HV5812

20-Channel Serial-Input Vacuum Fluorescent Display Driver for Anode or Grid

Features
- HVCMOS® Technology for High Performance
- Operating Voltage of up to 80V
- High-speed Source Driver
- 5V CMOS Logic Circuitry
- Up to 5 MHz Data Input Rate
- Excellent Noise Immunity
- Flexible High-voltage Supplies

Applications
- Display Driver

General Description

The HV5812 is a 20-channel serial-input vacuum fluorescent display driver. It combines a 20-bit CMOS shift register, data latches and control circuitry with high-voltage MOSFET outputs. The HV5812 is primarily designed for vacuum fluorescent displays.

The CMOS shift register and latches allow direct interfacing with microprocessor-based systems. Data input rates are typically over 5 MHz with 5V logic supply. Especially useful for interdigit blanking, the blanking input disables the output source drives and turns on the sink drivers. Using with TTL may require external pull-up resistors to ensure an input logic high.

Package Types

- 28-lead PDIP (Top view)
- 28-lead PLCC (Top view)
- 28-lead SOW (Top view)

See Table 2-1 for pin information.
Functional Block Diagram

![Functional Block Diagram](image-url)
1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings†

Supply Voltage, \(V_{DD} \) ... –0.5V to +7.5V
Supply Voltage, \(V_{PP} \) ... –0.5V to +90V
Logic Input Levels .. –0.3V to \(V_{DD} \) +0.3V
Maximum Operating Junction Temperature ... +125°C
Storage Temperature .. +55°C to +150°C
Power Dissipation:
 28-lead PDIP .. 2000 mW
 28-lead PLCC .. 1900 mW
 28-Lead SOW .. 1700 mW

† Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>(V_{DD})</td>
<td>4.5</td>
<td>—</td>
<td>5.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Supply Voltage</td>
<td>(V_{PP})</td>
<td>20</td>
<td>—</td>
<td>80</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Operating Junction Temperature</td>
<td>(T_J)</td>
<td>–40</td>
<td>—</td>
<td>125</td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>

