MIC8115

Microprocessor Reset Circuit

Features
• Precision Voltage Monitor for 3.3V Power Supplies
• Specifically Tailored to the AMD Elan SC500 Series
• /RESET Remains Valid with \(V_{CC} \) as Low as 1.4V
• <15 \(\mu \)A Supply Current
• 1100 ms Minimum Reset Pulse Width
• Manual Reset Input
• Available in 4-Pin SOT-143 Package

Applications
• Portable Equipment
• Intelligent Instruments
• Critical Microprocessor Power Monitoring
• Printers/Computers
• Embedded Controllers

General Description
The MIC8115 is an inexpensive microprocessor supervisory circuit that monitors power supplies in microprocessor-based systems.

The function of the MIC8115 is to assert a reset if the power supply drops below a designated reset threshold level or if /MR is forced low.

The MIC8115 has an active-low /RESET output. The reset output is guaranteed to remain asserted for a minimum of 1100 ms after \(V_{CC} \) has risen above the designated reset threshold level. The MIC8115 comes in a 4-pin SOT-143 package.

Package Type

<table>
<thead>
<tr>
<th>MIC8115</th>
<th>4-Lead SOT-143 (TU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GND</td>
<td>1</td>
</tr>
<tr>
<td>/RESET</td>
<td>2</td>
</tr>
<tr>
<td>VCC</td>
<td>4</td>
</tr>
<tr>
<td>/MR</td>
<td>3</td>
</tr>
</tbody>
</table>

© 2017 Microchip Technology Inc.
Typical Application Circuit

Functional Block Diagram
1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

Terminal Voltage
(VCC) ... –0.3V to +6.0V
(/MR) ...–0.3V to VCC+0.3V
Input Current (VCC, /MR)...20 mA
Output Current (/RESET)..20 mA
Rate of Rise (VCC) ..100 V/µs
ESD Rating, Note 1.. 3 kV

Operating Ratings ‡

Power Dissipation (TA = +70°C)...320 mW

† Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability.

‡ Notice: The device is not guaranteed to function outside its operating ratings.

Note 1: Devices are ESD sensitive. Handling precautions are recommended. Human body model, 1.5 kΩ in series with 100 pF.

TABLE 1-1: ELECTRICAL CHARACTERISTICS

Electrical Characteristics: For typical values, VCC = 3.3V; TA = +25°C, bold values indicate –40°C ≤ TA ≤ +85°C, unless noted.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Voltage Range</td>
<td>VCC</td>
<td>1</td>
<td>—</td>
<td>5.5</td>
<td>V</td>
<td>TA = –40°C to +85°C</td>
</tr>
<tr>
<td>Supply Current</td>
<td>ICC</td>
<td>—</td>
<td>5</td>
<td>15</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>Reset Voltage Threshold</td>
<td>VTH</td>
<td>3.00</td>
<td>3.08</td>
<td>3.15</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Reset Timeout Period</td>
<td>tRST</td>
<td>1100</td>
<td>1700</td>
<td>2500</td>
<td>ms</td>
<td></td>
</tr>
<tr>
<td>/RESET Output Voltage</td>
<td>VOH</td>
<td>0.8 x VCC</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>ISOURCE = 500 µA</td>
</tr>
<tr>
<td>/RESET Output Voltage</td>
<td>VOL</td>
<td>—</td>
<td>—</td>
<td>0.3</td>
<td>V</td>
<td>VCC = VTH(MIN), ISINK = 1.2 mA</td>
</tr>
<tr>
<td>/MR Minimum Pulse Width</td>
<td>—</td>
<td>10</td>
<td>—</td>
<td>—</td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>/MR to Reset Delay</td>
<td>—</td>
<td>—</td>
<td>0.5</td>
<td>—</td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>/MR Input Threshold</td>
<td>VIH</td>
<td>0.7 x VCC</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VIL</td>
<td>—</td>
<td>—</td>
<td>0.25 x VCC</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>/MR Pull-Up Resistance</td>
<td>—</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>kΩ</td>
<td></td>
</tr>
<tr>
<td>/MR Glitch Immunity</td>
<td>—</td>
<td>—</td>
<td>100</td>
<td>—</td>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>
TEMPERATURE SPECIFICATIONS (Note 1)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Temperature Range</td>
<td>—</td>
<td>—40</td>
<td>—</td>
<td>+85</td>
<td>°C</td>
<td>—</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>T_S</td>
<td>—65</td>
<td>—</td>
<td>+150</td>
<td>°C</td>
<td>—</td>
</tr>
<tr>
<td>Lead Temperature</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>+300</td>
<td>°C</td>
<td>Soldering, 10s</td>
</tr>
</tbody>
</table>

Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air (i.e., T_A, T_J, θ_{JA}). Exceeding the maximum allowable power dissipation will cause the device operating junction temperature to exceed the maximum +85°C rating. Sustained junction temperatures above +85°C can impact the device reliability.

