Features

- Low RMS Phase Jitter: <1 ps (typ.)
- High Stability: ±10 ppm, ±20 ppm, ±25 ppm, ±50 ppm
- Wide Temperature Range
 - Industrial: –40°C to +85°C
 - Ext. Commercial: –20°C to +70°C
 - Ext. Industrial: –40°C to +105°C
- High Supply Noise Rejection: –50 dBc
- Wide Frequency Range: 2.3 MHz to 460 MHz
- Small Industry Standard Footprints:
 - 2.5 mm x 2.0 mm, 3.2 mm x 2.5 mm,
 5.0 mm x 3.2 mm, and 7.0 mm x 5.0 mm
- Excellent Shock and Vibration Immunity
 - Qualified to MIL-STD-883
- High Reliability
 - 20x Better MTF than Quartz Oscillators
- Low Current Consumption
- Supply Range of 2.25V to 3.6V
- Standby and Output Enable Function
- Lead Free and RoHS Compliant

Applications

- Storage Area Networks
 - SATA, SAS, Fibre Channel
- Passive Optical Networks
 - EPON, 10G-EPON, GPON, 10G-PON
- Ethernet
 - 1G, 10GBASE-T/KR/LR/SR, and FCoE
- HD/SD/SDI Video and Surveillance
- PCI Express: Gen 1 to Gen 4
- Display Port

General Description

The DSC1104 and DSC1124 series of high performance oscillators utilizes a proven silicon MEMS technology to provide excellent jitter and stability over a wide range of supply voltages and temperatures. By eliminating the need for quartz or SAW technology, MEMS oscillators significantly enhance reliability and accelerate product development, while meeting stringent clock performance criteria for a variety of communications, storage, and networking applications.

DSC1104 has a standby feature allowing it to completely power down when EN pin is pulled low; whereas for DSC1124, only the outputs are disabled when EN is low. Both oscillators are available in industry standard packages, including the small 2.5 mm x 2.0 mm, and are drop-in replacements for standard 6-pin HCSL quartz crystal oscillators.

Block Diagram

TABLE 1: OUTPUT ENABLE MODES

<table>
<thead>
<tr>
<th>EN Pin</th>
<th>DSC1104</th>
<th>DSC1124</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>Outputs Active</td>
<td>Outputs Active</td>
</tr>
<tr>
<td>NC</td>
<td>Outputs Active</td>
<td>Outputs Active</td>
</tr>
<tr>
<td>Low</td>
<td>Standby</td>
<td>Outputs Disabled</td>
</tr>
</tbody>
</table>
1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †
Supply Voltage ... –0.3V to +4.0V
Input Voltage .. –0.3V to VDD + 0.3V
ESD Protection (HBM) .. 4 kV
ESD Protection (MM) .. 400V
ESD Protection (CDM) ... 1.5 kV

† Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS
Specifications: VDD = 3.3V; TA = +25°C unless otherwise specified.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage (Note 1)</td>
<td>VDD</td>
<td>2.25</td>
<td>—</td>
<td>3.6</td>
<td>V</td>
<td>—</td>
</tr>
<tr>
<td>Supply Current</td>
<td>IDD</td>
<td>—</td>
<td>—</td>
<td>0.095</td>
<td>mA</td>
<td>DSC1104, EN pin low, Output is disabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>20</td>
<td>22</td>
<td></td>
<td>DSC1124, EN pin low, Output is disabled</td>
</tr>
<tr>
<td>Frequency Stability</td>
<td>Δf</td>
<td>—</td>
<td>—</td>
<td>±10</td>
<td>ppm</td>
<td>Includes frequency variation due to initial tolerance, temp., and power supply voltage</td>
</tr>
<tr>
<td>Aging</td>
<td>ΔfY1</td>
<td>—</td>
<td>—</td>
<td>±5</td>
<td>ppm</td>
<td>One year at +25°C</td>
</tr>
<tr>
<td>Start-up Time (Note 2)</td>
<td>tSU</td>
<td>—</td>
<td>—</td>
<td>5</td>
<td>ms</td>
<td>T = +25°C</td>
</tr>
<tr>
<td>Input Logic Levels</td>
<td>VIH</td>
<td>0.75 × VDD</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>Input logic high</td>
</tr>
<tr>
<td></td>
<td>VIL</td>
<td>—</td>
<td>—</td>
<td>0.25 × VDD</td>
<td></td>
<td>Input logic low</td>
</tr>
<tr>
<td>Output Disable Time (Note 3)</td>
<td>tDA</td>
<td>—</td>
<td>—</td>
<td>5</td>
<td>ns</td>
<td>—</td>
</tr>
<tr>
<td>Output Enable Time</td>
<td>tEN</td>
<td>—</td>
<td>—</td>
<td>5</td>
<td>ms</td>
<td>DSC1104</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
<td>20</td>
<td>ns</td>
<td>DSC1124</td>
</tr>
<tr>
<td>Enable Pull-Up Resistor (Note 4)</td>
<td>RPU</td>
<td>—</td>
<td>40</td>
<td>—</td>
<td>kΩ</td>
<td>Pull-up resistor exists</td>
</tr>
</tbody>
</table>

HCSL Outputs
Supply Current
Output Logic Levels
Peak-to-Peak Output Swing
Output Transition Time (Note 3)
Frequency
Output Duty Cycle
ELECTRICAL CHARACTERISTICS (CONTINUED)

Specifications: $V_{DD} = 3.3V; T_A = +25^\circ C$ unless otherwise specified.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period Jitter</td>
<td>J_{PER}</td>
<td>—</td>
<td>2.5</td>
<td>—</td>
<td>μs_{RMS}</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>J_{PH}</td>
<td>—</td>
<td>0.25</td>
<td>—</td>
<td>μs_{RMS}</td>
<td>200 kHz to 20 MHz @ 156.25 MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>0.38</td>
<td>—</td>
<td>μs_{RMS}</td>
<td>100 kHz to 20 MHz @ 156.25 MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>1.7</td>
<td>2</td>
<td>μs_{RMS}</td>
<td>12 kHz to 20 MHz @ 156.25 MHz</td>
</tr>
</tbody>
</table>

Note 1: Pin 6 V_{DD} should be filtered with a 0.1 µF capacitor.

2: t_{SU} is time to 100 ppm stable output frequency after V_{DD} is applied and outputs are enabled.

3: Output Waveform and Test Circuit figures below define the parameters.

4: Output is enabled if pad is floated or not connected.
TEMPERATURE SPECIFICATIONS (Note 1)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Temperature Range</td>
<td>T_A</td>
<td>−20</td>
<td></td>
<td>+70</td>
<td>°C</td>
<td>Ordering Option E</td>
</tr>
<tr>
<td></td>
<td></td>
<td>−40</td>
<td></td>
<td>+85</td>
<td>°C</td>
<td>Ordering Option I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>−40</td>
<td></td>
<td>+105</td>
<td>°C</td>
<td>Ordering Option L</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>T_J</td>
<td>—</td>
<td></td>
<td>+150</td>
<td>°C</td>
<td>—</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>T_S</td>
<td>−55</td>
<td></td>
<td>+150</td>
<td>°C</td>
<td>—</td>
</tr>
<tr>
<td>Soldering Temperature</td>
<td></td>
<td>—</td>
<td></td>
<td>+260</td>
<td>°C</td>
<td>40 sec. max.</td>
</tr>
</tbody>
</table>

Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature, and the thermal resistance from junction to air (i.e., T_A, T_J, θ_{JA}). Exceeding the maximum allowable power dissipation will cause the device operating junction temperature to exceed the maximum +150°C rating. Sustained junction temperatures above +150°C can impact the device reliability.
2.0 PIN DESCRIPTIONS

FIGURE 2-1: Pin Configuration, 6-Lead QFN.

