SST25VF080B

8-Mbit SPI Serial Flash

Features

- Single Voltage Read and Write Operations
 - 2.7V-3.6V
- Serial Interface Architecture:
 - SPI Compatible: Mode 0 and Mode 3
- High-Speed Clock Frequency:
 - Up to 66 MHz
- Superior Reliability:
 - Endurance: 100,000 Cycles (typical)
 - Greater than 100 years Data Retention
- Low-Power Consumption:
 - Active Read Current: 10 mA (typical)
 - Standby Current: 5 µA (typical)
- Flexible Erase Capability:
 - Uniform 4-Kbyte sectors
 - Uniform 32-Kbyte overlay blocks
 - Uniform 64-Kbyte overlay blocks
- Fast Erase and Byte Program:
 - Chip Erase Time: 35 ms (typical)
 - Sector/Block Erase Time: 18 ms (typical)
 - Byte Program Time: 7 µs (typical)
- Auto Address Increment (AAI) Programming:
 - Decrease total chip programming time over Byte Program operations
- End of Write Detection:
 - Software polling the BUSY bit in STATUS Register
 - Busy Status readout on SO pin in AAI Mode
- Hold Pin (HOLD#):
 - Suspends a serial sequence to the memory without deselecting the device
- Write Protection (WP#):
 - Enables/Disables the Lock-Down function of the STATUS register
- Software Write Protection:
 - Write protection through Block Protection bits in STATUS register
- Temperature Range:
 - Commercial: 0°C to +70°C
 - Industrial: -40°C to +85°C
- All devices are RoHS compliant

Packages

- 8-lead PDIP (300 mils), 8-lead SOIC (200 mils),
 8-contact WSON (6 mm x 5 mm) and 16-ball XFBGA (Z-Scale™)
 See Figure 2-1 for pin assignments.

Description

25 series Serial Flash family features a four-wire, SPI-compatible interface that allows for a low pin-count package which occupies less board space and ultimately lowers total system costs. The SST25VF080B devices are enhanced with improved operating frequency and lower power consumption. SST25VF080B SPI serial flash memories are manufactured with proprietary, high-performance CMOS SuperFlash® technology. The split-gate cell design and thick-oxide tunneling injector attain better reliability and manufacturability compared with alternate approaches.

The SST25VF080B devices significantly improve performance and reliability, while lowering power consumption. The devices write (program or erase) with a single power supply of 2.7V-3.6V for SST25VF080B. The total energy consumed is a function of the applied voltage, current, and time of application. Since for any given voltage range, the SuperFlash technology uses less current to program and has a shorter erase time, the total energy consumed during any erase or program operation is less than alternative flash memory technologies.
1.0 BLOCK DIAGRAM

FIGURE 1-1: FUNCTIONAL BLOCK DIAGRAM

- Address Buffers and Latches
- X-Decoder
- SuperFlash Memory
- Y-Decoder
- Control Logic
- I/O Buffers and Data Latches
- Serial Interface
- CE# SCK SI SO WP# HOLD#
2.0 PIN DESCRIPTION

FIGURE 2-1: PIN ASSIGNMENTS

<table>
<thead>
<tr>
<th>Pin Assignment for 8-Lead PDIP</th>
<th>Pin Assignment for 8-Lead SOIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE# 1</td>
<td>Vdd</td>
</tr>
<tr>
<td>SO 2</td>
<td>HOLD# 7</td>
</tr>
<tr>
<td>WP# 3</td>
<td>SCK 6</td>
</tr>
<tr>
<td>Vss 4</td>
<td>SI 5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pin Assignment for 8-Contact WSON</th>
<th>Pin Assignment for 16-Ball XFBGA</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE# 1</td>
<td>Vdd</td>
</tr>
<tr>
<td>SO 2</td>
<td>HOLD# 7</td>
</tr>
<tr>
<td>WP# 3</td>
<td>SCK 6</td>
</tr>
<tr>
<td>Vss 4</td>
<td>SI 5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pin Assignment for 16-Ball XFBGA (Top View)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top View (Balls Facing Down)</td>
</tr>
</tbody>
</table>

Note 1: Outer bumps are connected to the inner bumps, but are not electrically tested. The outer bumps are used for mechanical support. For footprint compatibility with other SST ZScale™ Packages, electrical connection to the eight inner bumps is required.