![Timing Diagram](image_url)

FIGURE 1-1: Timing Diagram.
2.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 2-1.

TABLE 2-1: PIN FUNCTION TABLE

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Pin Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
<td>IC Ground Pin.</td>
</tr>
<tr>
<td>2</td>
<td>/RESET</td>
<td>/RESET goes low if either V_{CC} falls below the supply reset threshold voltage or if /MR is asserted. /RESET remains asserted for one reset timeout period 1100 ms (minimum) after both V_{CC} exceeds the supply reset threshold voltage and /MR is de-asserted.</td>
</tr>
<tr>
<td>3</td>
<td>/MR</td>
<td>Manual Reset Input. A logic-low on /MR forces a reset. The reset will remain asserted as long as /MR is held low and for one reset timeout period (1100 ms, minimum) after /MR goes high. This input can be shorted to ground via a switch or driven from CMOS or TTL logic. Pulled high internally through a 20 kΩ resistor. Float if unused.</td>
</tr>
<tr>
<td>4</td>
<td>VCC</td>
<td>Power Supply Input.</td>
</tr>
</tbody>
</table>
3.0 APPLICATION INFORMATION

3.1 Microprocessor Reset

The /RESET pin is asserted whenever \(V_{CC} \) falls below the reset threshold voltage. The reset pin remains asserted for a period of 1100 ms after \(V_{CC} \) has risen above the reset threshold voltage. The reset function ensures the microprocessor is properly reset and powers up into a known condition after a power failure. /RESET will remain valid with \(V_{CC} \) as low as 1.4V.

3.2 VCC Transients

The MIC8115 is relatively immune to the negative-going \(V_{CC} \) glitches below the reset threshold. Typically, a negative-going transient 125 mV belt the reset threshold with duration of 20 µs or less will not cause a reset.

3.3 /RESET Valid at Low Voltage

A resistor can be added from the /RESET pin to the ground to ensure the /RESET output remains low with \(V_{CC} \) down to 0V. A 100 kΩ resistor connected from /RESET to ground is recommended. The resistor should be large enough not to load the /RESET output and small enough to pull-down any stray leakage currents.

FIGURE 3-1: /RESET Valid to \(V_{CC} = 0V \).
4.0 PACKAGING INFORMATION

4.1 Package Marking Information

<table>
<thead>
<tr>
<th>4-Pin SOT-143*</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>XX MNNN</td>
<td>NT 6102</td>
</tr>
</tbody>
</table>

Legend:
- XX...X: Product code or customer-specific information
- Y: Year code (last digit of calendar year)
- YY: Year code (last 2 digits of calendar year)
- WW: Week code (week of January 1 is week ‘01’)
- NNN: Alphanumeric traceability code
- \(e3\): Pb-free JEDEC® designator for Matte Tin (Sn)
- *: This package is Pb-free. The Pb-free JEDEC designator \(e3\) can be found on the outer packaging for this package.
- ●, ▲, ▼: Pin one index is identified by a dot, delta up, or delta down (triangle mark).

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information. Package may or may not include the corporate logo.

Underbar (_) and/or Overbar (”) symbol may not be to scale.
4-Lead SOT-143 Package Outline and Recommended Land Pattern

NOTE:
1. Dimensions and tolerances are as per ANSI Y14.5M, 1982.
2. Package surface to be mirror finish.
3. Die is facing up for mold & trim/form.

⚠️ Dimension are exclusive of mold flash and gate burr.
⚠️ Dimension are exclusive of solder plating.

RECOMMENDED LAND PATTERN

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging.
APPENDIX A: REVISION HISTORY

Revision A (August 2017)

• Converted Micrel document MIC8115 to Microchip data sheet DS20005829A.
• Minor text changes throughout.
• Corrected a pin numbering error in the Package Type image.
PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>XX</th>
<th>X</th>
<th>-XX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device</td>
<td>MIC8115: Microprocessor Reset Circuit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Package</td>
<td>TU = 4-Lead SOT-143</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>Y = –40°C to +85°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Media Type</td>
<td>TR = 3,000/Reel</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Examples:

a) MIC8115TUY-TR: Microprocessor Reset Circuit, 4-Lead SOT-143, –40°C to +85°C, 3,000/Reel

Note 1: Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option.
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory, CryptoRF, dsPIC, FlexFlex, flexPWR, Helda, JukeBox, KeeloQ logo, KeeloQ, KeeloQ logo, Kleer, LANCheck, LINK MD, maXSylus, maTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntellIMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2017, Microchip Technology Incorporated, All Rights Reserved.
ISBN: 978-1-5224-2099-6

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KeeloQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV
ISO/TS 16949