multiples of [page size - 1]. If a Page Write command attempts to write across a physical page boundary, the result is that the data wraps around to the beginning of the current page (overwriting data previously stored there), instead of being written to the next page as might be expected. It is therefore necessary for the application software to prevent page write operations that would attempt to cross a page boundary.
FIGURE 4-1: BYTE WRITE

<table>
<thead>
<tr>
<th>BUS ACTIVITY</th>
<th>CONTROL BYTE</th>
<th>WORD ADDRESS</th>
<th>DATA</th>
<th>STOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>MASTER</td>
<td>S</td>
<td>A</td>
<td>A</td>
<td>P</td>
</tr>
<tr>
<td>SDA or MSDA LINE</td>
<td></td>
<td>K</td>
<td>K</td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 4-2: PAGE WRITE

<table>
<thead>
<tr>
<th>BUS ACTIVITY</th>
<th>CONTROL BYTE</th>
<th>WORD ADDRESS</th>
<th>DATA</th>
<th>DATA</th>
<th>DATA</th>
<th>DATA</th>
<th>STOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>MASTER</td>
<td>S</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>P</td>
</tr>
<tr>
<td>DSDA or MSDA LINE</td>
<td></td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 4-3: VCLK WRITE ENABLE TIMING

<table>
<thead>
<tr>
<th>SCL</th>
<th>SDA IN</th>
<th>VCLK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TSH:STA, TSW:STO, TVHST, TSPVL
5.0 ACKNOWLEDGE POLLING

Acknowledge polling can be done for both the DDC Monitor Port (when in Bidirectional mode) and the Microcontroller Access Port.

Since the port will not acknowledge during a write cycle, this can be used to determine when the cycle is complete (this feature can be used to maximize but throughput). Once the Stop condition for a Write command has been issued from the master, the device initiates the internally timed write cycle. ACK polling can be initiated immediately. This involves the master sending a Start condition followed by the control byte for a Write command (R/W\(=0\)). If the device is still busy with the write cycle, then no ACK will be returned. If the cycle is complete, then the device will return the ACK and the master can then proceed with the next Read or Write command. See Figure 5-1 for the flow diagram.
6.0 WRITE PROTECTION

6.1 DDC Monitor Port
When using the DDC Monitor Port in the Bidirectional mode, the VCLK pin operates as the write-protect control pin. Setting VCLK high allows normal write operations, while setting VCLK low prevents writing to any location in the array. Connecting the VCLK pin to Vss would allow the monitor port to operate as a serial ROM, although this configuration would prevent using the device in the Transmit-only mode.

7.0 READ OPERATION
Read operations are initiated in the same way as write operations with the exception that the R/W bit of the slave address is set to one. There are three basic types of read operations: current address read, random read and sequential read. These operations are identical for both the DDC Monitor Port (in Bidirectional mode) and the Microcontroller Access Port and are completely independent of one another.

7.1 Current Address Read
The port contains an address counter that maintains the address of the last word accessed, internally incremented by one. Therefore, if the previous access (either a read or write operation) was to address n, the next current address read operation would access data from address n + 1. Upon receipt of the slave address with R/W bit set to one, the port issues an acknowledge and transmits the 8-bit data word. The master will not acknowledge the transfer but does generate a Stop condition and the port discontinues transmission (Figure 7-1).

7.2 Random Read
Random read operations allow the master to access any memory location in a random manner. To perform this type of read operation, first the word address must be set. This is done by sending the word address to the port as part of a write operation. After the word address is sent, the master generates a Start condition following the acknowledge. This terminates the write operation, but not before the internal address pointer is set. The master then issues the control byte again, but with the R/W bit set to a one. The port then issues an acknowledge and transmits the 8-bit data word. The master will not acknowledge the transfer but does generate a Stop condition and the port discontinues transmission (see Figure 7-2).

7.3 Sequential Read
Sequential reads are initiated in the same way as a random read except that after the port transmits the first data byte, and the master issues an acknowledge as opposed to a Stop condition in a random read. This directs the port to transmit the next sequentially addressed 8-bit word (see Figure 7-3).
To provide sequential reads, the port contains an internal address pointer, which is incremented by one at the completion of each operation. This address pointer allows the entire memory contents to be serially read during one operation.
7.4 Noise Protection

Both the DDC Monitor Port and Microcontroller Access Port employ a VCC threshold detector circuit which disables the internal erase/write logic, if the VCC is below 1.5 volts at nominal conditions.

The VCLK, DSCL, MSCL, DSDA, and MSDA inputs have Schmitt Trigger and filter circuits which suppress noise spikes to assure proper device operation even on a noisy bus.

FIGURE 7-1: CURRENT ADDRESS READ

FIGURE 7-2: RANDOM READ

FIGURE 7-3: SEQUENTIAL READ
8.0 PIN DESCRIPTIONS

8.1 DSDA
This pin is used to transfer addresses and data into and out of the DDC Monitor Port, when the device is in the Bidirectional mode. In the Transmit-only mode, which only allows data to be read from the device, data is also transferred on the DSDA pin. This pin is an open drain terminal, therefore the DSDA bus requires a pull-up resistor to VCC (typical 10KΩ for 100 kHz, 2KΩ for 400 kHz).

For normal data transfer in the Bidirectional mode, DSDA is allowed to change only during DSCL or MSDA low. Changes during DSCL high are reserved for indicating the Start and Stop conditions.

8.2 DSCL
This pin is the clock input for the DDC Monitor Port while in the Bidirectional mode, and is used to synchronize data transfer to and from the device. It is also used as the signaling input to switch the device from the Transmit-only mode to the Bidirectional mode. It must remain high for the chip to continue operation in the Transmit-only mode.