TABLE 2-1: PIN DESCRIPTION

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Pin Name</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCK</td>
<td>Serial Clock</td>
<td>To provide the timing of the serial interface. Commands, addresses, or input data are latched on the rising edge of the clock input, while output data is shifted out on the falling edge of the clock input.</td>
</tr>
<tr>
<td>SI</td>
<td>Serial Data Input</td>
<td>To transfer commands, addresses, or data serially into the device. Inputs are latched on the rising edge of the serial clock.</td>
</tr>
<tr>
<td>SO</td>
<td>Serial Data Output</td>
<td>To transfer data serially out of the device. Data is shifted out on the falling edge of the serial clock. Outputs Flash busy status during AAI Programming when reconfigured as RY/BY# pin. See Section 4.4.5 “End of Write Detection” for details.</td>
</tr>
<tr>
<td>CE#</td>
<td>Chip Enable</td>
<td>The device is enabled by a high to low transition on CE#. CE# must remain low for the duration of any command sequence.</td>
</tr>
<tr>
<td>WP#</td>
<td>Write-Protect</td>
<td>The Write-Protect (WP#) pin is used to enable/disable BPL bit in the STATUS register.</td>
</tr>
<tr>
<td>HOLD#</td>
<td>Hold</td>
<td>To temporarily stop serial communication with SPI flash memory without resetting the device.</td>
</tr>
<tr>
<td>Vdd</td>
<td>Power Supply</td>
<td>To provide power supply voltage: 2.7V-3.6V for SST25VF080B.</td>
</tr>
<tr>
<td>Vss</td>
<td>Ground</td>
<td></td>
</tr>
</tbody>
</table>
3.0 Memory Organization

The SST25VF080B SuperFlash memory array is organized in uniform 4-Kbyte erasable sectors with 32 Kbyte overlay blocks and 64 Kbyte overlay erasable blocks.

4.0 Device Operation

The SST25VF080B is accessed through the SPI (Serial Peripheral Interface) bus compatible protocol. The SPI bus consists of four control lines; Chip Enable (CE#) is used to select the device, and data is accessed through the Serial Data Input (SI), Serial Data Output (SO), and Serial Clock (SCK).

4.1 Hold Operation

The HOLD# pin is used to pause a serial sequence underway with the SPI flash memory without resetting the clocking sequence. To activate the HOLD# mode, CE# must be in active-low state. The HOLD# mode begins when the SCK active-low state coincides with the falling edge of the HOLD# signal. The HOLD# mode ends when the HOLD# signal’s rising edge coincides with the SCK active-low state.

If the falling edge of the HOLD# signal does not coincide with the SCK active-low state, then the device enters Hold mode when the SCK next reaches the active-low state. Similarly, if the rising edge of the HOLD# signal does not coincide with the SCK active-low state, then the device exits in Hold mode when the SCK next reaches the active-low state. See Figure 4-2 for Hold Condition waveform.

Once the device enters Hold mode, SO will be in high-impedance state while SI and SCK can be VIL or VIH.

If CE# is driven active high during a Hold condition, it resets the internal logic of the device. As long as HOLD# signal is low, the memory remains in the Hold condition. To resume communication with the device, HOLD# must be driven active high, and CE# must be driven active-low. See Figure 7-3 for Hold timing.
4.2 Write Protection

SST25VF080B provides software write protection. The Write-Protect pin (WP#) enables or disables the lock-down function of the STATUS Register. The Block Protection bits (BP3, BP2, BP1, BP0, and BPL) in the STATUS register provide Write protection to the memory array and the STATUS register. See Table 4-3 for the Block Protection description.

4.2.1 WRITE PROTECTION PIN (WP#)

The Write-Protect (WP#) pin enables the lock-down function of the BPL bit (bit 7) in the STATUS Register. When WP# is driven low, the execution of the Write Status Register (WRSR) instruction is determined by the value of the BPL bit (see Table 4-1). When WP# is high, the lock-down function of the BPL bit is disabled.

