MCP1810

Ultra-Low Quiescent Current LDO Regulator

Features

• Ultra-Low Quiescent Current: 20 nA (typical)
• Ultra-Low Shutdown Supply Current: 1 nA (typical)
• 150 mA Output Current Capability for $V_R \leq 3.5V$
• 100 mA Output Current Capability for $V_R > 3.5V$
• Input Operating Voltage Range: 2.5V to 5.5V
• Standard Output Voltages (V_R): 1.2V, 1.8V, 2.5V, 3.0V, 3.3V, 4.2V
• Low Dropout Voltage: 380 mV maximum at 150 mA
• Stable with 1.0 µF Ceramic Output Capacitor
• Overcurrent Protection
• Space Saving, 8-Lead Very Thin Plastic Dual Flat, No Lead Package, 2 x 2 mm Body VDFN

Applications

• Energy Harvesting
• Long-Life, Battery-Powered Applications
• Smart Cards
• Ultra-Low Consumption “Green” Products
• Portable Electronics

Package Types

<table>
<thead>
<tr>
<th>MCP1810</th>
<th>2x2 VDFN*</th>
</tr>
</thead>
<tbody>
<tr>
<td>GND</td>
<td>1</td>
</tr>
<tr>
<td>VOUT</td>
<td>2</td>
</tr>
<tr>
<td>NC</td>
<td>3</td>
</tr>
<tr>
<td>NC</td>
<td>4</td>
</tr>
<tr>
<td>SHDN</td>
<td>8</td>
</tr>
<tr>
<td>VIN</td>
<td>7</td>
</tr>
</tbody>
</table>

* Includes Exposed Thermal Pad (EP); see Table 3-1.

For $V_R < 4.0V$, SOT-23 5-Lead package is also available by request.

Description

The MCP1810 is a 150 mA (for $V_R \leq 3.5V$), 100 mA (for $V_R > 3.5V$) low dropout (LDO) linear regulator that provides high-current and low-output voltages, while maintaining an ultra-low 20 nA of quiescent current during device operation. In addition, the MCP1810 can be shut down for an even lower 1 nA (typical) supply current draw.

The MCP1810 comes in six standard fixed output-voltage versions: 1.2V, 1.8V, 2.5V, 3.0V, 3.3V and 4.2V.

The 150 mA output current capability, combined with the low output-voltage capability, make the MCP1810 a good choice for new ultra-long-life LDO applications that have high-current demands, but require ultra-low power consumption during sleep states.

The MCP1810 is stable with ceramic output capacitors that inherently provide lower output noise and reduce the size and cost of the entire regulator solution. Only 1 µF (2.2 µF recommended) of output capacitance is needed to stabilize the LDO.

The MCP1810 ultra-low quiescent and shutdown current allows it to be paired with other ultra-low current draw devices, such as Microchip’s nanoWatt eXtreme Low Power (XLP) technology devices, for a complete ultra-low power solution.
MCP1810

Typical Application

Functional Block Diagram
MCP1810

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage, V_{IN}</td>
<td>2.7</td>
<td>—</td>
<td>5.5</td>
<td>V</td>
<td>$V_R \leq 1.8V$, $I_{OUT} \leq 50$ mA</td>
</tr>
<tr>
<td>Output Voltage Range V_{OUT}</td>
<td>1.2</td>
<td>—</td>
<td>4.2</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Input Quiescent Current I_Q</td>
<td>—</td>
<td>20</td>
<td>50</td>
<td>nA</td>
<td>$V_R = 1.8V$, $I_{OUT} = 0$</td>
</tr>
<tr>
<td>Input Quiescent Current for SHDN Mode I_{SHDN}</td>
<td>—</td>
<td>1</td>
<td>—</td>
<td>nA</td>
<td>$I_{SHDN} = GND$</td>
</tr>
<tr>
<td>Ground Current I_{GND}</td>
<td>—</td>
<td>200</td>
<td>290</td>
<td>µA</td>
<td>$V_R = 1.8V$, $I_{OUT} = 150$ mA, $V_R \leq 3.5V$, $I_{OUT} = 100$ mA, $V_R > 3.5V$</td>
</tr>
<tr>
<td>Maximum Continuous Output Current I_{OUT}</td>
<td>—</td>
<td>—</td>
<td>150</td>
<td>mA</td>
<td>$V_R \leq 3.5V$</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>—</td>
<td>100</td>
<td>mA</td>
<td>$V_R > 3.5V$</td>
</tr>
<tr>
<td>Current Limit I_{OUT}</td>
<td>—</td>
<td>350</td>
<td>—</td>
<td>mA</td>
<td>$V_{OUT} = 0.9 \times V_R$, $V_R \leq 3.5V$</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>250</td>
<td>—</td>
<td>mA</td>
<td>$V_{OUT} = 0.9 \times V_R$, $V_R > 3.5V$</td>
</tr>
<tr>
<td>Output Voltage Regulation V_{OUT}</td>
<td>—</td>
<td>—</td>
<td>$V_R - 4%$</td>
<td>$V_R + 4%$</td>
<td>$V_R < 1.8V$ (Note 3)</td>
</tr>
<tr>
<td></td>
<td>$V_R - 2%$</td>
<td>—</td>
<td>$V_R + 2%$</td>
<td>$V_R \geq 1.8V$ (Note 3)</td>
<td></td>
</tr>
<tr>
<td>Line Regulation $\frac{\Delta V_{OUT}}{(V_{OUT} \times \Delta V_{IN})}$</td>
<td>-4</td>
<td>—</td>
<td>$+4$</td>
<td>%/V</td>
<td>$V_{IN} = V_{IN(min.)}$ to 5.5V, $I_{OUT} = 50$ mA (Note 1)</td>
</tr>
</tbody>
</table>

\[\Delta V_{OUT} = V_{OUT} - V_{OUT(min.)} \]

† Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability.

