MCP14A0151/2

1.5A MOSFET Driver
with Low Threshold Input And Enable

Features

• High Peak Output Current: 1.5A (typical)
• Wide Input Supply Voltage Operating Range:
 - 4.5V to 18V
• Low Shoot-Through/Cross-Conduction Current in Output Stage
• High Capacitive Load Drive Capability:
 - 1000 pF in 11.5 ns (typical)
• Short Delay Times: 33 ns (tD1), 24 ns (tD2) (typical)
• Low Supply Current: 375 µA (typical)
• Low-Voltage Threshold Input and Enable with Hysteresis
• Latch-Up Protected: Withstands 500 mA Reverse Current
• Space-Saving Packages:
 - 6L SOT-23
 - 6L 2 x 2 DFN

Applications

• Switch Mode Power Supplies
• Pulse Transformer Drive
• Line Drivers
• Level Translator
• Motor and Solenoid Drive

General Description

The MCP14A0151/2 devices are high-speed MOSFET drivers that are capable of providing up to 1.5A of peak current while operating from a single 4.5V to 18V supply. The inverting (MCP14A0151) or non-inverting (MCP14A0152) single channel output is directly controlled from either TTL or CMOS (2V to 18V) logic. These devices also feature low shoot-through current, matched rise and fall times, and short propagation delays which make them ideal for high switching frequency applications.

The MCP14A0151/2 family of devices offer enhanced control with Enable functionality. The active-high Enable pin can be driven low to drive the output of the MCP14A0151/2 low, regardless of the status of the Input pin. An integrated pull-up resistor allows the user to leave the Enable pin floating for standard operation.

Additionally, the MCP14A0151/2 devices feature separate ground pins (AGND and GND), allowing greater noise isolation between the level-sensitive Input/Enable pins and the fast, high-current transitions of the push-pull output stage.

These devices are highly latch-up resistant under any condition within their power and voltage ratings. They can accept up to 500 mA of reverse current being forced back into their outputs without damage or logic upset. All terminals are fully protected against electrostatic discharge (ESD) up to 1.75 kV (HBM) and 200V (MM).

Package Types

<table>
<thead>
<tr>
<th>6-Lead SOT-23</th>
<th>MCP14A0151</th>
<th>MCP14A0152</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>AGND</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>VDD</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>OUT</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MCP14A0152</th>
<th>2x2 DFN-6*</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUT</td>
<td>1: o</td>
</tr>
<tr>
<td>GND</td>
<td>2: 7</td>
</tr>
<tr>
<td>EN</td>
<td>3: 4</td>
</tr>
</tbody>
</table>

* Includes Exposed Thermal Pad (EP); see Table 3-1.
MCP14A0151/2

Functional Block Diagram

[Diagram of the MCP14A0151 Inverting and MCP14A0152 Non-Inverting circuitry, showing inputs, outputs, and internal pull-ups.]
1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

- **VDD**, Supply Voltage: +20V
- **VIN**, Input Voltage: (VDD + 0.3V) to (GND - 0.3V)
- **VEN**, Enable Voltage: (VDD + 0.3V) to (GND - 0.3V)
- Package Power Dissipation (T_A = +50°C)
 - 6L SOT-23: 0.52 W
 - 6L 2 x 2 DFN: 1.09 W
- ESD Protection on all Pins: 1.75 kV (HBM), 200V (MM)

† Notice: Stresses above those listed under “Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability.