The descriptions of the pins are listed in Table 2-1.

TABLE 2-1: PIN FUNCTION TABLE

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Pin Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EN</td>
<td>Enable</td>
</tr>
<tr>
<td>2</td>
<td>NC</td>
<td>Leave unconnected</td>
</tr>
<tr>
<td>3</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>4</td>
<td>OUT</td>
<td>Output</td>
</tr>
<tr>
<td>5</td>
<td>OUT</td>
<td>Complementary output</td>
</tr>
<tr>
<td>6</td>
<td>VDD</td>
<td>Input</td>
</tr>
</tbody>
</table>
3.0 NOMINAL PERFORMANCE PARAMETERS

Unless specified otherwise, $T = +25^\circ C$, $V_{DD} = 3.3V$.

FIGURE 3-1: Power Supply Rejection Ratio.

FIGURE 3-2: Phase Jitter (Integrated Phase Noise).
4.0 OUTPUT WAVEFORM

FIGURE 4-1: Output Waveform.

- **VIL:** 1/fo
- **VIH:** 830 mv
- **Enable:**
- **Output:**
- **tDA:**
- **tEN:**
- **tF:**
- **t0:**
- 80% 50% 20%
5.0 TYPICAL TERMINATION SCHEME

FIGURE 5-1: Typical Termination Scheme.

Rs serves to match the trace impedances. Depending on board layout, the value may range from 0 to 30 ohms.

6.0 TEST CIRCUIT

FIGURE 6-1: Test Circuit.
7.0 SOLDER REFLOW PROFILE

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Time</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>25°C</td>
<td>8 min max.</td>
<td>6°C/sec. max.</td>
</tr>
<tr>
<td>150°C</td>
<td>60-180 sec.</td>
<td>3°C/sec. max.</td>
</tr>
<tr>
<td>200°C</td>
<td>60-150 sec.</td>
<td></td>
</tr>
<tr>
<td>217°C</td>
<td>20-40 sec.</td>
<td></td>
</tr>
<tr>
<td>260°C</td>
<td>20-40 sec.</td>
<td></td>
</tr>
</tbody>
</table>

MSL 1 @ 260°C refer to JSTD-020C

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ramp-Up Rate (200°C to Peak Temp)</td>
<td>3°C/sec. max.</td>
</tr>
<tr>
<td>Preheat Time 150°C to 200°C</td>
<td>60-180 sec.</td>
</tr>
<tr>
<td>Time Maintained above 217°C</td>
<td>60-150 sec.</td>
</tr>
<tr>
<td>Peak Temperature</td>
<td>255°C to 260°C</td>
</tr>
<tr>
<td>Time within 5°C of Actual Peak</td>
<td>20-40 sec.</td>
</tr>
<tr>
<td>Ramp-Down Rate</td>
<td>6°C/sec. max.</td>
</tr>
<tr>
<td>Time 25°C to Peak Temperature</td>
<td>8 min max.</td>
</tr>
</tbody>
</table>
8.0 PACKAGE MARKING INFORMATION

8.1 Package Marking Information

<table>
<thead>
<tr>
<th>6-Pin CDFN/VDFN*</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>XXXXXXXX</td>
<td>0750000</td>
</tr>
<tr>
<td>DCPYYWW</td>
<td>DCP1723</td>
</tr>
<tr>
<td>0SSS</td>
<td>0421</td>
</tr>
</tbody>
</table>

Legend:
- **XX...X**: Product code, customer-specific information, or frequency in MHz without printed decimal point
- **Y**: Year code (last digit of calendar year)
- **YY**: Year code (last 2 digits of calendar year)
- **WW**: Week code (week of January 1 is week ‘01’)
- **SSS**: Alphanumeric traceability code
- **e3**: Pb-free JEDEC® designator for Matte Tin (Sn)
- *****: This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.
- ●, ▲, ▼: Pin one index is identified by a dot, delta up, or delta down (triangle mark).