AC/DC CHARACTERISTICS

Electrical Specifications: Unless otherwise noted, $V_{IN} = V_R + 800$ mV \(\text{(Note 1)}\), $I_{OUT} = 1$ mA, $C_{IN} = C_{OUT} = 2.2$ µF ceramic (X7R), $T_A = +25°C$. **Boldface** type applies for junction temperatures T_J of -40°C to +85°C \(\text{(Note 2)}\).

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Operating Voltage V_{IN}</td>
<td>V_{IN}</td>
<td>2.5</td>
<td>5.5</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Voltage Range V_{OUT}</td>
<td></td>
<td>1.2</td>
<td>4.2</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Quiescent Current I_Q</td>
<td>I_Q</td>
<td>—</td>
<td>20</td>
<td>50</td>
<td>nA</td>
<td></td>
</tr>
<tr>
<td>Input Quiescent Current for SHDN Mode I_{SHDN}</td>
<td>I_{SHDN}</td>
<td>—</td>
<td>1</td>
<td>—</td>
<td>nA</td>
<td></td>
</tr>
<tr>
<td>Ground Current I_{GND}</td>
<td>I_{GND}</td>
<td>—</td>
<td>200</td>
<td>290</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>Maximum Continuous Output Current I_{OUT}</td>
<td>I_{OUT}</td>
<td>—</td>
<td>—</td>
<td>150</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
<td>100</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Current Limit I_{OUT}</td>
<td>I_{OUT}</td>
<td>—</td>
<td>350</td>
<td>—</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>250</td>
<td>—</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Output Voltage Regulation V_{OUT}</td>
<td></td>
<td>$V_R - 4%$</td>
<td>—</td>
<td>$V_R + 4%$</td>
<td>$V_R < 1.8V$ (Note 3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_R - 2%$</td>
<td>—</td>
<td>$V_R + 2%$</td>
<td>$V_R \geq 1.8V$ (Note 3)</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: The minimum V_{IN} must meet two conditions: $V_{IN} \geq V_{IN(min.)}$ and $V_{IN} \geq V_R + V_{DROPOUT(MAX)}$.

Note 2: The junction temperature is approximated by soaking the device under test at an ambient temperature equal to the desired junction temperature. The test time is short enough such that the rise in junction temperature over the ambient temperature is not significant.

Note 3: V_R is the nominal regulator output voltage. $V_R = 1.2V, 1.8V, 2.5V, 3.0V, 3.3V$ or $4.2V$.

Note 4: Dropout voltage is defined as the input-to-output voltage differential at which the output voltage drops 3% below its nominal value that was measured with an input voltage of $V_{IN} = V_{OUT(MAX)} + V_{DROPOUT(MAX)}$.

© 2016 Microchip Technology Inc.

DS20005623A-page 3
AC/DC CHARACTERISTICS (CONTINUED)

Electrical Specifications: Unless otherwise noted, \(V_{\text{IN}} = V_R + 800 \text{ mV} \) (Note 1), \(I_{\text{OUT}} = 1 \text{ mA} \), \(C_{\text{IN}} = C_{\text{OUT}} = 2.2 \mu\text{F} \) ceramic (X7R), \(T_A = +25^\circ\text{C} \). **Boldface** type applies for junction temperatures \(T_J \) of -40°C to +85°C (Note 2).

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load Regulation</td>
<td>(\Delta V_{\text{OUT}}/V_{\text{OUT}})</td>
<td>3</td>
<td>1</td>
<td>+3</td>
<td>%</td>
<td>(V_{\text{IN}} = (V_{\text{IN(MIN)}} + V_{\text{IN(MAX)}})/2) (I_{\text{OUT}} = 0.02 \text{ mA to 150 mA}) (Note 1)</td>
</tr>
<tr>
<td>Dropout Voltage</td>
<td>(V_{\text{DROPOUT}})</td>
<td>—</td>
<td>—</td>
<td>380</td>
<td>mV</td>
<td>(I_{\text{OUT}} = 150 \text{ mA}) (V_R \leq 3.5V) (Note 4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
<td>280</td>
<td>mV</td>
<td>(I_{\text{OUT}} = 100 \text{ mA}) (V_R > 3.5V) (Note 4)</td>
</tr>
<tr>
<td>Shutdown Input</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logic High Input</td>
<td>(V_{\text{SHDN-HIGH}})</td>
<td>70</td>
<td>—</td>
<td>—</td>
<td>%(V_{\text{IN}})</td>
<td>(V_{\text{IN}} = V_R + 800 \text{ mV or 2.7V}) (whichever is greater) (I_{\text{OUT}} = 1 \text{ mA}) (Note 3)</td>
</tr>
<tr>
<td>Logic Low Input</td>
<td>(V_{\text{SHDN-LOW}})</td>
<td>—</td>
<td>—</td>
<td>30</td>
<td>%(V_{\text{IN}})</td>
<td>(V_{\text{IN}} = V_R + 800 \text{ mV or 2.7V}) (whichever is greater) (I_{\text{OUT}} = 1 \text{ mA}) (Note 3)</td>
</tr>
<tr>
<td>AC Performance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Delay from SHDN</td>
<td>(T_{\text{OR}})</td>
<td>—</td>
<td>20</td>
<td>—</td>
<td>ms</td>
<td>(V_{\text{IN}} = 3.3V) (C_{\text{IN}} = C_{\text{OUT}} = 2.2 \mu\text{F}) ceramic (X7R) (V_R = 2.5V) (I_{\text{OUT}} = 50 \text{ mA}) (f = 1 \text{ kHz})</td>
</tr>
<tr>
<td>Output Noise</td>
<td>(e_N)</td>
<td>—</td>
<td>0.48</td>
<td>—</td>
<td>(\mu\text{V/Hz})</td>
<td>(V_{\text{IN}} = 3.3V) (C_{\text{IN}} = C_{\text{OUT}} = 2.2 \mu\text{F}) ceramic (X7R) (V_R = 2.5V) (I_{\text{OUT}} = 50 \text{ mA}) (f = 100 \text{ Hz to 1 MHz})</td>
</tr>
<tr>
<td>Power Supply Ripple Rejection Ratio</td>
<td>PSRR</td>
<td>—</td>
<td>40</td>
<td>—</td>
<td>dB</td>
<td>(f = 100 \text{ Hz}) (I_{\text{OUT}} = 10 \text{ mA}) (V_{\text{INAC}} = 200 \text{ mV pk-pk}) (C_{\text{IN}} = 0 \mu\text{F})</td>
</tr>
</tbody>
</table>