DC CHARACTERISTICS

Electrical Specifications: Unless otherwise noted, T_A = +25°C, with 4.5V ≤ VDD ≤ 18V.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Voltage Range</td>
<td>VIN</td>
<td>GND - 0.3V</td>
<td>—</td>
<td>VDD + 0.3V</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Logic ‘1’ High Input Voltage</td>
<td>V_H</td>
<td>2.0</td>
<td>1.6</td>
<td>—</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Logic ‘0’ Low Input Voltage</td>
<td>V_L</td>
<td>—</td>
<td>1.2</td>
<td>0.8</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Input Voltage Hysteresis</td>
<td>V_HYST(IN)</td>
<td>—</td>
<td>0.4</td>
<td>—</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Input Current</td>
<td>I_IN</td>
<td>-1</td>
<td>—</td>
<td>+1</td>
<td>µA</td>
<td>0V ≤ VIN ≤ VDD</td>
</tr>
<tr>
<td>Enable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enable Voltage Range</td>
<td>V_EN</td>
<td>GND - 0.3V</td>
<td>—</td>
<td>VDD + 0.3V</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Logic ‘1’ High Enable Voltage</td>
<td>V_EH</td>
<td>2.0</td>
<td>1.6</td>
<td>—</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Logic ‘0’ Low Enable Voltage</td>
<td>V_EL</td>
<td>—</td>
<td>1.2</td>
<td>0.8</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Enable Voltage Hysteresis</td>
<td>V_HYST(EN)</td>
<td>—</td>
<td>0.4</td>
<td>—</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Enable Pin Pull-Up Resistance</td>
<td>R_ENBL</td>
<td>—</td>
<td>1.8</td>
<td>—</td>
<td>MΩ</td>
<td>VDD = 18V, ENB = A_GND</td>
</tr>
<tr>
<td>Enable Input Current</td>
<td>I_EN</td>
<td>—</td>
<td>10</td>
<td>—</td>
<td>µA</td>
<td>VDD = 18V, ENB = A_GND</td>
</tr>
<tr>
<td>Propagation Delay</td>
<td>t_D3</td>
<td>—</td>
<td>34</td>
<td>41</td>
<td>ns</td>
<td>VDD = 18V, V_EN = 5V, see Figure 4-3, (Note 1)</td>
</tr>
<tr>
<td>Propagation Delay</td>
<td>t_D4</td>
<td>—</td>
<td>23</td>
<td>30</td>
<td>ns</td>
<td>VDD = 18V, V_EN = 5V, see Figure 4-3, (Note 1)</td>
</tr>
<tr>
<td>Output</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Output Voltage</td>
<td>V_OH</td>
<td>VDD - 0.025</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>I_OUT = 0A</td>
</tr>
<tr>
<td>Low Output Voltage</td>
<td>V_OL</td>
<td>—</td>
<td>—</td>
<td>0.025V</td>
<td>V</td>
<td>I_OUT = 0A</td>
</tr>
<tr>
<td>Output Resistance, High</td>
<td>R_OH</td>
<td>—</td>
<td>4.5</td>
<td>6.5</td>
<td>Ω</td>
<td>I_OUT = 10 mA, VDD = 18V</td>
</tr>
<tr>
<td>Output Resistance, Low</td>
<td>R_OH</td>
<td>—</td>
<td>3</td>
<td>4.5</td>
<td>Ω</td>
<td>I_OUT = 10 mA, VDD = 18V</td>
</tr>
<tr>
<td>Peak Output Current</td>
<td>I_PK</td>
<td>—</td>
<td>1.5</td>
<td>—</td>
<td>A</td>
<td>VDD = 18V (Note 1)</td>
</tr>
<tr>
<td>Latch-Up Protection Withstand</td>
<td>I_REV</td>
<td>0.5</td>
<td>—</td>
<td>—</td>
<td>A</td>
<td>Duty cycle ≤ 2%, t ≤ 300 µs (Note 1)</td>
</tr>
<tr>
<td>Reverse Current</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switching Time (Note 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rise Time</td>
<td>t_R</td>
<td>—</td>
<td>11.5</td>
<td>18.5</td>
<td>ns</td>
<td>VDD = 18V, C_L = 1000 pF, see Figure 4-1, Figure 4-2 (Note 1)</td>
</tr>
<tr>
<td>Fall Time</td>
<td>t_F</td>
<td>—</td>
<td>10</td>
<td>17</td>
<td>ns</td>
<td>VDD = 18V, C_L = 1000 pF, see Figure 4-1, Figure 4-2 (Note 1)</td>
</tr>
</tbody>
</table>

Note 1: Tested during characterization, not production tested.
DC CHARACTERISTICS (CONTINUED)

Electrical Specifications: Unless otherwise noted, $T_A = +25^\circ C$, with $4.5V \leq V_{DD} \leq 18V$.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delay Time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ns</td>
<td>$V_{DD} = 18V, V_IN = 5V$, see Figure 4-1, Figure 4-2 (Note 1)</td>
</tr>
<tr>
<td>t_{D1}</td>
<td></td>
<td></td>
<td>33</td>
<td>40</td>
<td>ns</td>
<td>$V_{DD} = 18V, V_IN = 5V$, see Figure 4-1, Figure 4-2 (Note 1)</td>
</tr>
<tr>
<td>t_{D2}</td>
<td></td>
<td></td>
<td>24</td>
<td>31</td>
<td>ns</td>
<td>$V_{DD} = 18V, V_IN = 5V$, see Figure 4-1, Figure 4-2 (Note 1)</td>
</tr>
</tbody>
</table>

Power Supply

<table>
<thead>
<tr>
<th>Supply Voltage</th>
<th>V_{DD}</th>
<th>4.5</th>
<th>—</th>
<th>18</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply Current</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{DD}</td>
<td>—</td>
<td>330</td>
<td>560</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>I_{DD}</td>
<td>—</td>
<td>360</td>
<td>580</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>I_{DD}</td>
<td>—</td>
<td>375</td>
<td>600</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>I_{DD}</td>
<td>—</td>
<td>375</td>
<td>600</td>
<td></td>
<td>μA</td>
</tr>
</tbody>
</table>

Note 1: Tested during characterization, not production tested.