DC ELECTRICAL CHARACTERISTICS

Electrical Specifications: Over recommended operating conditions; \(T_A = 25°C \) unless otherwise indicated.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Leakage Current</td>
<td>(I_{DSS})</td>
<td>—</td>
<td>–5</td>
<td>–15</td>
<td>µA</td>
<td>(V_{OUT} = 0V, \ T_J = +70°C)</td>
</tr>
<tr>
<td>High-level Output</td>
<td>(V_{OH})</td>
<td>78</td>
<td>78.5</td>
<td>—</td>
<td>V</td>
<td>(I_{OUT} = –25 \text{ mA}, \ V_{PP} = 80V, \ T_J = +25°C)</td>
</tr>
<tr>
<td></td>
<td>(V_{OH})</td>
<td>77</td>
<td>78</td>
<td>—</td>
<td>V</td>
<td>(I_{OUT} = –25 \text{ mA}, \ V_{PP} = 80V, \ T_J = +125°C)</td>
</tr>
<tr>
<td></td>
<td>(V_{OL})</td>
<td>4.5</td>
<td>4.7</td>
<td>—</td>
<td>V</td>
<td>(I_{OUT} = –200 \text{ µA}, \ V_{DD} = 5V)</td>
</tr>
<tr>
<td>Low-level Output</td>
<td>(V_{OL})</td>
<td>—</td>
<td>1.5</td>
<td>3</td>
<td>V</td>
<td>(I_{OUT} = 1 \text{ mA}, \ T_J = +25°C, \ V_{DD} = 5V)</td>
</tr>
<tr>
<td></td>
<td>(V_{OL})</td>
<td>—</td>
<td>2.3</td>
<td>4</td>
<td>V</td>
<td>(I_{OUT} = 1 \text{ mA}, \ T_J = +125°C, \ V_{DD} = 5V)</td>
</tr>
<tr>
<td></td>
<td>(V_{OL})</td>
<td>—</td>
<td>200</td>
<td>250</td>
<td>V</td>
<td>(I_{OUT} = +200 \text{ µA}, \ V_{DD} = 5V)</td>
</tr>
<tr>
<td>Output Pull-down Current</td>
<td>(I_{SINK})</td>
<td>2</td>
<td>3.5</td>
<td>—</td>
<td>mA</td>
<td>(V_{OUT} = 5V) to (V_{PP}, \ V_{DD} = 5V)</td>
</tr>
<tr>
<td>High-level Logic Input Voltage</td>
<td>(V_{IH})</td>
<td>3.5</td>
<td>—</td>
<td>5.3</td>
<td>V</td>
<td>(V_{DD} = 5V)</td>
</tr>
<tr>
<td>Low-level Logic Input Voltage</td>
<td>(V_{IL})</td>
<td>–0.3</td>
<td>—</td>
<td>0.8</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>High-level Logic Input Current</td>
<td>(I_{IH})</td>
<td>—</td>
<td>0.05</td>
<td>0.5</td>
<td>µA</td>
<td>(V_{IN} = V_{DD}, \ V_{DD} = 5V)</td>
</tr>
<tr>
<td>Low-level Logic Input Current</td>
<td>(I_{IL})</td>
<td>—</td>
<td>–0.05</td>
<td>–0.5</td>
<td>µA</td>
<td>(V_{IN} = 0.8V, \ V_{DD} = 5V)</td>
</tr>
<tr>
<td>Quiescent (V_{DD}) Supply Current</td>
<td>(I_{DDQ})</td>
<td>—</td>
<td>100</td>
<td>300</td>
<td>µA</td>
<td>All outputs high, (V_{DD} = 5V)</td>
</tr>
<tr>
<td></td>
<td>(I_{DDQ})</td>
<td>—</td>
<td>100</td>
<td>300</td>
<td>µA</td>
<td>All outputs low, (V_{DD} = 5V)</td>
</tr>
<tr>
<td>Quiescent (V_{PP}) Supply Current</td>
<td>(I_{PPQ})</td>
<td>—</td>
<td>10</td>
<td>100</td>
<td>µA</td>
<td>All outputs high, no load</td>
</tr>
<tr>
<td></td>
<td>(I_{PPQ})</td>
<td>—</td>
<td>10</td>
<td>100</td>
<td>µA</td>
<td>All outputs low, no load</td>
</tr>
</tbody>
</table>
AC ELECTRICAL CHARACTERISTICS

Electrical Specifications: Over recommended operating conditions; \(T_A = 25^\circ C \) unless otherwise indicated.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blanking to Output Delay</td>
<td>(t_{PHL})</td>
<td>2000</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td>(C_L = 30 , \text{pF}, 50% \text{ to } 50%, , V_{DD}=5\text{V})</td>
</tr>
<tr>
<td></td>
<td>(t_{PHH})</td>
<td>1000</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Output Fall Time</td>
<td>(t_r)</td>
<td>1450</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td>(C_L = 30 , \text{pF}, 90% \text{ to } 10%, , V_{DD}=5\text{V})</td>
</tr>
<tr>
<td>Output Rise Time</td>
<td>(t_f)</td>
<td>650</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td>(C_L = 30 , \text{pF}, 10% \text{ to } 90%, , V_{DD}=5\text{V})</td>
</tr>
<tr>
<td>Data Set-up Time</td>
<td>(t_{SU})</td>
<td>75</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td>See Timing Waveforms.</td>
</tr>
<tr>
<td>Data Hold Time</td>
<td>(t_H)</td>
<td>75</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td>See Timing Waveforms.</td>
</tr>
<tr>
<td>Minimum Data Pulse Width</td>
<td>(t_{PWD})</td>
<td>150</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td>See Timing Waveforms.</td>
</tr>
<tr>
<td>Minimum Clock Pulse Width</td>
<td>(t_{PWCLK})</td>
<td>150</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td>See Timing Waveforms.</td>
</tr>
<tr>
<td>Minimum Time between Clock</td>
<td>(t_{CKS})</td>
<td>300</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td>See Timing Waveforms.</td>
</tr>
<tr>
<td>Activation and Strobe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum Strobe Pulse Width</td>
<td>(t_{PWS})</td>
<td>100</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td>See Timing Waveforms.</td>
</tr>
<tr>
<td>Typical Time between Strobe</td>
<td>(t_{STO})</td>
<td>—</td>
<td>500</td>
<td>—</td>
<td>ns</td>
<td>See Timing Waveforms.</td>
</tr>
<tr>
<td>Activation and Output Transition</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Clock Frequency</td>
<td>(f_{CLK})</td>
<td>—</td>
<td>8</td>
<td>—</td>
<td>MHz</td>
<td>(T_J = +25^\circ C, , V_{DD}=5\text{V})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>—</td>
<td></td>
<td>(T_J = +125^\circ C, , V_{DD}=5\text{V})</td>
</tr>
</tbody>
</table>