Note 1: The minimum \(V_{\text{IN}} \) must meet two conditions: \(V_{\text{IN}} \geq V_{\text{IN(MIN)}} \) and \(V_{\text{IN}} \geq V_R + V_{\text{DROPOUT(MAX)}} \).

Note 2: The junction temperature is approximated by soaking the device under test at an ambient temperature equal to the desired junction temperature. The test time is short enough such that the rise in junction temperature over the ambient temperature is not significant.

Note 3: \(V_R \) is the nominal regulator output voltage. \(V_R = 1.2V, 1.8V, 2.5V, 3.0V, 3.3V \) or 4.2V.

Note 4: Dropout voltage is defined as the input-to-output voltage differential at which the output voltage drops 3% below its nominal value that was measured with an input voltage of \(V_{\text{IN}} = V_{\text{OUT(MAX)}} + V_{\text{DROPOUT(MAX)}} \).
TEMPERATURE SPECIFICATIONS

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Ranges</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating Junction Temperature Range</td>
<td>T_J</td>
<td>-40</td>
<td>—</td>
<td>+85</td>
<td>°C</td>
<td>Steady State</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_J</td>
<td>—</td>
<td>—</td>
<td>+150</td>
<td>°C</td>
<td>Transient</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>T_A</td>
<td>-65</td>
<td>—</td>
<td>+150</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Thermal Package Resistances</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance, 2x2 mm VDFN-8LD</td>
<td>θ_{JA}</td>
<td>—</td>
<td>73.1</td>
<td>—</td>
<td>°C/W</td>
<td>JEDEC® standard FR4 board with 1 oz. copper and thermal vias</td>
</tr>
<tr>
<td></td>
<td>θ_{JC}</td>
<td>—</td>
<td>10.7</td>
<td>—</td>
<td>°C/W</td>
<td></td>
</tr>
</tbody>
</table>
2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

Note: Unless otherwise indicated, \(C_{\text{OUT}} = 2.2 \, \mu\text{F} \) ceramic (X7R), \(C_{\text{IN}} = 2.2 \, \mu\text{F} \) ceramic (X7R), \(I_{\text{OUT}} = 1 \, \text{mA} \), \(T_A = +25^\circ \text{C} \), \(V_{\text{IN}} = V_R + 0.8\text{V} \), SHDN = 1 M\(\Omega \) pull-up to \(V_{\text{IN}} \).

FIGURE 2-1: Output Voltage vs. Input Voltage \((V_R = 1.2\text{V})\).

FIGURE 2-2: Output Voltage vs. Input Voltage \((V_R = 2.5\text{V})\).

FIGURE 2-3: Output Voltage vs. Input Voltage \((V_R = 3.3\text{V})\).

FIGURE 2-4: Output Voltage vs. Input Voltage \((V_R = 4.2\text{V})\).

FIGURE 2-5: Output Voltage vs. Load Current \((V_R = 1.2\text{V})\).

FIGURE 2-6: Output Voltage vs. Load Current \((V_R = 2.5\text{V})\).
Note: Unless otherwise indicated, $C_{OUT} = 2.2 \, \mu F$ ceramic (X7R), $C_{IN} = 2.2 \, \mu F$ ceramic (X7R), $I_{OUT} = 1 \, mA$, $T_A = +25^\circ C$, $V_{IN} = V_R + 0.8V$, $SHDN = 1 \, \Omega$ pull-up to V_{IN}.

FIGURE 2-7: Output Voltage vs. Load Current ($V_R = 3.3V$).

FIGURE 2-8: Output Voltage vs. Load Current ($V_R = 4.2V$).

FIGURE 2-9: Dropout Voltage vs. Load Current ($V_R = 2.5V$).

FIGURE 2-10: Dropout Voltage vs. Load Current ($V_R = 3.3V$).

FIGURE 2-11: Dropout Voltage vs. Load Current ($V_R = 4.2V$).

FIGURE 2-12: Noise vs. Frequency ($V_R = 1.2V$).
Note: Unless otherwise indicated, $C_{OUT} = 2.2 \mu F$ ceramic (X7R), $C_{IN} = 2.2 \mu F$ ceramic (X7R), $I_{OUT} = 1 mA$, $T_A = +25^\circ C$, $V_{IN} = V_R + 0.8V$, SHDN = $1 \, \Omega$ pull-up to V_{IN}.