DC CHARACTERISTICS (OVER OPERATING TEMP. RANGE) (Note 1)

Electrical Specifications: Unless otherwise indicated, over the operating range with $4.5V \leq V_{DD} \leq 18V$.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage Range</td>
<td>V_{IN}</td>
<td>GND - 0.3V</td>
<td>—</td>
<td>$V_{DD} + 0.3$</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Logic '1' High Input Voltage</td>
<td>V_{IH}</td>
<td>2.0</td>
<td>1.6</td>
<td>—</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Logic '0' Low Input Voltage</td>
<td>V_{IL}</td>
<td>—</td>
<td>1.2</td>
<td>0.8</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Input Voltage Hysteresis</td>
<td>$V_{HYST(IN)}$</td>
<td>—</td>
<td>0.4</td>
<td>—</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Input Current</td>
<td>I_{IN}</td>
<td>-10</td>
<td>—</td>
<td>+10</td>
<td>μA</td>
<td>$0V \leq V_{IN} \leq V_{DD}$</td>
</tr>
</tbody>
</table>

Enable

Enable Voltage Range	V_{EN}	GND - 0.3V	—	$V_{DD} + 0.3$	V	
Logic '1' High Enable Voltage	V_{EH}	2.0	1.6	—	V	
Logic '0' Low Enable Voltage	V_{EL}	—	1.2	0.8	V	
Enable Voltage Hysteresis	$V_{HYST(EN)}$	—	0.4	—	V	
Enable Input Current	I_{EN}	—	12	—	μA	$V_{DD} = 18V, ENB = AGND$
Propagation Delay	t_{D3}	—	32	39	ns	
Propagation Delay	t_{D4}	—	25	32	ns	

Output

High Output Voltage	V_{OH}	$V_{DD} - 0.025$	—	—	V	DC Test
Low Output Voltage	V_{OL}	—	—	0.025	V	DC Test
Output Resistance, High	R_{OH}	—	—	9	Ω	$I_{OUT} = 10mA, V_{DD} = 18V$
Output Resistance, Low	R_{OL}	—	—	6.5	Ω	$I_{OUT} = 10mA, V_{DD} = 18V$

Note 1: Tested during characterization, not production tested.
DC CHARACTERISTICS (OVER OPERATING TEMP. RANGE) (Note 1) (CONTINUED)

Electrical Specifications: Unless otherwise indicated, over the operating range with 4.5V \(\leq V_{DD} \leq 18V.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switching Time (Note 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rise Time</td>
<td>(t_R)</td>
<td>—</td>
<td>14</td>
<td>21</td>
<td>ns</td>
<td>(V_{DD} = 18V, C_L = 1000 \text{ pF}, T_A = +125^\circ C,) see Figure 4-1, Figure 4-2</td>
</tr>
<tr>
<td>Fall Time</td>
<td>(t_F)</td>
<td>—</td>
<td>13</td>
<td>20</td>
<td>ns</td>
<td>(V_{DD} = 18V, C_L = 1000 \text{ pF}, T_A = +125^\circ C,) see Figure 4-1, Figure 4-2</td>
</tr>
<tr>
<td>Delay Time 1</td>
<td>(t_{D1})</td>
<td>—</td>
<td>31</td>
<td>38</td>
<td>ns</td>
<td>(V_{DD} = 18V, V_{IN} = 5V, T_A = +125^\circ C,) see Figure 4-1, Figure 4-2</td>
</tr>
<tr>
<td>Delay Time 2</td>
<td>(t_{D2})</td>
<td>—</td>
<td>26</td>
<td>33</td>
<td></td>
<td>(V_{DD} = 18V, V_{IN} = 5V, T_A = +125^\circ C,) see Figure 4-1, Figure 4-2</td>
</tr>
</tbody>
</table>

Power Supply

<table>
<thead>
<tr>
<th></th>
<th>(V_{DD})</th>
<th>4.5</th>
<th>—</th>
<th>18</th>
<th>V</th>
<th></th>
</tr>
</thead>
</table>

Power Supply Current

<table>
<thead>
<tr>
<th></th>
<th>(I_{DD})</th>
<th>—</th>
<th>—</th>
<th>760</th>
<th>(\mu A)</th>
<th>(V_{IN} = 3V, V_{EN} = 3V)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(I_{DD})</td>
<td>—</td>
<td>—</td>
<td>780</td>
<td>(\mu A)</td>
<td>(V_{IN} = 0V, V_{EN} = 3V)</td>
</tr>
<tr>
<td></td>
<td>(I_{DD})</td>
<td>—</td>
<td>—</td>
<td>780</td>
<td>(\mu A)</td>
<td>(V_{IN} = 3V, V_{EN} = 0V)</td>
</tr>
<tr>
<td></td>
<td>(I_{DD})</td>
<td>—</td>
<td>—</td>
<td>800</td>
<td>(\mu A)</td>
<td>(V_{IN} = 0V, V_{EN} = 0V)</td>
</tr>
</tbody>
</table>

Note 1: Tested during characterization, not production tested.