TEMPERATURE SPECIFICATIONS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEMPERATURE RANGE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating Junction Temperature</td>
<td>(T_J)</td>
<td>40</td>
<td>—</td>
<td>+125</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>(T_S)</td>
<td>55</td>
<td>—</td>
<td>+150</td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>

PACKAGE THERMAL RESISTANCE

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-lead PDIP</td>
<td>(\theta_{JA})</td>
<td>43</td>
<td>—</td>
<td>—</td>
<td>°C/W</td>
</tr>
<tr>
<td>28-lead PLCC</td>
<td>(\theta_{JA})</td>
<td>48</td>
<td>—</td>
<td>—</td>
<td>°C/W</td>
</tr>
<tr>
<td>28-lead SOW</td>
<td>(\theta_{JA})</td>
<td>55</td>
<td>—</td>
<td>—</td>
<td>°C/W</td>
</tr>
</tbody>
</table>
Timing Waveforms

- CLK
- DATA IN
- STROBE
- BL
- HVout

Symbols:
- tPWCLK
- tPWS
- tPHL
- tf
- tr
- tSU
- 50%
- 90%
- 10%
- 50%
- tSU
- tSU
- tSU
- tSU
- tSU
- 90%
- 90%
- 90%
- 90%
- 90%
- 90%
- 90%
- 90%

Parameters:
- VIH
- VIL
- VOH
- VOL
2.0 PIN DESCRIPTION

The details on the pins of HV5812 28-lead PDIP, 28-lead PLCC and 28-lead SOW are listed on
Table 2-1. Refer to Package Types for the location of pins.

TABLE 2-1: PIN FUNCTION TABLE

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Pin Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VPP</td>
<td>High-voltage power rail</td>
</tr>
<tr>
<td>2</td>
<td>Data Out</td>
<td>Serial data output. Data output for cascading to the data input of the next device.</td>
</tr>
<tr>
<td>3</td>
<td>HVOUT20</td>
<td>High-voltage output</td>
</tr>
<tr>
<td>4</td>
<td>HVOUT19</td>
<td>High-voltage output</td>
</tr>
<tr>
<td>5</td>
<td>HVOUT18</td>
<td>High-voltage output</td>
</tr>
<tr>
<td>6</td>
<td>HVOUT17</td>
<td>High-voltage output</td>
</tr>
<tr>
<td>7</td>
<td>HVOUT16</td>
<td>High-voltage output</td>
</tr>
<tr>
<td>8</td>
<td>HVOUT15</td>
<td>High-voltage output</td>
</tr>
<tr>
<td>9</td>
<td>HVOUT14</td>
<td>High-voltage output</td>
</tr>
<tr>
<td>10</td>
<td>HVOUT13</td>
<td>High-voltage output</td>
</tr>
<tr>
<td>11</td>
<td>HVOUT12</td>
<td>High-voltage output</td>
</tr>
<tr>
<td>12</td>
<td>HVOUT11</td>
<td>High-voltage output</td>
</tr>
<tr>
<td>13</td>
<td>BLANKING</td>
<td>Blank</td>
</tr>
<tr>
<td>14</td>
<td>GND</td>
<td>Logic and high-voltage ground</td>
</tr>
<tr>
<td>15</td>
<td>CLOCK</td>
<td>Data shift register clock</td>
</tr>
<tr>
<td>16</td>
<td>STROBE</td>
<td>Strobe</td>
</tr>
<tr>
<td>17</td>
<td>HVOUT10</td>
<td>High-voltage output</td>
</tr>
<tr>
<td>18</td>
<td>HVOUT9</td>
<td>High-voltage output</td>
</tr>
<tr>
<td>19</td>
<td>HVOUT8</td>
<td>High-voltage output</td>
</tr>
<tr>
<td>20</td>
<td>HVOUT7</td>
<td>High-voltage output</td>
</tr>
<tr>
<td>21</td>
<td>HVOUT6</td>
<td>High-voltage output</td>
</tr>
<tr>
<td>22</td>
<td>HVOUT5</td>
<td>High-voltage output</td>
</tr>
<tr>
<td>23</td>
<td>HVOUT4</td>
<td>High-voltage output</td>
</tr>
<tr>
<td>24</td>
<td>HVOUT3</td>
<td>High-voltage output</td>
</tr>
<tr>
<td>25</td>
<td>HVOUT2</td>
<td>High-voltage output</td>
</tr>
<tr>
<td>26</td>
<td>HVOUT1</td>
<td>High-voltage output</td>
</tr>
<tr>
<td>27</td>
<td>Data In</td>
<td>Serial data input</td>
</tr>
<tr>
<td>28</td>
<td>VDD</td>
<td>Low-voltage logic power rail</td>
</tr>
</tbody>
</table>
3.0 FUNCTIONAL DESCRIPTION