TABLE 4-1: CONDITIONS TO EXECUTE WRITE STATUS REGISTER (WRSR) INSTRUCTIONS

<table>
<thead>
<tr>
<th>WP#</th>
<th>BPL</th>
<th>Execute WRSR Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>1</td>
<td>Not Allowed</td>
</tr>
<tr>
<td>L</td>
<td>0</td>
<td>Allowed</td>
</tr>
<tr>
<td>H</td>
<td>X</td>
<td>Allowed</td>
</tr>
</tbody>
</table>

4.3 STATUS Register

The software STATUS Register provides status on whether the flash memory array is available for any read or write operation, whether the device is Write enabled, and the state of the Memory Write-protected.

TABLE 4-2: SOFTWARE STATUS REGISTER

<table>
<thead>
<tr>
<th>Bit</th>
<th>Name</th>
<th>Function</th>
<th>Default at Power-up</th>
<th>Read/Write</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>BUSY</td>
<td>1 = Internal Write operation is in progress</td>
<td>0</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = No internal Write operation is in progress</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>WEL</td>
<td>1 = Device is memory Write enabled</td>
<td>0</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = Device is not memory Write enabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>BP0</td>
<td>Indicate current level of block write protection (See Table 4-3)</td>
<td>1</td>
<td>R/W</td>
</tr>
<tr>
<td>3</td>
<td>BP1</td>
<td>Indicate current level of block write protection (See Table 4-3)</td>
<td>1</td>
<td>R/W</td>
</tr>
<tr>
<td>4</td>
<td>BP2</td>
<td>Indicate current level of block write protection (See Table 4-3)</td>
<td>1</td>
<td>R/W</td>
</tr>
<tr>
<td>5</td>
<td>BP3</td>
<td>Indicate current level of block write protection (See Table 4-3)</td>
<td>0</td>
<td>R/W</td>
</tr>
<tr>
<td>6</td>
<td>AAI</td>
<td>Auto Address Increment Programming status</td>
<td>0</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = AAI programming mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = Byte Program mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>BPL</td>
<td>1 = BP3, BP2, BP1, BP0 are read-only bits</td>
<td>0</td>
<td>R/W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = BP3, BP2, BP1, BP0 are read/write</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.3.1 BUSY

The BUSY bit determines whether there is an internal Erase or Program operation in progress. A ‘1’ for the BUSY bit indicates the device is busy with an operation in progress. A ‘0’ indicates the device is ready for the next valid operation.

4.3.2 WRITE ENABLE LATCH (WEL)

The Write Enable Latch bit indicates the status of the internal memory Write Enable Latch. If the Write Enable Latch bit is set to ‘1’, it indicates the device is Write enabled. If the bit is set to ‘0’ (reset), it indicates the device is not write enabled and does not accept any memory write (program/erase) commands. The Write Enable Latch bit is automatically reset under the following conditions:

- Power-up
- Write Disable (WRDI) instruction completion
- Byte Program instruction completion
- Auto Address Increment (AAI) programming is completed or reached its highest unprotected memory address
- Sector Erase instruction completion
- Block Erase instruction completion
- Chip Erase instruction completion
- Write STATUS Register instructions
4.3.3 AUTO ADDRESS INCREMENT (AAI)

The Auto Address Increment Programming Status bit provides status on whether the device is in AAI programming mode or Byte-Program mode. The default at power up is Byte-Program mode.

4.3.4 BLOCK PROTECTION (BP3, BP2, BP1, BP0)

The Block Protection (BP3, BP2, BP1, BP0) bits define the size of the memory area, as defined in Table 4-3, to be software protected against any memory write (program or erase) operation. The Write STATUS Register (WRSR) instruction is used to program the BP3, BP2, BP1 and BP0 bits as long as WP# is high or the Block Protect Lock (BPL) bit is ‘0’. Chip Erase can only be executed if Block Protection bits are all ‘0’. After power-up, BP3, BP2, BP1 and BP0 are set to ‘1’.

4.3.5 BLOCK PROTECTION LOCK-DOWN (BPL)

WP# pin driven low (VIL), enables the Block Protection Lock Down (BPL) bit. When BPL is set to ‘1’, it prevents any further alteration of the BPL, BP3, BP2, BP1, and BP0 bits. When the WP# pin is driven high (VIH), the BPL bit has no effect and its value is “don’t care”. After power-up, the BPL bit is reset to ‘0’.