TEMPERATURE CHARACTERISTICS

Electrical Specifications: Unless otherwise noted, all parameters apply with 4.5V \(\leq V_{DD} \leq 18V.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Ranges</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specified Temperature Range</td>
<td>(T_A)</td>
<td>-40</td>
<td>—</td>
<td>+125</td>
<td>(^\circ C)</td>
<td></td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>(T_J)</td>
<td>—</td>
<td>—</td>
<td>+150</td>
<td>(^\circ C)</td>
<td></td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>(T_A)</td>
<td>-65</td>
<td>—</td>
<td>+150</td>
<td>(^\circ C)</td>
<td></td>
</tr>
<tr>
<td>Package Thermal Resistances</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance, 6LD 2x2 DFN</td>
<td>(\theta_{JA})</td>
<td>—</td>
<td>91</td>
<td>—</td>
<td>(^\circ C/W)</td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance, 6LD SOT-23</td>
<td>(\theta_{JA})</td>
<td>—</td>
<td>192</td>
<td>—</td>
<td>(^\circ C/W)</td>
<td></td>
</tr>
</tbody>
</table>
2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

Note: Unless otherwise indicated, $T_A = +25^\circ C$ with $4.5V \leq V_{DD} \leq 18V$.

FIGURE 2-1: Rise Time vs. Supply Voltage.

FIGURE 2-2: Rise Time vs. Capacitive Load.

FIGURE 2-3: Fall Time vs. Supply Voltage.

FIGURE 2-4: Fall Time vs. Capacitive Load.

FIGURE 2-5: Rise and Fall Time vs. Temperature.

FIGURE 2-6: Crossover Current vs. Supply Voltage.
Note: Unless otherwise indicated, $T_A = +25^\circ C$ with $4.5V \leq V_{DD} \leq 18V.$
Note: Unless otherwise indicated, $T_A = +25^\circ C$ with $4.5V \leq V_{DD} \leq 18V$.

Figure 2-13: Quiescent Supply Current vs. Supply Voltage.

Figure 2-14: Quiescent Supply Current vs. Temperature.

Figure 2-15: Input Threshold vs. Temperature.

Figure 2-16: Input Threshold vs Supply Voltage.

Figure 2-17: Enable Threshold vs. Temperature.

Figure 2-18: Enable Threshold vs Supply Voltage.
Note: Unless otherwise indicated, \(T_A = +25^\circ C \) with \(4.5V \leq V_{DD} \leq 18V \).

FIGURE 2-19: Output Resistance (Output High) vs. Supply Voltage.

FIGURE 2-20: Output Resistance (Output Low) vs. Supply Voltage.

FIGURE 2-21: Supply Current vs. Capacitive Load \((V_{DD} = 18V)\).

FIGURE 2-22: Supply Current vs. Capacitive Load \((V_{DD} = 12V)\).

FIGURE 2-23: Supply Current vs. Capacitive Load \((V_{DD} = 6V)\).

FIGURE 2-24: Supply Current vs. Frequency \((V_{DD} = 18V)\).
Note: Unless otherwise indicated, $T_A = +25^\circ C$ with $4.5V \leq V_{DD} \leq 18V$.

FIGURE 2-25: Supply Current vs. Frequency ($V_{DD} = 12V$).

FIGURE 2-26: Supply Current vs. Frequency ($V_{DD} = 6V$).

FIGURE 2-27: Enable Current vs. Supply Voltage.
3.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 3-1.

TABLE 3-1: PIN FUNCTION TABLE

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6L 2x2 DFN</td>
<td>6L SOT-23</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>OUT/OUT</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>GND</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>EN</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>A\textsubscript{GND}</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>IN</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>V\textsubscript{DD}</td>
</tr>
<tr>
<td>EP</td>
<td>—</td>
<td>EP</td>
</tr>
</tbody>
</table>

3.1 Output Pin (OUT, \text{OUT})

The Output is a CMOS push-pull output that is capable of sourcing and sinking 1.5A of peak current (V\textsubscript{DD} = 18V). The low output impedance ensures the gate of the external MOSFET stays in the intended state even during large transients. This output also has a reverse current latch-up rating of 500 mA.

3.2 Power Ground Pin (GND)

GND is the device return pin for the output stage. The GND pin should have a low-impedance connection to the bias supply source return. When the capacitive load is being discharged, high peak currents will flow out of the ground pin.