Follow the steps below to power up and power down the HV5812:

POWER-UP AND POWER-DOWN SEQUENCE

<table>
<thead>
<tr>
<th>Step</th>
<th>Power-up Description</th>
<th>Step</th>
<th>Power-down Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Connect ground.</td>
<td>1</td>
<td>Remove VPP.</td>
</tr>
<tr>
<td>2</td>
<td>Apply VDD.</td>
<td>2</td>
<td>Remove all inputs.</td>
</tr>
<tr>
<td>3</td>
<td>Set all inputs (Data, CLK, etc.) to a known state</td>
<td>3</td>
<td>Remove VDD.</td>
</tr>
<tr>
<td>4</td>
<td>Apply VPP. (Note 1)</td>
<td>4</td>
<td>Disconnect ground.</td>
</tr>
</tbody>
</table>

Note 1: The VPP should not drop below VDD during operation.

FUNCTION TABLE (Note 1)

<table>
<thead>
<tr>
<th>Serial Data Input</th>
<th>Clock Input</th>
<th>Shift Register Contents</th>
<th>Serial Data Output</th>
<th>Strobe Input</th>
<th>Latch Contents</th>
<th>Blanking</th>
<th>Output Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>L to H</td>
<td>R1, R2, R3, ..., Rn-1, Rn</td>
<td>H</td>
<td>I1, I2, I3, ..., In-1, In</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>L</td>
<td>L to H</td>
<td>R1, R2, R3, ..., Rn-1, Rn</td>
<td>L</td>
<td>I1, I2, I3, ..., In-1, In</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>X</td>
<td>H to L</td>
<td>R1, R2, R3, ..., Rn-1, Rn</td>
<td>X</td>
<td>I1, I2, I3, ..., In-1, In</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Note 1: L = Low logic level
H = High logic level
X = Irrelevant
P = Present state
R = Previous state

FIGURE 3-1: IO Circuits.
4.0 PACKAGE MARKING INFORMATION

4.1 Packaging Information

Legend:

XX...X Product Code or Customer-specific information
Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week '01')
NNN Alphanumeric traceability code
@3 Pb-free JEDEC® designator for Matte Tin (Sn)
*

This package is Pb-free. The Pb-free JEDEC designator (@3) can be found on the outer packaging for this package.

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for product code or customer-specific information. Package may or not include the corporate logo.
28-Lead PDIP (.600in Row Spacing) Package Outline (P)

1.565x.580in body, .250in height (max), .100in pitch

Note 1 (Index Area)

Note: For the most current package drawings, see the Microchip Packaging Specification at www.microchip.com/packaging.