<table>
<thead>
<tr>
<th>Protection Level</th>
<th>STATUS Register Bit</th>
<th>Protected Memory Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>X 0 0 0</td>
<td>None</td>
</tr>
<tr>
<td>Upper 1/16</td>
<td>X 0 0 1</td>
<td>F0000H-FFFFFH</td>
</tr>
<tr>
<td>Upper 1/8</td>
<td>X 0 1 0</td>
<td>E0000H-FFFFFH</td>
</tr>
<tr>
<td>Upper 1/4</td>
<td>X 0 1 1</td>
<td>C0000H-FFFFFH</td>
</tr>
<tr>
<td>Upper 1/2</td>
<td>X 1 0 0</td>
<td>80000H-FFFFFH</td>
</tr>
<tr>
<td>All Blocks</td>
<td>X 0 1 0</td>
<td>00000H-FFFFFH</td>
</tr>
<tr>
<td>All Blocks</td>
<td>X 1 0 0</td>
<td>00000H-FFFFFH</td>
</tr>
<tr>
<td>All Blocks</td>
<td>X 1 1 0</td>
<td>00000H-FFFFFH</td>
</tr>
</tbody>
</table>

Note 1: X = “Don’t care” (RESERVED) default is ‘0’.

2: Default at power-up for BP2, BP1, and BP0 is ‘111’. (All Blocks Protected)
4.4 Instructions

Instructions are used to read, write (Erase and Program), and configure the SST25VF080B. The instruction bus cycles are 8 bits each for commands (Op Code), data, and addresses. Prior to executing any Byte Program, Auto Address Increment (AAI) programming, Sector Erase, Block Erase, Write STATUS Register, or Chip Erase instructions, the Write Enable (WREN) instruction must be executed first. The complete list of instructions is provided in Table 4-4. All instructions are synchronized off a high to low transition of CE#. Inputs will be accepted on the rising edge of SCK starting with the most significant bit. CE# must be driven low before an instruction is entered and must be driven high after the last bit of the instruction has been shifted in (except for Read, Read-ID, and Read STATUS Register instructions). Any low to high transition on CE#, before receiving the last bit of an instruction bus cycle, will terminate the instruction in progress and return the device to standby mode. Instruction commands (Op Code), addresses, and data are all input from the most significant bit (MSb) first.

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
<th>Op Code Cycle(1)</th>
<th>Address Cycle(s)(2)</th>
<th>Dummy Cycle(s)</th>
<th>Data Cycle(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read</td>
<td>Read Memory</td>
<td>0000 0011b (03H)</td>
<td>3</td>
<td>0</td>
<td>1 to ∞</td>
</tr>
<tr>
<td>High-Speed Read</td>
<td>Read Memory at higher speed</td>
<td>0000 1011b (0BH)</td>
<td>3</td>
<td>1</td>
<td>1 to ∞</td>
</tr>
<tr>
<td>4-Kbyte Sector Erase(3)</td>
<td>Erase 4 Kbyte of memory array</td>
<td>0010 0000b (20H)</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>32-Kbyte Block Erase(4)</td>
<td>Erase 32 Kbyte block of memory array</td>
<td>0101 0010b (52H)</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>64-Kbyte Block Erase(5)</td>
<td>Erase 64 Kbyte block of memory array</td>
<td>1101 1000b (D8H)</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Chip-Erase</td>
<td>Erase Full Memory Array</td>
<td>0110 0000b (60H)</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1100 0111b (C7H)</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Byte Program</td>
<td>To Program One Data Byte</td>
<td>0000 0010b (02H)</td>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>AAI Word Program(6)</td>
<td>Auto Address Increment Programming</td>
<td>1010 1101b (ADH)</td>
<td>3</td>
<td>0</td>
<td>2 to ∞</td>
</tr>
<tr>
<td>RDID(9)</td>
<td>Read STATUS Register</td>
<td>0000 0101b (05H)</td>
<td>0</td>
<td>0</td>
<td>1 to ∞</td>
</tr>
<tr>
<td>EWSR</td>
<td>Enable Write STATUS Register</td>
<td>0101b 0000b (50H)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>WRSR</td>
<td>Write STATUS Register</td>
<td>0000 0001b (01H)</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>RREN</td>
<td>Write Enable</td>
<td>0000 0110b (06H)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>WRDI</td>
<td>Write Disable</td>
<td>0000 0100b (04H)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RDID(8)</td>
<td>Read-ID</td>
<td>1001 0000b (90H)</td>
<td>3</td>
<td>0</td>
<td>1 to ∞</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1010 1011b (ABH)</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>JEDEC-ID</td>
<td>JEDEC ID read</td>
<td>1001 1111b (9FH)</td>
<td>0</td>
<td>0</td>
<td>3 to ∞</td>
</tr>
<tr>
<td>EBSY</td>
<td>Enable SO to output RY/BY# status during AAI programming</td>
<td>0111 0000b (70H)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DBSY</td>
<td>Disable SO as RY/BY# status during AAI programming</td>
<td>1000 0000b (80H)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
4.4.1 READ (25 MHZ)