3.3 Device Enable Pin (EN)

The MOSFET driver Device Enable is a high-impedance, TTL/CMOS compatible input. The Enable input also has hysteresis between the high and low input levels, allowing them to be driven from slow rising and falling signals and to provide noise immunity. Driving the Enable pin below the threshold will disable the output of the device, pulling OUT/OUT low, regardless of the status of the Input pin. Driving the Enable pin above the threshold allows normal operation of the OUT/OUT pin based on the status of the Input pin. The Enable pin utilizes an internal pull up resistor, allowing the pin to be left floating for standard driver operation.

3.4 Analog Ground Pin (A\textsubscript{GND})

AGND is the device return pin for the input and enable stages of the MOSFET driver. The AGND pin should be connected to an electrically "quiet" ground node to provide a low noise reference for the input and enable pins.

3.5 Control Input Pin (IN)

The MOSFET driver Control Input is a high-impedance, TTL/CMOS compatible input. The Input also has hysteresis between the high and low input levels, allowing them to be driven from slow rising and falling signals and to provide noise immunity.

3.6 Supply Input Pin (V\textsubscript{DD})

V\textsubscript{DD} is the bias supply input for the MOSFET driver and has a voltage range of 4.5V to 18V. This input must be decoupled to ground with a local capacitor. This bypass capacitor provides a localized low-impedance path for the peak currents that are provided to the load.

3.7 Exposed Metal Pad Pin (EP)

The exposed metal pad of the DFN package is not internally connected to any potential. Therefore, this pad can be connected to a ground plane, or other copper plane on a printed circuit board, to aid in heat removal from the package.
4.0 APPLICATION INFORMATION

4.1 General Information
MOSFET drivers are high-speed, high-current devices which are intended to source/sink high-peak currents to charge/discharge the gate capacitance of external MOSFETs or Insulated-Gate Bipolar Transistors (IGBTs). In high frequency switching power supplies, the Pulse-Width Modulation (PWM) controller may not have the drive capability to directly drive the power MOSFET. A MOSFET driver such as the MCP14A0151/2 family can be used to provide additional source/sink current capability.

4.2 MOSFET Driver Timing
The ability of a MOSFET driver to transition from a fully-off state to a fully-on state is characterized by the driver’s rise time (tR), fall time (tF) and propagation delays (tD1 and tD2). Figure 4-1 and Figure 4-2 show the test circuit and timing waveform used to verify the MCP14A0151/2 timing.

4.3 Enable Function
The enable pin (EN) provides additional control of the output pin (OUT). This pin is active high and is internally pulled up to VDD so that the pin can be left floating to provide standard MOSFET driver operation.

When the enable pin’s voltage is above the enable pin high voltage threshold, (VEN_H), the output is enabled and allowed to react to the status of the Input pin. However, when the voltage applied to the Enable pin falls below the low threshold voltage (VEN_L), the driver output is disabled and doesn’t respond to changes in the status of the Input pin. When the driver is disabled, the output is pulled down to a low state. Refer to Table 4-1 for enable pin logic. The threshold voltage levels for the Enable pin are similar to the threshold voltage levels of the Input pin, and are TTL and CMOS compatible. Hysteresis is provided to help increase the noise immunity of the enable function, avoiding false triggers of the enable signal during driver switching.

There are propagation delays associated with the driver receiving an enable signal and the output reacting. These propagation delays, tD3 and tD4, are graphically represented in Figure 4-3.
4.4 Decoupling Capacitors

Careful PCB layout and decoupling capacitors are required when using power MOSFET drivers. Large current is required to charge and discharge capacitive loads quickly. For example, approximately 720 mA are needed to charge a 1000 pF load with 18V in 25 ns.

To operate the MOSFET driver over a wide frequency range with low supply impedance, it is recommended to place 1.0 µF and 0.1 µF low ESR ceramic capacitors in parallel between the driver VDD and GND. These capacitors should be placed close to the driver to minimize circuit board parasitics and provide a local source for the required current.

4.5 PCB Layout Considerations

Proper Printed Circuit Board (PCB) layout is important in high-current, fast switching circuits to provide proper device operation and robustness of design. Improper component placement may cause errant switching, excessive voltage ringing or circuit latch-up. The PCB trace loop length and inductance should be minimized by the use of ground planes or traces under the MOSFET gate drive signal, separate analog and power grounds, and local driver decoupling.

Placing a ground plane beneath the MCP14A0151/2 devices will help as a radiated noise shield, as well as providing some heat sinking for power dissipated within the device.