8.3 VCLK
This pin is the clock input for the DDC Monitor Port while in the Transmit-only mode. In the Transmit-only mode, each bit is clocked out on the rising edge of this signal. In the Bidirectional mode, a high logic level is required on this pin to enable write capability.

8.4 MWP
This pin is used to write-protect the 4K memory array for the Microcontroller Access Port.

This pin must be connected to either VSS or VCC. If tied to VSS, normal memory operation is enabled (read/write the entire memory).
If tied to VCC, write operations are inhibited. The entire memory will be write-protected. Read operations are not affected.

8.5 MSCL
This pin is the clock input for the Microcontroller Access Port, and is used to synchronize data transfer to and from the device.

8.6 MSDA
This pin is used to transfer addresses and data into and out of the Microcontroller Access Port. This pin is an open drain terminal, therefore the MSDA bus requires a pull-up resistor to VCC (typical 10KΩ for 100 kHz, 2KΩ for 400 kHz).

MSDA is allowed to change only during MSCL low. Changes during MSCL high are reserved for indicating the Start and Stop conditions.
PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>X</th>
<th>XX</th>
<th>XXX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature Range</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Package</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pattern</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Device 24LC41A Dual Mode, Dual Port CMOS Serial EEPROM

Temperature Range
- Blank = 0°C to +70°C
- L = -40°C to +85°C

Package P = Plastic DIP (300 mil), 8-lead
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip’s products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Microchip Technology Incorporated received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999 and Mountain View, California in March 2002. The Company’s quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, non-volatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001 certified.

© 2003 Microchip Technology Inc.
WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277

Technical Support: 480-792-7627
Web Address: http://www.microchip.com

Atlanta
3780 Mansell Road, Suite 130
Alpharetta, GA 30022
Tel: 770-640-0034
Fax: 770-640-0037

Boston
2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848
Fax: 978-692-3821

Chicago
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071
Fax: 630-285-0075

Dallas
4570 Westgrove Drive, Suite 160
Addison, TX 75001
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250
Fax: 248-538-2260

Kokomo
2767 S. Albright Road
Kokomo, IN 46902
Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles
18201 Von Karman, Suite 130
Alpharetta, GA 30022
Tel: 770-640-0034
Fax: 770-640-0307

San Jose
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408-436-7955
Fax: 408-436-7955

Toronto
6285 Northam Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC

Australia
Suite 22, 41 Rawson Street
Epping 2121, NSW
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Unit 915
Bei Hai Wan Tai Bldg.
No. 6 Chaoyangmen Beidajie
Beijing, 100027, No. China
Tel: 86-10-85282100
Fax: 86-10-85282104

China - Chengdu
Rm. 2401-2402, 24th Floor,
Ming Xing Financial Tower
No. 88 TIDU Street
Chengdu 610016, China
Tel: 86-28-86768200
Fax: 86-28-86766599

China - Fuzhou
Unit 28F, World Trade Plaza
No. 71 Wusi Road
Fuzhou 350001, China
Tel: 86-591-7503506
Fax: 86-591-7503521

China - Hong Kong SAR
Unit 901-6, Tower 2, Metroplaza
223 Hong Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431

China - Shanghai
Room 701, Bldg. B
Far East International Plaza
No. 317 Xian Xia Road
Shanghai, 200051, China
Tel: 86-21-6275-5700
Fax: 86-21-6275-5060

China - Shenzhen
Unit 1812, 18/F, Building A, United Plaza
No. 5022 Binhe Road, Futian District
Shenzhen 518033, China
Tel: 86-755-82901380
Fax: 86-755-8295-1393

China - Shunde
Room 401, Hongjian Building
No. 2 Fengxianqiao Road, Ronggui Town
Shunde City, Guangdong 528303, China
Tel: 86-755-8395507
Fax: 86-755-8395571

China - Qingdao
Rm. B505A, Fullhope Plaza,
No. 12 Hong Kong Central Rd.
Qingdao 266071, China
Tel: 86-532-50272305
Fax: 86-532-50272355

India
Divyasree Chambers
1 Floor, Wing A (A3/A4)
No. 11, O’Shaughnessy Road
Bangalore, 560 025, India
Tel: 91-80-2290061
Fax: 91-80-2290062

Japan
Benex S-1 6F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa, 222-0033, Japan
Tel: 81-45-471-6166
Fax: 81-45-471-6122

Korea
188-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea 135-822
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934

Singapore
200 Middle Road
#07-02 Prime Centre
Singapore, 189980
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan
Kaohsiung Branch
30F - 1 No. 8
Min Chuan 2nd Road
Kaohsiung 806, Taiwan
Tel: 886-7-536-4818
Fax: 886-7-536-4803

Taiwan
Taipei Branch
11F-3, No. 207
Taipei, 105, Taiwan
Tel: 886-2-2717-7175
Fax: 886-2-2545-0139

EUROPE

Austria
Durisolstrasse 2
A-4600 Wels
Tel: 43-7242-2244-399
Fax: 43-7242-2244-393

Denmark
Regus Business Centre
Lautrup høj 1-3
Ballereup DK-2750 Denmark
Tel: 45-4420-9895
Fax: 45-4420-9910

France
Parc d’Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - Ier Etage
91300 Massy, France
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany
Steinhelstreis 10
D-65737 Taimning, Germany
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy
Via Quasimodo, 12
20025 Legnano (MI)
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands
P. A. De Biesbosch 14
NL-5152 SC Drunen, Netherlands
Tel: 31-1-69-53-63-20
Fax: 31-1-69-30-90-79

07/28/03