Symbol | A | A1 | A2 | b | b1 | D | D1 | E | E1 | e | eA | eB | L
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MIN</td>
<td>.140*</td>
<td>.015</td>
<td>.125</td>
<td>.014</td>
<td>.030</td>
<td>1.380</td>
<td>.065*</td>
<td>.590*</td>
<td>.485</td>
<td>-</td>
<td>-</td>
<td>-.060*</td>
<td>.115</td>
</tr>
<tr>
<td>NOM</td>
<td>-</td>
</tr>
<tr>
<td>MAX</td>
<td>.250</td>
<td>.055*</td>
<td>.195</td>
<td>.023*</td>
<td>.070</td>
<td>1.565</td>
<td>.085*</td>
<td>.625</td>
<td>.580</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>.700</td>
</tr>
</tbody>
</table>

* This dimension is not specified in the JEDEC drawing.
† This dimension differs from the JEDEC drawing.

Drawings not to scale.
28-Lead PLCC Package Outline (PJ)
.453x.453in. body, .180in. height (max), .050in. pitch

Drawings not to scale.

Notes:
1. A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.
2. Actual shape of this feature may vary.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>A</th>
<th>A1</th>
<th>A2</th>
<th>b</th>
<th>b1</th>
<th>D</th>
<th>D1</th>
<th>E</th>
<th>E1</th>
<th>e</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension (inches)</td>
<td>MIN</td>
<td>.165</td>
<td>.090</td>
<td>.062</td>
<td>.013</td>
<td>.026</td>
<td>.485</td>
<td>.450</td>
<td>.485</td>
<td>.450</td>
<td>.050</td>
</tr>
<tr>
<td></td>
<td>NOM</td>
<td>.172</td>
<td>.105</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>.490</td>
<td>.453</td>
<td>.490</td>
<td>.453</td>
<td>.035</td>
</tr>
<tr>
<td></td>
<td>MAX</td>
<td>.180</td>
<td>.120</td>
<td>.083</td>
<td>.021</td>
<td>.032</td>
<td>.495</td>
<td>.456</td>
<td>.495</td>
<td>.456</td>
<td>.045</td>
</tr>
</tbody>
</table>

Note: For the most current package drawings, see the Microchip Packaging Specification at www.microchip.com/packaging.
28-Lead SOW (Wide Body) Package Outline (WG)

17.90x7.50mm body, 2.65mm height (max), 1.27mm pitch

Top View

Side View

View B

View A - A

Note: For the most current package drawings, see the Microchip Packaging Specification at www.microchip.com/packaging.

Note:
1. A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>A</th>
<th>A1</th>
<th>A2</th>
<th>b</th>
<th>D</th>
<th>E</th>
<th>E1</th>
<th>e</th>
<th>h</th>
<th>L</th>
<th>L1</th>
<th>L2</th>
<th>θ</th>
<th>B1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension (mm)</td>
<td>MIN</td>
<td>2.15*</td>
<td>0.10</td>
<td>2.05</td>
<td>0.31</td>
<td>17.70*</td>
<td>9.97*</td>
<td>7.40*</td>
<td>0.25</td>
<td>0.40</td>
<td>-</td>
<td>1.27 BSC</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>NOM</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>17.90</td>
<td>10.30</td>
<td>7.50</td>
<td>0.25</td>
<td>0.40</td>
<td>0.25 BSC</td>
<td>-</td>
<td>-</td>
<td>1.40 REF</td>
<td>0.25 BSC</td>
</tr>
<tr>
<td>MAX</td>
<td>2.65</td>
<td>0.30</td>
<td>2.55*</td>
<td>0.51</td>
<td>18.10*</td>
<td>10.63*</td>
<td>7.60*</td>
<td>0.75</td>
<td>1.27</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8°</td>
<td>15°</td>
</tr>
</tbody>
</table>

* This dimension is not specified in the JEDEC drawing.