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information. Package may or may not include the corporate logo.

Underbar (_) and/or Overbar (‾) symbol may not be to scale.
6-Lead VDFN 2.5 mm x 2.0 mm Package Outline and Recommended Land Pattern

6-Lead Very Thin Dual Flatpack No-Leads (J7A) - 2.5x2.0 mm Body [VDFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging
6-Lead Very Thin Dual Flatpack No-Leads (J7A) - 2.5x2.0 mm Body [VDFN]

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Package is saw singulated
3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

![Diagram of 6-Lead Very Thin Dual Flatpack No-Leads (J7A) - 2.5x2.0 mm Body [VDFN]](image)

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>dimension</td>
<td>MIN</td>
</tr>
<tr>
<td>Number of Terminals</td>
<td>N</td>
</tr>
<tr>
<td>Pitch</td>
<td>e</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
</tr>
<tr>
<td>Standoff</td>
<td>A1</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
</tr>
<tr>
<td>Terminal Width</td>
<td>b1</td>
</tr>
<tr>
<td>Terminal Width</td>
<td>b2</td>
</tr>
<tr>
<td>Terminal Length</td>
<td>L1</td>
</tr>
<tr>
<td>Terminal Length</td>
<td>L2</td>
</tr>
</tbody>
</table>

![Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging](image)
6-Lead Very Thin Dual Flatpack No-Leads (J7A) - 2.5x2.0 mm Body [VDFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Limits</td>
<td>MIN</td>
</tr>
<tr>
<td>Contact Pitch</td>
<td>E</td>
</tr>
<tr>
<td>Contact Pad Width (X4)</td>
<td>X1</td>
</tr>
<tr>
<td>Contact Pad Width (X2)</td>
<td>X2</td>
</tr>
<tr>
<td>Contact Pad Length (X6)</td>
<td>Y</td>
</tr>
<tr>
<td>Contact Pad Spacing</td>
<td>C</td>
</tr>
<tr>
<td>Space Between Contacts (X4)</td>
<td>G1</td>
</tr>
<tr>
<td>Space Between Contacts (X3)</td>
<td>G2</td>
</tr>
</tbody>
</table>

Notes:
1. Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-3005A
6-Lead VDFN 3.2 mm x 2.5 mm Package Outline and Recommended Land Pattern

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-1007A Sheet 1 of 2
6-Lead Very Thin Plastic Dual Flatpack No-Lead (H5A) - 3.2x2.5 mm Body [VDFN]

Notes:
- For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

![Image of packaging](image)

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dimension Limits</td>
</tr>
<tr>
<td>Number of Terminals</td>
<td>N</td>
</tr>
<tr>
<td>Pitch</td>
<td>e</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
</tr>
<tr>
<td>Standoff</td>
<td>A1</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
</tr>
<tr>
<td>Terminal Width</td>
<td>b1</td>
</tr>
<tr>
<td>Terminal Width</td>
<td>b2</td>
</tr>
<tr>
<td>Terminal Length</td>
<td>L</td>
</tr>
<tr>
<td>Terminal Pullback</td>
<td>L1</td>
</tr>
</tbody>
</table>

Notes:
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Package is saw singulated
3. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-1007A Sheet 2 of 2
6-Lead Very Thin Plastic Dual Flatpack No-Lead (H5A) - 3.2x2.5 mm Body [VDFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Limits</td>
<td>MIN</td>
</tr>
<tr>
<td>Contact Pitch</td>
<td>E</td>
</tr>
<tr>
<td>Contact Pad Spacing</td>
<td>C</td>
</tr>
<tr>
<td>Contact Pad Width (X4)</td>
<td>X1</td>
</tr>
<tr>
<td>Contact Pad Width (X2)</td>
<td>X2</td>
</tr>
<tr>
<td>Contact Pad Length (X6)</td>
<td>Y</td>
</tr>
<tr>
<td>Space Between Contacts (X4)</td>
<td>G1</td>
</tr>
</tbody>
</table>

Notes:
1. Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-3007A
6-Lead CDFN 5.0 mm x 3.2 mm Package Outline and Recommended Land Pattern

NOTE:
1. * Power Supply Decoupling Capacitor is required in Recommended Land Pattern.
2. Green shaded rectangles in Recommended Land Pattern are solder stencil opening.
3. Red circles in Recommended Land Pattern are thermal VIA.