4.6 Power Dissipation

The total internal power dissipation in a MOSFET driver is the summation of three separate power dissipation elements, as shown in **Equation 4-1**.

\[
P_T = P_L + P_Q + P_{CC}
\]

Where:

- \(P_T\) = Total power dissipation
- \(P_L\) = Load power dissipation
- \(P_Q\) = Quiescent power dissipation
- \(P_{CC}\) = Operating power dissipation

4.6.1 Capacitive Load Dissipation

The power dissipation caused by a capacitive load is a direct function of the frequency, total capacitive load and supply voltage. The power lost in the MOSFET driver for a complete charging and discharging cycle of a MOSFET is shown in **Equation 4-2**.

\[
P_L = f \times C_T \times VDD^2
\]

Where:

- \(f\) = Switching frequency
- \(C_T\) = Total load capacitance
- \(VDD\) = MOSFET driver supply voltage

4.6.2 Quiescent Power Dissipation

The power dissipation associated with the quiescent current draw depends on the state of the Input and Enable pins. See Section 1.0 “Electrical Characteristics” for typical quiescent current draw values in different operating states. The quiescent power dissipation is shown in **Equation 4-3**.

\[
P_Q = (I_{QH} \times D + I_{QL} \times (1 - D)) \times VDD
\]

Where:

- \(I_{QH}\) = Quiescent current in the High state
- \(D\) = Duty cycle
- \(I_{QL}\) = Quiescent current in the Low state
- \(VDD\) = MOSFET driver supply voltage

TABLE 4-1: ENABLE PIN LOGIC

<table>
<thead>
<tr>
<th>ENB</th>
<th>IN</th>
<th>MCP14A0151 OUT</th>
<th>MCP14A0152 OUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>H</td>
<td>L</td>
<td>H</td>
</tr>
<tr>
<td>H</td>
<td>L</td>
<td>H</td>
<td>L</td>
</tr>
<tr>
<td>L</td>
<td>X</td>
<td>L</td>
<td>L</td>
</tr>
</tbody>
</table>
4.6.3 OPERATING POWER DISSIPATION

The operating power dissipation occurs each time the MOSFET driver output transitions because, for a very short period of time, both MOSFETs in the output stage are on simultaneously. This cross-conduction current leads to a power dissipation described in Equation 4-4.

EQUATION 4-4:

\[P_{CC} = CC \times f \times V_{DD} \]

Where:

- \(CC \) = Cross-Conduction constant (Ampere x second)
- \(f \) = Switching frequency
- \(V_{DD} \) = MOSFET driver supply voltage
5.0 PACKAGING INFORMATION

5.1 Package Marking Information

Legend:

XX...X Customer-specific information
Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week ‘01’)
NNN Alphanumeric traceability code

Example

6-Lead DFN (2x2x0.9 mm)

PIN 1

XXX
NNN

6-Lead SOT-23

Example

XXXXY
WWNNN

PIN 1

6-Lead SOT-23

Example

AAASY
40256

Table: Standard Markings

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCP14A0151T-E/MAY</td>
<td>ABJ</td>
</tr>
<tr>
<td>MCP14A0152T-E/MAY</td>
<td>ABK</td>
</tr>
<tr>
<td>MCP14A0151T-E/CH</td>
<td>AAASY</td>
</tr>
<tr>
<td>MCP14A0152T-E/CH</td>
<td>AAATY</td>
</tr>
</tbody>
</table>

Legend: XX...X Customer-specific information
Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week ‘01’)
NNN Alphanumeric traceability code

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.
6-Lead Plastic Dual Flat, No Lead Package (MA[Y]) - 2x2x0.9mm Body [DFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-120C Sheet 1 of 2
6-Lead Plastic Dual Flat, No Lead Package (MA[Y]) - 2x2x0.9mm Body [DFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dimension Limits MIN</td>
</tr>
<tr>
<td>Number of Pins</td>
<td>N</td>
</tr>
<tr>
<td>Pitch</td>
<td>e</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
</tr>
<tr>
<td>Standoff</td>
<td>A1</td>
</tr>
<tr>
<td>Contact Thickness</td>
<td>A3</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
</tr>
<tr>
<td>Exposed Pad Length</td>
<td>D2</td>
</tr>
<tr>
<td>Exposed Pad Width</td>
<td>E2</td>
</tr>
<tr>
<td>Contact Width</td>
<td>b</td>
</tr>
<tr>
<td>Contact Length</td>
<td>L</td>
</tr>
<tr>
<td>Contact-to-Exposed Pad</td>
<td>K</td>
</tr>
</tbody>
</table>

Notes:
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Package may have one or more exposed tie bars at ends.
3. Package is saw singulated.
4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.
6-Lead Plastic Dual Flat, No Lead Package (MA) - 2x2x0.9mm Body [DFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

![SILK SCREEN](image)

RECOMMENDED LAND PATTERN

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Limits</td>
<td>MIN</td>
</tr>
<tr>
<td>Contact Pitch</td>
<td>E</td>
</tr>
<tr>
<td>Optional Center Pad Width</td>
<td>Y2</td>
</tr>
<tr>
<td>Optional Center Pad Length</td>
<td>X2</td>
</tr>
<tr>
<td>Contact Pad Spacing</td>
<td>C1</td>
</tr>
<tr>
<td>Contact Pad Width (X6)</td>
<td>X1</td>
</tr>
<tr>
<td>Contact Pad Length (X6)</td>
<td>Y1</td>
</tr>
<tr>
<td>Distance Between Pads</td>
<td>GX</td>
</tr>
<tr>
<td>Distance Between Pads</td>
<td>G1</td>
</tr>
</tbody>
</table>