FIGURE 2-13: Noise vs. Frequency ($V_R = 2.5V$).

FIGURE 2-14: Noise vs. Frequency ($V_R = 3.3V$).

FIGURE 2-15: Noise vs. Frequency ($V_R = 4.2V$).

FIGURE 2-16: Power Supply Ripple Rejection vs. Frequency ($V_R = 1.2V$).

FIGURE 2-17: Power Supply Ripple Rejection vs. Frequency ($V_R = 2.5V$).

FIGURE 2-18: Power Supply Ripple Rejection vs. Frequency ($V_R = 3.3V$).
MCP1810

Note: Unless otherwise indicated, $C_{\text{OUT}} = 2.2 \, \mu\text{F}$ ceramic (X7R), $C_{\text{IN}} = 2.2 \, \mu\text{F}$ ceramic (X7R), $I_{\text{OUT}} = 1 \, \text{mA}$, $T_A = +25^\circ C$, $V_{\text{IN}} = V_R + 0.8\, \text{V}$, $\overline{\text{SHDN}} = 1\, \Omega$ pull-up to V_{IN}.

FIGURE 2-19: Power Supply Ripple Rejection vs. Frequency ($V_R = 4.2\, \text{V}$).

FIGURE 2-20: Dynamic Load Step ($V_R = 1.2\, \text{V}$).

FIGURE 2-21: Dynamic Load Step ($V_R = 2.5\, \text{V}$).

FIGURE 2-22: Dynamic Load Step ($V_R = 3.3\, \text{V}$).

FIGURE 2-23: Dynamic Load Step ($V_R = 4.2\, \text{V}$).

FIGURE 2-24: Dynamic Line Step ($V_R = 1.2\, \text{V}$).
Note: Unless otherwise indicated, $C_{OUT} = 2.2 \, \mu F$ ceramic (X7R), $C_{IN} = 2.2 \, \mu F$ ceramic (X7R), $I_{OUT} = 1 \, mA$, $T_A = +25^\circ C$, $V_{IN} = V_R + 0.8V$, $SHDN = 1 \, M\Omega$ pull-up to V_{IN}.

FIGURE 2-25: Dynamic Line Step ($V_R = 2.5V$).

FIGURE 2-26: Dynamic Line Step ($V_R = 3.3V$).

FIGURE 2-27: Dynamic Line Step ($V_R = 4.2V$).

FIGURE 2-28: Start-up from V_{IN} ($V_R = 1.2V$).

FIGURE 2-29: Start-up from V_{IN} ($V_R = 2.5V$).

FIGURE 2-30: Start-up from V_{IN} ($V_R = 3.3V$).
Note: Unless otherwise indicated, $C_{\text{OUT}} = 2.2 \, \mu\text{F}$ ceramic (X7R), $C_{\text{IN}} = 2.2 \, \mu\text{F}$ ceramic (X7R), $I_{\text{OUT}} = 1 \, \text{mA}$, $T_A = +25^\circ\text{C}$, $V_{\text{IN}} = V_R + 0.8\, \text{V}$, $\text{SHDN} = 1 \, \text{M}\Omega$ pull-up to V_{IN}.

FIGURE 2-31: Start-up from V_{IN} ($V_R = 4.2\, \text{V}$).

FIGURE 2-32: Start-up from SHDN ($V_R = 1.2\, \text{V}$).

FIGURE 2-33: Start-up from SHDN ($V_R = 2.5\, \text{V}$).

FIGURE 2-34: Start-up from SHDN ($V_R = 3.3\, \text{V}$).

FIGURE 2-35: Start-up from SHDN ($V_R = 4.2\, \text{V}$).

FIGURE 2-36: Load Regulation vs. Junction Temperature ($V_R = 1.2\, \text{V}$).
Note: Unless otherwise indicated, $C_{OUT} = 2.2 \mu F$ ceramic (X7R), $C_{IN} = 2.2 \mu F$ ceramic (X7R), $I_{OUT} = 1 mA$, $T_A = +25^\circ C$, $V_{IN} = V_{R} + 0.8V$, SHDN = 1 MΩ pull-up to V_{IN}.

FIGURE 2-37: Load Regulation vs. Junction Temperature ($V_R = 2.5V$).

FIGURE 2-38: Load Regulation vs. Junction Temperature ($V_R = 3.3V$).

FIGURE 2-39: Load Regulation vs. Junction Temperature ($V_R = 4.2V$).

FIGURE 2-40: Line Regulation vs. Junction Temperature ($V_R = 1.2V$).

FIGURE 2-41: Line Regulation vs. Junction Temperature ($V_R = 2.5V$).

FIGURE 2-42: Line Regulation vs. Junction Temperature ($V_R = 3.3V$).
Note: Unless otherwise indicated, $C_{OUT} = 2.2 \, \mu F$ ceramic (X7R), $C_{IN} = 2.2 \, \mu F$ ceramic (X7R), $I_{OUT} = 1 \, mA$, $T_A = +25^\circ C$, $V_{IN} = V_R + 0.8V$, $SHDN = 1 \Omega$ pull-up to V_{IN}.

FIGURE 2-43: Line Regulation vs. Junction Temperature ($V_R = 4.2V$).

FIGURE 2-44: Quiescent Current vs. Input Voltage ($V_R = 1.2V$).

FIGURE 2-45: Quiescent Current vs. Input Voltage ($V_R = 2.5V$).

FIGURE 2-46: Quiescent Current vs. Input Voltage ($V_R = 3.3V$).