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging.
6-Lead VDFN 7.0 mm x 5.0 mm Package Outline and Recommended Land Pattern

6-Lead Very Thin Plastic Quad Flat, No Lead Package (H8A) - 7x5 mm Body [VDFN] With 2.8x1.8 mm Exposed Pad

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

<table>
<thead>
<tr>
<th>Units</th>
<th>Dimension Limits</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact Pitch</td>
<td>E</td>
<td>2.54 BSC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optional Center Pad Width</td>
<td>X2</td>
<td></td>
<td>2.90</td>
<td></td>
</tr>
<tr>
<td>Optional Center Pad Length</td>
<td>Y2</td>
<td></td>
<td>1.90</td>
<td></td>
</tr>
<tr>
<td>Contact Pad Spacing</td>
<td>C</td>
<td>3.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact Pad Width (X6)</td>
<td>X1</td>
<td></td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td>Contact Pad Length (X6)</td>
<td>Y1</td>
<td></td>
<td>1.35</td>
<td></td>
</tr>
<tr>
<td>Contact Pad to Center Pad (X2)</td>
<td>G</td>
<td>0.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Via Diameter (X6)</td>
<td>V</td>
<td>0.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Via Pitch</td>
<td>EV</td>
<td>1.20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-3010A
6-Lead Very Thin Plastic Quad Flat, No Lead Package (H8A) - 7x5 mm Body [VDFN] With 2.8x1.8 mm Exposed Pad

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-1010A Sheet 1 of 2
6-Lead Very Thin Plastic Quad Flat, No Lead Package (H8A) - 7x5 mm Body [VDFN] With 2.8x1.8 mm Exposed Pad

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension</td>
<td>MIN</td>
</tr>
<tr>
<td>Number of Terminals</td>
<td>N</td>
</tr>
<tr>
<td>Pitch</td>
<td>e</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
</tr>
<tr>
<td>Standoff</td>
<td>A1</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
</tr>
<tr>
<td>Exposed Pad Length</td>
<td>D2</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
</tr>
<tr>
<td>Exposed Pad Width</td>
<td>E2</td>
</tr>
<tr>
<td>Terminal Width</td>
<td>b</td>
</tr>
<tr>
<td>Terminal Length</td>
<td>L</td>
</tr>
<tr>
<td>Terminal-to-Exposed-Pad</td>
<td>K</td>
</tr>
</tbody>
</table>

Notes:
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Package is saw singulated
3. Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-1010A Sheet 2 of 2
6-Lead CDFN 7.0 mm x 5.0 mm Package Outline and Recommended Land Pattern

NOTE:
1. * Power Supply Decoupling Capacitor is required in Recommended Land Pattern.
2. Green shaded rectangles in Recommended Land Pattern are solder stencil opening.
3. Red circles in Recommended Land Pattern are thermal VIA.

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging.
APPENDIX A: REVISION HISTORY

Revision A (December 2017)