Notes:
1. Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2120A
6-Lead Plastic Small Outline Transistor (CH) [SOT-23]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com-packaging

![Diagram of 6-Lead Plastic Small Outline Transistor (CH) [SOT-23]]

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Limits</td>
<td>MIN</td>
</tr>
<tr>
<td>Number of Pins</td>
<td>N</td>
</tr>
<tr>
<td>Pitch</td>
<td>e</td>
</tr>
<tr>
<td>Outside Lead Pitch</td>
<td>e1</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>A2</td>
</tr>
<tr>
<td>Standoff</td>
<td>A1</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>E1</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
</tr>
<tr>
<td>Foot Length</td>
<td>L</td>
</tr>
<tr>
<td>Footprint</td>
<td>L1</td>
</tr>
<tr>
<td>Foot Angle</td>
<td>φ</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
</tr>
<tr>
<td>Lead Width</td>
<td>b</td>
</tr>
</tbody>
</table>

Notes:
1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.127 mm per side.
2. Dimensioning and tolerancing per ASME Y14.5M.
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-028B
6-Lead Plastic Small Outline Transistor (CH) [SOT-23]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

![Recommended Land Pattern Diagram]

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
<th>Dimension Limits</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>Contact Pitch</td>
<td>0.95 BSC</td>
<td>C</td>
<td>Contact Pad Spacing</td>
<td>2.80</td>
</tr>
<tr>
<td>X</td>
<td>Contact Pad Width (X6)</td>
<td>0.60</td>
<td>Y</td>
<td>Contact Pad Length (X6)</td>
<td>1.10</td>
</tr>
<tr>
<td>G</td>
<td>Distance Between Pads</td>
<td>1.70</td>
<td>GX</td>
<td>Distance Between Pads</td>
<td>0.35</td>
</tr>
<tr>
<td>Z</td>
<td>Overall Width</td>
<td>3.90</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2028A
APPENDIX A: REVISION HISTORY

Revision A (December 2014)

• Original Release of this Document.
PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>(X)(1)</th>
<th>-X</th>
<th>/XX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device</td>
<td>Tape and Reel Temperature Range</td>
<td>Package</td>
<td></td>
</tr>
</tbody>
</table>

Device: MCP14A0151T: High-Speed MOSFET Driver (Tape and Reel)
MCP14A0152T: High-Speed MOSFET Driver (Tape and Reel)

Temperature Range: E = -40°C to +125°C (Extended)

Package: CH = Plastic Small Outline Transistor (SOT-23), 6-lead
MAY = Plastic Dual Flat, No Lead Package - 2 x 2 x 0.9 mm Body (DFN) 6-lead

Examples:

a) MCP14A0151T-E/CH: Tape and Reel, Extended temperature, 6LD SOT-23 package
b) MCP14A0152T-E/MAY: Tape and Reel Extended temperature, 6LD DFN package

Note 1: Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option.
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks
The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, flexPWR, JukeBox, KEELOQ, KEELOQ logo, Kleer, LANCheck, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC™ logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

The Embedded Control Solutions Company and mTouch are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet, KleerNet logo, MiWi, MPASM, MFP, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2014, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV

ISO/TS 16949

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
AMERICAS

- **Corporate Office**
 2355 West Chandler Blvd.
 Chandler, AZ 85224-6199
 Tel: 480-792-7200
 Fax: 480-792-7277

- **Technical Support**
 http://www.microchip.com/support

- **Web Address**
 www.microchip.com

- **Atlanta**
 Duluth, GA
 Tel: 678-957-9614
 Fax: 678-957-1455

- **Austin, TX**
 Tel: 512-257-3370

- **Boston**
 Westborough, MA
 Tel: 508-564-8800
 Fax: 508-564-8801

- **Chicago**
 Itasca, IL
 Tel: 630-285-0071
 Fax: 630-285-0075

- **Cleveland**
 Independence, OH
 Tel: 216-447-0464
 Fax: 216-447-0463

- **Dallas**
 Addison, TX
 Tel: 972-818-7423
 Fax: 972-818-2924

- **Detroit**
 Novi, MI
 Tel: 248-848-4000

- **Houston, TX**
 Tel: 281-894-5983

- **Indianapolis**
 Noblesville, IN
 Tel: 317-773-8323
 Fax: 317-773-5453

- **Los Angeles**
 Mission Viejo, CA
 Tel: 949-462-9523
 Fax: 949-462-9608

- **New York, NY**
 Tel: 631-435-6000

- **San Jose, CA**
 Tel: 408-735-9110

- **Canada - Toronto**
 Tel: 905-673-0699
 Fax: 905-673-6509

ASIA/PACIFIC

- **Asia Pacific Office**
 Suites 3707-14, 37th Floor
 Tower 6, The Gateway Harbour City, Kowloon
 Hong Kong
 Tel: 852-2943-5100
 Fax: 852-2401-3431