FIGURE 2-47: Quiescent Current vs. Input Voltage ($V_R = 4.2V$).

FIGURE 2-48: Ground Current vs. Junction Temperature ($V_R = 1.2V$).
Note: Unless otherwise indicated, $C_{OUT} = 2.2 \, \mu F$ ceramic (X7R), $C_{IN} = 2.2 \, \mu F$ ceramic (X7R), $I_{OUT} = 1 \, mA$, $T_a = +25^\circ C$, $V_{IN} = V_R + 0.8V$, SHDN = 1 MΩ pull-up to V_{IN}.

FIGURE 2-49: Ground Current vs. Junction Temperature ($V_R = 2.5V$).

FIGURE 2-50: Ground Current vs. Junction Temperature ($V_R = 3.3V$).

FIGURE 2-51: Ground Current vs. Junction Temperature ($V_R = 4.2V$).

FIGURE 2-52: Ground Current vs. Load Current ($V_R = 1.2V$).

FIGURE 2-53: Ground Current vs. Load Current ($V_R = 2.5V$).

FIGURE 2-54: Ground Current vs. Load Current ($V_R = 3.3V$).
Note: Unless otherwise indicated, $C_{\text{OUT}} = 2.2 \mu F$ ceramic (X7R), $C_{\text{IN}} = 2.2 \mu F$ ceramic (X7R), $I_{\text{OUT}} = 1 mA$, $T_A = +25^\circ C$, $V_{\text{IN}} = V_R + 0.8V$, $\text{SHDN} = 1 \Omega$ pull-up to V_{IN}.

FIGURE 2-55: Ground Current vs. Load Current ($V_R = 4.2V$).

FIGURE 2-56: Ground Current vs. Very Low Load Current ($V_R = 1.2V$).

FIGURE 2-57: Ground Current vs. Very Low Load Current ($V_R = 2.5V$).

FIGURE 2-58: Ground Current vs. Very Low Load Current ($V_R = 3.3V$).

FIGURE 2-59: Ground Current vs. Very Low Load Current ($V_R = 4.2V$).
3.0 PIN DESCRIPTION

The descriptions of the pins are listed in Table 3-1.

<table>
<thead>
<tr>
<th>MCP1810 2x2 VDFN</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>2</td>
<td>V_OUT</td>
<td>Regulated Output Voltage</td>
</tr>
<tr>
<td>3, 4, 5</td>
<td>NC</td>
<td>Not connected pins (should either be left floated or connected to ground)</td>
</tr>
<tr>
<td>6</td>
<td>FB</td>
<td>Output Voltage Feedback Input</td>
</tr>
<tr>
<td>7</td>
<td>V_IN</td>
<td>Input Voltage Supply</td>
</tr>
<tr>
<td>8</td>
<td>SHDN</td>
<td>Shutdown Control Input (active-low)</td>
</tr>
<tr>
<td>9</td>
<td>EP</td>
<td>Exposed Thermal Pad, connected to GND</td>
</tr>
</tbody>
</table>

3.1 Ground Pin (GND)

For optimal noise and power supply rejection ratio (PSRR) performance, the GND pin of the LDO should be tied to an electrically quiet circuit ground. This will help the LDO power supply rejection ratio and noise performance. The GND pin of the LDO conducts only ground current, so a heavy trace is not required. For applications that have switching or noisy inputs, tie the GND pin to the return of the output capacitor. Ground planes help lower the inductance and voltage spikes caused by fast transient load currents.

3.2 Regulated Output Voltage Pin (V_OUT)

The V_OUT pin is the regulated output voltage of the LDO. A minimum output capacitance of 1.0 µF is required for LDO stability. The MCP1810 is stable with ceramic, tantalum and aluminum-electrolytic capacitors. See Section 4.2 “Output Capacitor” for output capacitor selection guidance.

3.3 Feedback Pin (FB)

The output voltage is connected to the FB input. This sets the output voltage regulation value.

3.4 Input Voltage Supply Pin (V_IN)

Connect the unregulated or regulated input voltage source to V_IN. If the input voltage source is located several inches away from the LDO, or the input source is a battery, it is recommended that an input capacitor be used. A typical input capacitance value of 1 µF to 10 µF should be sufficient for most applications (2.2 µF, typical). The type of capacitor used can be ceramic, tantalum, or aluminum-electrolytic. However, the low ESR characteristics of the ceramic capacitor will yield better noise and PSRR performance at high frequency.

3.5 Shutdown Control Input (SHDN)

The SHDN input is used to turn the LDO output voltage on and off. When the SHDN input is at a logic-high level, the LDO output voltage is enabled. When the SHDN input is pulled to a logic-low level, the LDO output voltage is disabled. When the SHDN input is pulled low, the LDO enters a low-quiescent current shutdown state, where the typical quiescent current is 1 nA.

3.6 Exposed Thermal Pad (EP)

The 2x2 VDFN 8-Lead package has an exposed thermal pad on the bottom of the package. The exposed thermal pad gives the device better thermal characteristics by providing a good thermal path to either the printed circuit board (PCB) or heat sink, to remove heat from the device. The exposed pad of the package is at ground potential.
4.0 DEVICE OVERVIEW

The MCP1810 is a 150 mA/100 mA output current, low dropout (LDO) voltage regulator. The low dropout voltage of 380 mV maximum at 150 mA of current makes it ideal for battery-powered applications. The input voltage ranges from 2.5V to 5.5V. The MCP1810 adds a shutdown-control input pin and is available in six standard fixed-output voltage options: 1.2V, 1.8V, 2.5V, 3.0V, 3.3V and 4.2V. It uses a proprietary voltage reference and sensing scheme to maintain the ultra-low 20 nA quiescent current.