• Initial conversion of Micrel document DSC1104/24 to Microchip data sheet template DS20005870A.
• Minor text changes throughout.
PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>Device</th>
<th>Package</th>
<th>Temperature Range</th>
<th>Stability</th>
<th>Frequency</th>
<th>Packaging Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>X X X X X</td>
<td>DSC1104: Low Jitter Precision HCSL Oscillator with Standby</td>
<td>A = 6-Lead 7.0 mm x 5.0 mm CDFN</td>
<td>E = –20°C to +70°C (Extended Commercial)</td>
<td>1 = ±50 ppm</td>
<td>2.3 MHz to 460 MHz (User Defined)</td>
<td>Tube</td>
</tr>
<tr>
<td>X X X X X</td>
<td>DSC1124: Low Jitter Precision HCSL Oscillator</td>
<td>B = 6-Lead 5.0 mm x 3.2 mm CDFN</td>
<td>I = –40°C to +85°C (Industrial)</td>
<td>2 = ±25 ppm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X X X X X</td>
<td></td>
<td>C = 6-Lead 3.2 mm x 2.5 mm CDFN</td>
<td>L = –40°C to +105°C (Extended Industrial)</td>
<td>3 = ±20 ppm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X X X X X</td>
<td></td>
<td>D = 6-Lead 2.5 mm x 2.0 mm CDFN</td>
<td></td>
<td>4 = ±10 ppm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X X X X X</td>
<td></td>
<td>N = 6-Lead 7.0 mm x 5.0 mm CDFN w/o center pad</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Examples:

a) **DSC1104AE1-053.5000:** Low Jitter Precision HCSL Oscillator with Standby, 6-Lead 7x5 CDFN, Ext. Commercial Temp. Range, ±50 ppm Stability, 53.5 MHz Frequency, Tube

b) **DSC1124BI2-246.8100T:** Low Jitter Precision HCSL Oscillator, 6-Lead 5x3.2 VDFN, Industrial Temp. Range, ±25 ppm Stability, 246.81 MHz Frequency, 1000/Reel

c) **DSC1104CL5-156.2500:** Low Jitter Precision HCSL Oscillator with Standby, 6-Lead 3.2x2.5 VDFN, Ext. Industrial Temp. Range, ±10 ppm Stability, 156.25 MHz Frequency, Tube

d) **DSC1124DE3-094.5500T:** Low Jitter Precision HCSL Oscillator, 6-Lead 2.5x2.0 CDFN, Ext. Commercial Temp. Range, ±20 ppm Stability, 94.55 MHz Frequency, 1000/Reel

Note 1: Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option.
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELOQ logo, KEELOQ logo, Klear, LANCheck, LINK MD, maXStylus, maTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntellIMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

SQT is a service mark of Microchip Technology Incorporated in the U.S.A.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV
ISO/TS 16949

© 2017 Microchip Technology Inc.

ISBN: 978-1-5224-2440-6
Worldwide Sales and Service

AMERICAS

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277

Technical Support:
http://www.microchip.com/support

Web Address:
www.microchip.com

- **Atlanta**
 Duluth, GA
 Tel: 678-957-9614
 Fax: 678-957-1455

- **Austin, TX**
 Tel: 512-257-3370

- **Boston**
 Westborough, MA
 Tel: 774-760-0087
 Fax: 774-760-0088

- **Chicago**
 Itasca, IL
 Tel: 630-285-0071
 Fax: 630-285-0075

- **Dallas**
 Addison, TX
 Tel: 972-818-7423
 Fax: 972-818-2924

- **Detroit**
 Novi, MI
 Tel: 248-848-4000

- **Houston, TX**
 Tel: 281-894-5983

- **Indianapolis**
 Noblesville, IN
 Tel: 317-773-8323
 Fax: 317-773-5453
 Tel: 317-536-2380

- **Los Angeles**
 Mission Viejo, CA
 Tel: 949-462-9523
 Fax: 949-462-9608
 Tel: 951-273-7800