Drawings are not to scale.
APPENDIX A: REVISION HISTORY

Revision A (October 2016)

• Converted Supertex Doc# DSFP-HV5812 to Microchip DS20005629A
• Changed the packaging quantity of 28-lead PLCC (PJ M904) from 500/Reel to 750/Reel and 28-lead SOW (WG) from 1000/Reel to 1600/Reel
• Made minor text changes throughout the document
HV5812

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>Device</th>
<th>Package Options</th>
<th>Environmental</th>
<th>Media Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device:</td>
<td>HV5812</td>
<td>= 20-Channel Serial-Input Vacuum Fluorescent Display Driver for Anode or Grid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Packages:</td>
<td>P</td>
<td>= 28-lead PDIP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PJ</td>
<td>= 28-lead PLCC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WG</td>
<td>= 28-lead SOW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental:</td>
<td>G</td>
<td>= Lead (Pb)-free/RoHS-compliant Package</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Media Types:</td>
<td>(blank)</td>
<td>= 13/Tube for a P Package</td>
<td></td>
<td></td>
</tr>
<tr>
<td>= 38/Tube for a PJ Package</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>= 1600/Reel for a WG Package</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M904</td>
<td>= 750/Reel for a PJ Package</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Examples:

- **a)** HV5812P-G: 20-Channel Serial-Input Vacuum Fluorescent Display Driver for Anode or Grid, 28-lead PDIP, 13/Tube
- **b)** HV5812PJ-G: 20-Channel Serial-Input Vacuum Fluorescent Display Driver for Anode or Grid, 28-lead PLCC, 38/Tube
- **c)** HV5812PJ-G-M904: 20-Channel Serial-Input Vacuum Fluorescent Display Driver for Anode or Grid, 28-lead PLCC, 750/Reel
- **d)** HV5812WG-G: 20-Channel Serial-Input Vacuum Fluorescent Display Driver for Anode or Grid, 28-lead SOW, 1600/Reel
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.

- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.

- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

- Microchip is willing to work with the customer who is concerned about the integrity of their code.

- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. Microchip MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, dsPIC, FlexFlash, flexPWR, Heldo, JukeBlox, KeeLoq, KeeLoq logo, Kleer, LANcheck, LINK MD, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC32 logo, RightTouch, SpyNIC, SST, SST logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, ETHERSYNCH, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and QUIET-WIRE are registered trademarks of Microchip Technology Incorporated in the U.S.A.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2016, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-0999-1
Worldwide Sales and Service

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/support
Web Address:
www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Austin, TX
Tel: 512-257-3370

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Novi, MI
Tel: 248-848-4000

Houston, TX
Tel: 281-894-5983

Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

New York, NY
Tel: 631-435-6000

San Jose, CA
Tel: 408-735-9110

Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon

Hong Kong
Tel: 852-2943-1502
Fax: 852-2401-3431

Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Chongqing
Tel: 86-23-8960-9588
Fax: 86-23-8960-9500

China - Dongguan
Tel: 86-769-8702-9880

China - Guangzhou
Tel: 86-20-8755-0029

China - Hangzhou
Tel: 86-571-8792-8115
Fax: 86-571-8792-8116

China - Hong Kong SAR
Tel: 852-2943-1500
Fax: 852-2401-3431

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8664-2200
Fax: 86-755-8203-1760

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

ASIA/PACIFIC
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130

China - Zuhai
Tel: 86-765-3210040
Fax: 86-765-3210049

India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4132

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-3019-1500

Japan - Osaka
Tel: 81-6-6152-7160
Fax: 81-6-6152-9310

Japan - Tokyo
Tel: 81-3-6880-3770
Fax: 81-3-6880-3771

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955

Taiwan - Kaohsiung
Tel: 886-7-213-7828

Taiwan - Taipei
Tel: 886-2-2508-8600
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Dusseldorf
Tel: 49-2129-3766400

Germany - Karlsruhe
Tel: 49-721-625370

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Italy - Venice
Tel: 39-049-7625286

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Poland - Warsaw
Tel: 48-22-3325737

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

Sweden - Stockholm
Tel: 46-8-5090-4654

UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

06/23/16