4.1 Output Current and Current Limiting

The MCP1810 LDO is tested and ensured to supply a minimum of 150 mA of output current for the 1.2V-to-3.5V output range, and 100 mA of output current for the 3.5V-to-4.2V output range. The device has no minimum output load, so the output load current can go to 0 mA and the LDO will continue regulating the output voltage within the specified tolerance.

The MCP1810 also incorporates an output current limit. The current limit is set to 350 mA typical for the 1.2V ≤ VR ≤ 3.5V range, and to 250 mA typical for the 3.5V < VR ≤ 5.5V range.

4.2 Output Capacitor

The MCP1810 requires a minimum output capacitance of 1 µF for output voltage stability. Ceramic capacitors are recommended because of their size, cost and robust environmental qualities.

Aluminum-electrolytic and tantalum capacitors can be used on the LDO output as well. The output capacitor should be located as close to the LDO output as is practical. Ceramic materials X7R and X5R have low temperature coefficients and are well within the acceptable ESR range required. A typical 1 µF X7R 0805 capacitor has an ESR of 50 mΩ.

For extreme output currents - below 100 µA or close to 150 mA/100 mA - an output capacitor with higher ESR (tantalum, aluminum-electrolytic) is recommended. Ceramic output capacitor may be used if a 0.5Ω to 1Ω resistor is placed in series with the capacitor.

4.3 Input Capacitor

Low input-source impedance is necessary for the LDO output to operate properly. When operating from batteries, or in applications with long lead length (> 10 inches) between the input source and the LDO, some input capacitance is recommended. A minimum of 1.0 µF to 4.7 µF of capacitance is recommended for most applications.

For applications that have output step load requirements, the input capacitance of the LDO is very important. The input capacitance provides a low-impedance source of current for the LDO to use for dynamic load changes. This allows the LDO to respond quickly to the output load step. For good step-response performance, the input capacitor should be equivalent or higher value than the output capacitor. The capacitor should be placed as close to the input of the LDO as is practical. Larger input capacitors will also help reduce any high-frequency noise on the input and output of the LDO, as well as the effects of any inductance that exists between the input source voltage and the input capacitance of the LDO.

4.4 Shutdown Input (SHDN)

The SHDN input is an active-low input signal that turns the LDO on and off. The SHDN threshold is a percentage of the input voltage. The maximum input-low logic level is 30% of VIN and the minimum high logic level is 70% of VIN.

On the rising edge of the SHDN input, the shutdown circuitry has a 20 ms (typical) delay before allowing the LDO output to turn on. This delay helps to reject any false turn-on signal or noise on the SHDN input signal. After the 20 ms delay, the LDO output enters its current-limited soft-start period as it rises from 0V to its final regulation value. If the SHDN input signal is pulled low during the 20 ms delay period, the timer will be reset and the delay time will start over again on the next rising edge of the SHDN input. The total time from the SHDN input going high (turn-on) to the LDO output being in regulation is typically 20 ms. Figure 4-1 shows a timing diagram of the SHDN input.

![FIGURE 4-1: Shutdown Input Timing Diagram.](image-url)
4.5 Dropout Voltage

Dropout voltage is defined as the input-to-output voltage differential at which the output voltage drops 3% below the nominal value that was measured with a $V_R + 0.8\text{V}$ differential applied. The MCP1810 LDO has a low-dropout voltage specification of 230 mV (typical) for $V_R = 2.5\text{V}$, 120 mV for $V_R = 3.3\text{V}$ at 150 mA out, and 70 mV (typical) for $V_R = 4.2\text{V}$ at 100 mA out. See Section 1.0 “Electrical Characteristics” for maximum dropout voltage specifications.
5.0 APPLICATION CIRCUITS AND ISSUES

5.1 Typical Application

The MCP1810 is used for applications that require ultra-low quiescent current draw.

FIGURE 5-1: Typical Application Circuit.

5.2 Power Calculations

5.2.1 POWER DISSIPATION

The internal power dissipation within the MCP1810 is a function of input voltage, output voltage, output current and quiescent current. **Equation 5-1** can be used to calculate the internal power dissipation for the LDO.

EQUATION 5-1:

\[P_{LDO} = (V_{IN(MAX)} - V_{OUT(MIN)}) \times I_{OUT(MAX)} \]

Where:
- \(P_{LDO} \) = Internal power dissipation of the LDO pass device
- \(V_{IN(MAX)} \) = Maximum input voltage
- \(V_{OUT(MIN)} \) = LDO minimum output voltage
- \(I_{OUT(MAX)} \) = Maximum output current

In addition to the LDO pass element power dissipation, there is power dissipation within the MCP1810 as a result of quiescent or ground current. The power dissipation as a result of the ground current can be calculated by applying **Equation 5-2**:

EQUATION 5-2:

\[P_{I(GND)} = V_{IN(MAX)} \times I_{GND} \]

Where:
- \(P_{I(GND)} \) = Power dissipation due to the quiescent current of the LDO
- \(V_{IN(MAX)} \) = Maximum input voltage
- \(I_{GND} \) = Current flowing into the GND pin

The total power dissipated within the MCP1810 is the sum of the power dissipated in the LDO pass device and the \(P_{I(GND)} \) term. Because of the CMOS construction, the typical \(I_{GND} \) for the MCP1810 is maximum 290 µA at full load. Operating at a maximum \(V_{IN} \) of 5.5V results in a power dissipation of 1.6 mW. For most applications, this is small compared to the LDO pass device power dissipation, and can be neglected.