- **Raleigh, NC**
 Tel: 919-844-7510

- **New York, NY**
 Tel: 631-435-6000

- **San Jose, CA**
 Tel: 408-735-9110
 Tel: 408-436-4270

- **Canada - Toronto**
 Tel: 905-695-1980
 Fax: 905-695-2078

ASIA/PACIFIC

- **Australia - Sydney**
 Tel: 61-2-9868-6733

- **China - Beijing**
 Tel: 86-10-8569-7000

- **China - Chengdu**
 Tel: 86-28-8665-5511

- **China - Chongqing**
 Tel: 86-23-8980-9588

- **China - Dongguan**
 Tel: 86-769-8702-9880

- **China - Guangzhou**
 Tel: 86-20-8755-8029

- **China - Hangzhou**
 Tel: 86-571-8792-8115

- **China - Hong Kong SAR**
 Tel: 852-2943-5100

- **China - Nanjing**
 Tel: 86-25-8473-2460

- **China - Qingdao**
 Tel: 86-532-8502-7355

- **China - Shanghai**
 Tel: 86-21-3326-8000

- **China - Shenyang**
 Tel: 86-24-2334-2829

- **China - Shenzhen**
 Tel: 86-755-8864-2200

- **China - Suzhou**
 Tel: 86-186-6233-1526

- **China - Wuhan**
 Tel: 86-27-5980-5300

- **China - Xiamen**
 Tel: 86-592-2388138

- **China - Zhuhai**
 Tel: 86-756-3210040

- **India - Bangalore**
 Tel: 91-80-3090-4444

- **India - New Delhi**
 Tel: 91-11-4160-8631

- **India - Pune**
 Tel: 91-20-4121-0141

- **Japan - Osaka**
 Tel: 81-6-6152-7160

- **Japan - Tokyo**
 Tel: 81-3-6880-3770

- **Korea - Daegu**
 Tel: 82-53-744-4301

- **Korea - Seoul**
 Tel: 82-2-554-7200

- **Malaysia - Kuala Lumpur**
 Tel: 60-3-7651-7906

- **Malaysia - Penang**
 Tel: 60-4-227-8870

- **Philippines - Manila**
 Tel: 63-2-634-9065

- **Singapore**
 Tel: 65-6334-8870

- **Taiwan - Hsin Chu**
 Tel: 886-3-577-8366

- **Taiwan - Kaohsiung**
 Tel: 886-7-213-7830

- **Taiwan - Taipei**
 Tel: 886-2-2508-8600

- **Thailand - Bangkok**
 Tel: 66-2-694-1351

- **Vietnam - Ho Chi Minh**
 Tel: 84-8-5448-2100

EUROPE

- **Austria - Wels**
 Tel: 43-7242-2244-39
 Fax: 43-7242-2244-93

- **Denmark - Copenhagen**
 Tel: 45-4450-2828
 Fax: 45-4485-2829

- **Finland - Espoo**
 Tel: 358-9-4520-820

- **France - Paris**
 Tel: 33-1-69-53-63-20
 Fax: 33-1-69-30-90-79

- **Germany - Garching**
 Tel: 49-8931-9700

- **Germany - Haan**
 Tel: 49-2129-3766400

- **Germany - Heilbronn**
 Tel: 49-7131-67-3636

- **Germany - Karlsruhe**
 Tel: 49-721-625370

- **Germany - Munich**
 Tel: 49-89-627-144-0
 Fax: 49-89-627-144-44

- **Germany - Rosenheim**
 Tel: 49-8031-354-560

- **Israel - Ra’anana**
 Tel: 972-9-744-7705

- **Italy - Milan**
 Tel: 39-0331-742611
 Fax: 39-0331-466781

- **Italy - Padova**
 Tel: 39-049-7625286

- **Netherlands - Drunen**
 Tel: 31-416-690399
 Fax: 31-416-690340

- **Norway - Trondheim**
 Tel: 47-7289-7561

- **Poland - Warsaw**
 Tel: 48-22-3325737

- **Romania - Bucharest**
 Tel: 40-21-407-87-50

- **Spain - Madrid**
 Tel: 34-91-708-08-90
 Fax: 34-91-708-08-91

- **Sweden - Gothenberg**
 Tel: 46-31-704-60-40

- **Sweden - Stockholm**
 Tel: 46-8-5090-4654

- **UK - Wokingham**
 Tel: 44-118-921-5800
 Fax: 44-118-921-5820