- **Australia - Sydney**
 Tel: 61-2-9868-6733
 Fax: 61-2-9868-6755

- **China - Beijing**
 Tel: 86-10-8569-7000
 Fax: 86-10-8528-2104

- **China - Chengdu**
 Tel: 86-28-8665-5511
 Fax: 86-28-8665-7889

- **China - Chongqing**
 Tel: 86-23-8980-9588
 Fax: 86-23-8980-9500

- **China - Hangzhou**
 Tel: 86-571-8792-8115
 Fax: 86-571-8792-8116

- **China - Hong Kong SAR**
 Tel: 852-2943-5100
 Fax: 852-2401-3431

- **China - Nanjing**
 Tel: 86-25-8473-2460
 Fax: 86-25-8473-2470

- **China - Qingdao**
 Tel: 86-532-8502-7355
 Fax: 86-532-8502-7205

- **China - Shanghai**
 Tel: 86-21-5407-5533
 Fax: 86-21-5407-5066

- **China - Shenyang**
 Tel: 86-24-2334-2829
 Fax: 86-24-2334-2393

- **China - Shenzhen**
 Tel: 86-755-8864-2200
 Fax: 86-755-8203-1760

- **China - Wuhan**
 Tel: 86-27-5980-5300
 Fax: 86-27-5980-5118

- **China - Xian**
 Tel: 86-29-8833-7252
 Fax: 86-29-8833-7256

- **China - Xiamen**
 Tel: 86-592-2388138
 Fax: 86-592-2388130

- **China - Zhuhai**
 Tel: 86-756-3210040
 Fax: 86-756-3210049

ASIA/PACIFIC

- **India - Bangalore**
 Tel: 91-80-3090-4444
 Fax: 91-80-3090-4123

- **India - New Delhi**
 Tel: 91-11-4160-8631
 Fax: 91-11-4160-8632

- **India - Pune**
 Tel: 91-20-3019-1500

- **Japan - Osaka**
 Tel: 81-6-6152-7160
 Fax: 81-6-6152-9310

- **Japan - Tokyo**
 Tel: 81-3-6880-3770
 Fax: 81-3-6880-3771

- **Korea - Daegu**
 Tel: 82-53-744-4301
 Fax: 82-53-744-4302

- **Korea - Seoul**
 Tel: 82-2-554-7200
 Fax: 82-2-558-5932 or 82-2-558-5934

- **Malaysia - Kuala Lumpur**
 Tel: 60-3-6201-9857
 Fax: 60-3-6201-9859

- **Malaysia - Penang**
 Tel: 60-4-227-8870
 Fax: 60-4-227-4068

- **Philippines - Manila**
 Tel: 63-2-634-9065
 Fax: 63-2-634-9069

- **Singapore**
 Tel: 65-6334-8870
 Fax: 65-6334-8850

- **Taiwan - Hsin Chu**
 Tel: 886-3-5778-366
 Fax: 886-3-5770-955

- **Taiwan - Kaohsiung**
 Tel: 886-7-213-7830

- **Taiwan - Taipei**
 Tel: 886-2-2508-8600
 Fax: 886-2-2508-1012

- **Thailand - Bangkok**
 Tel: 66-2-694-1351
 Fax: 66-2-694-1350

EUROPE

- **Austria - Wels**
 Tel: 43-7242-2244-39
 Fax: 43-7242-2244-393

- **Denmark - Copenhagen**
 Tel: 45-4450-2828
 Fax: 45-4485-2829

- **France - Paris**
 Tel: 33-1-69-53-63-20
 Fax: 33-1-69-30-90-79

- **Germany - Dusseldorf**
 Tel: 49-2129-3766400

- **Germany - Munich**
 Tel: 49-89-627-144-0
 Fax: 49-89-627-144-44

- **Germany - Pforzheim**
 Tel: 49-7231-424750

- **Italy - Milan**
 Tel: 39-0331-742611
 Fax: 39-0331-466781

- **Italy - Venice**
 Tel: 39-049-7625286

- **Netherlands - Drunen**
 Tel: 31-416-690399
 Fax: 31-416-690340

- **Poland - Warsaw**
 Tel: 48-22-3325737

- **Spain - Madrid**
 Tel: 34-91-708-08-90
 Fax: 34-91-708-08-91

- **Sweden - Stockholm**
 Tel: 46-8-5090-4654

- **UK - Wokingham**
 Tel: 44-118-921-5800
 Fax: 44-118-921-5820

03/25/14