The maximum continuous operating junction temperature specified for the MCP1810 is +85°C. To estimate the internal junction temperature of the MCP1810, the total internal power dissipation is multiplied by the thermal resistance from junction-to-ambient (\(R_{JA} \)) of the device. The thermal resistance from junction to ambient for the 2x2 VDFN 8-Lead package is estimated at 73.1°C/W.

EQUATION 5-3:

\[T_{J(MAX)} = P_{TOTAL} \times R_{JA} + T_{A(MAX)} \]

Where:
- \(T_{J(MAX)} \) = Maximum continuous junction temperature
- \(P_{TOTAL} \) = Total power dissipation of the device
- \(R_{JA} \) = Thermal resistance from junction to ambient
- \(T_{A(MAX)} \) = Maximum ambient temperature

The maximum power dissipation capability for a package can be calculated given the junction-to-ambient thermal resistance and the maximum ambient temperature for the application. **Equation 5-4** can be used to determine the package maximum internal power dissipation.

EQUATION 5-4:

\[P_{DMAX} = (T_{J(MAX)} - T_{A(MAX)}) / R_{JA} \]

Where:
- \(P_{DMAX} \) = Maximum power dissipation of the device
- \(T_{J(MAX)} \) = Maximum continuous junction temperature
- \(T_{A(MAX)} \) = Maximum ambient temperature
- \(R_{JA} \) = Thermal resistance from junction to ambient
5.3 Typical Application Examples

Internal power dissipation, junction temperature rise, junction temperature and maximum power dissipation are calculated in the following example. The power dissipation as a result of ground current is small enough to be neglected.

5.3.1 Power Dissipation Example

EXAMPLE 5-1:

<table>
<thead>
<tr>
<th>Package</th>
<th>Package Type = 2 x 2 VDFN 8-Lead</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage</td>
<td>$V_{IN} = 3.3V \pm 5%$</td>
</tr>
<tr>
<td>LDO Output Voltage and Current</td>
<td>$V_{OUT} = 2.5V$, $I_{OUT} = 150mA$</td>
</tr>
<tr>
<td>Maximum Ambient Temperature</td>
<td>$T_{A(MAX)} = +60^\circ C$</td>
</tr>
<tr>
<td>Internal Power Dissipation</td>
<td>$P_{LDO(MAX)} = (V_{IN(MAX)} - V_{OUT(MIN)}) \times I_{OUT(MAX)} = (3.3V \times 1.05) - (2.5V \times 0.975)) \times 150mA = 0.154$ Watts</td>
</tr>
</tbody>
</table>

EXAMPLE 5-2:

The internal junction temperature rise is a function of internal power dissipation and of the thermal resistance from junction to ambient for the application. The thermal resistance from junction to ambient ($R_{\theta JA}$) is derived from EIA/JEDEC standards for measuring thermal resistance. The EIA/JEDEC specification is JESD51. The standard describes the test method and board specifications for measuring the thermal resistance from junction to ambient. The actual thermal resistance for a particular application can vary depending on many factors such as copper area and thickness. Refer to Application Note AN792, “A Method to Determine How Much Power a SOT23 Can Dissipate in an Application” (DS00792), for more information regarding this subject.

EXAMPLE 5-3:

To estimate the internal junction temperature, the calculated temperature rise is added to the ambient or offset temperature. For this example, the worst-case junction temperature is estimated below:

EXAMPLE 5-4:

For a 2x2 VDFN 8-Lead (73.1°C/W $R_{\theta JA}$):

$P_{D(MAX)} = (85^\circ C - 60^\circ C)/73.1^\circ C/W = 0.342W$.

$T_{J} = T_{J(RISE)} + T_{A}$

Where:

T_{J} = Junction temperature

$T_{J(RISE)}$ = Rise in the device junction temperature over the ambient temperature

T_{A} = Ambient temperature

$$T_{J(RISE)} = P_{TOTAL} \times R_{\theta JA}$$

$$T_{J(RISE)} = 0.154W \times 73.1^\circ C/W$$

$$T_{J(RISE)} = 11.3^\circ C$$

$$T_{J} = T_{J(RISE)} + T_{A(MAX)}$$

$$T_{J} = 11.3^\circ C + 60.0^\circ C$$

$$T_{J} = 71.3^\circ C$$

5.3.1.2 Junction Temperature Estimate

5.3.1.3 Maximum Package Power Dissipation at $+60^\circ C$ Ambient Temperature

EXAMPLE 5-4:

For a 2x2 VDFN 8-Lead (73.1°C/W $R_{\theta JA}$):

$P_{D(MAX)} = (85^\circ C - 60^\circ C)/73.1^\circ C/W = 0.342W$.

$T_{J} = T_{J(RISE)} + T_{A(MAX)}$

$T_{J} = 11.3^\circ C + 60.0^\circ C$

$T_{J} = 71.3^\circ C$
6.0 PACKAGING INFORMATION

6.1 Package Marking Information

8-Lead VDFN (2 x 2 mm)

<table>
<thead>
<tr>
<th>Part Number Code</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCP1810T-12I/J8A</td>
<td>A12</td>
</tr>
<tr>
<td>MCP1810T-18I/J8A</td>
<td>A18</td>
</tr>
<tr>
<td>MCP1810T-25I/J8A</td>
<td>A25</td>
</tr>
<tr>
<td>MCP1810T-30I/J8A</td>
<td>A30</td>
</tr>
<tr>
<td>MCP1810T-33I/J8A</td>
<td>A33</td>
</tr>
<tr>
<td>MCP1810T-42I/J8A</td>
<td>A42</td>
</tr>
</tbody>
</table>

Legend:
- XX...X Customer-specific information
- Y Year code (last digit of calendar year)
- YY Year code (last 2 digits of calendar year)
- WW Week code (week of January 1 is week '01')
- NNN Alphanumeric traceability code
- \(3\) Pb-free JEDEC\(^\text{®}\) designator for Matte Tin (Sn)
- * This package is Pb-free. The Pb-free JEDEC designator (\(3\)) can be found on the outer packaging for this package.

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.
8-Lead Very Thin Plastic Dual Flat, No Lead Package (J8A) - 2x2 mm Body [VDFN] With 1.7x0.9 mm Exposed Pad

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-1207A Sheet 1 of 2
8-Lead Very Thin Plastic Dual Flat, No Lead Package (J8A) - 2x2 mm Body [VDFN] With 1.7x0.9 mm Exposed Pad

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

<table>
<thead>
<tr>
<th>Units</th>
<th>8-Lead Very Thin Plastic Dual Flat, No Lead Package (J8A) - 2x2 mm Body [VDFN] With 1.7x0.9 mm Exposed Pad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Terminals</td>
<td>N</td>
</tr>
<tr>
<td>Pitch</td>
<td>e</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
</tr>
<tr>
<td>Standoff</td>
<td>A1</td>
</tr>
<tr>
<td>Terminal Thickness</td>
<td>A3</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
</tr>
<tr>
<td>Exposed Pad Length</td>
<td>D2</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
</tr>
<tr>
<td>Exposed Pad Width</td>
<td>E2</td>
</tr>
<tr>
<td>Terminal Width</td>
<td>b</td>
</tr>
<tr>
<td>Terminal Length</td>
<td>L</td>
</tr>
<tr>
<td>Terminal-to-Exposed-Pad</td>
<td>K</td>
</tr>
</tbody>
</table>

Notes:
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Package is saw singulated
3. Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 REF: Reference Dimension, usually without tolerance, for information purposes only.
8-Lead Very Thin Plastic Dual Flat, No Lead Package (J8A) - 2x2 mm Body [VDFN] With 1.7x0.9 mm Exposed Pad

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Limits</td>
<td>MIN</td>
</tr>
<tr>
<td>Contact Pitch</td>
<td>E</td>
</tr>
<tr>
<td>Optional Center Pad Width</td>
<td>X2</td>
</tr>
<tr>
<td>Optional Center Pad Length</td>
<td>Y2</td>
</tr>
<tr>
<td>Contact Pad Spacing</td>
<td>C</td>
</tr>
<tr>
<td>Contact Pad Width (X8)</td>
<td>X1</td>
</tr>
<tr>
<td>Contact Pad Length (X8)</td>
<td>Y1</td>
</tr>
<tr>
<td>Contact Pad to Pad (X6)</td>
<td>G1</td>
</tr>
<tr>
<td>Contact Pad to Center Pad (X8)</td>
<td>G2</td>
</tr>
<tr>
<td>Thermal Via Diameter</td>
<td>V</td>
</tr>
<tr>
<td>Thermal Via Pitch</td>
<td>EV</td>
</tr>
</tbody>
</table>

Notes:
1. Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-3207A
APPENDIX A: REVISION HISTORY

Revision A (September 2016)

• Original Release of this Document.
PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>Device</th>
<th>Output Voltage</th>
<th>Temp.</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>-XX</td>
<td>X/XXX</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Device: MCP1810T: Ultra-Low Quiescent Current LDO Regulator, Tape and Reel

Standard Output Voltages*:
- 12 = 1.2V
- 18 = 1.8V
- 25 = 2.5V
- 30 = 3.0V
- 33 = 3.3V
- 42 = 4.2V

*Contact factory for other output voltage options

Temperature: I = -40°C to +85°C (Industrial)

Package Type: J8A = Very Thin Plastic Dual Flat, No Lead Package, VDFN, 8-Lead, with 1.7 x 0.9 mm Exposed Pad

Examples:

a) MCP1810T-12I/J8A: Tape and reel, 1.2V output voltage, Industrial temperature, 8-LD VDFN package
b) MCP1810T-18I/J8A: Tape and reel, 1.8V output voltage, Industrial temperature, 8-LD VDFN package
c) MCP1810T-25I/J8A: Tape and reel, 2.5V output voltage, Industrial temperature, 8-LD VDFN package
d) MCP1810T-30I/J8A: Tape and reel, 3.0V output voltage, Industrial temperature, 8-LD VDFN package
e) MCP1810T-33I/J8A: Tape and reel, 3.3V output voltage, Industrial temperature, 8-LD VDFN package
f) MCP1810T-42I/J8A: Tape and reel, 4.2V output voltage, Industrial temperature, 8-LD VDFN package
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.

- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.

- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

- Microchip is willing to work with the customer who is concerned about the integrity of their code.

- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. Microchip makes no representations or warranties of any kind, whether express or implied, written or oral, statutory or otherwise, related to the information, including but not limited to its condition, quality, performance, merchantability or fitness for purpose. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademark

The Microchip name and logo, the Microchip logo, AnyRate, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, KeeLoq logo, Kleer, LANCheck, LINK MD, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC32 logo, RightTouch, SpyNIC, SST, SST logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, ETHERSYNCH, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and QUIET-WIRE are registered trademarks of Microchip Technology Incorporated in the U.S.A.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2016, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-0978-6