The Read instruction, 03H, supports up to 25 MHz Read. The device outputs the data starting from the specified address location. The data output stream is continuous through all addresses until terminated by a low to high transition on CE#. The internal address pointer will automatically increment until the highest memory address is reached. Once the highest memory address is reached, the address pointer will automatically increment to the beginning (wrap-around) of the address space. Once the data from address location FFFFH has been read, the next output will be from address location 0000H.

The Read instruction is initiated by executing an 8-bit command, 03H, followed by address bits [A23-A0]. CE# must remain active-low for the duration of the Read cycle. See Figure 4-3 for the Read sequence.

FIGURE 4-3: READ SEQUENCE

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
<th>Op Code Cycle(1)</th>
<th>Address Cycle(s)(2)</th>
<th>Dummy Cycle(s)</th>
<th>Data Cycle(s)</th>
</tr>
</thead>
</table>

Note 1: One bus cycle is eight clock periods.
2: Address bits above the most significant bit of each density can be VIL or VIH.
3: 4-Kbyte Sector Erase addresses: use AMS-A12, remaining addresses are “don’t care” but must be set either at VIL or VIH.
4: 32-Kbyte Block Erase addresses: use AMS-A15, remaining addresses are “don’t care” but must be set either at VIL or VIH.
5: 64-Kbyte Block Erase addresses: use AMS-A16, remaining addresses are “don’t care” but must be set either at VIL or VIH.
6: To continue programming to the next sequential address location, enter the 8-bit command, ADH, followed by 2 bytes of data to be programmed. Data Byte 0 will be programmed into the initial address [A23-A1] with A0 = 0, Data Byte 1 will be programmed into the initial address [A23-A1] with A0 = 1.
7: The Read STATUS Register is continuous with ongoing clock cycles until terminated by a low-to-high transition on CE#.
8: Manufacturer’s ID is read with A0 = 0, and Device ID is read with A0 = 1. All other address bits are 00H. The Manufacturer’s ID and device ID output stream is continuous until terminated by a low-to-high transition on CE#.

4.4.2 HIGH-SPEED READ (66 MHZ)\(^1\)

The High-Speed Read instruction, supporting up to 66 MHz Read, is initiated by executing an 8-bit command, 0BH, followed by address bits [A23-A0] and a dummy byte. CE# must remain active-low for the duration of the High-Speed Read cycle. See Figure 4-4 for the High-Speed Read sequence.

Following a dummy cycle, the High-Speed Read instruction outputs the data starting from the specified address location. The data output stream is continuous through all addresses until terminated by a low to high transition on CE#. The internal address pointer will automatically increment until the highest memory address is reached. Once the highest memory address is reached, the address pointer will automatically increment to the beginning (wrap-around) of the address space. Once the data from address location FFFFFFFH has been read, the next output will be from address location 00000H.

FIGURE 4-4: HIGH-SPEED READ SEQUENCE

Note: \(X = \text{Dummy Byte: } 8 \text{ Clocks Input Dummy Cycle (VIL or VIH)}\)

4.4.3 BYTE PROGRAM

The Byte Program instruction programs the bits in the selected byte to the desired data. The selected byte must be in the erased state (FFH) when initiating a Program operation. A Byte Program instruction applied to a protected memory area will be ignored.

Prior to any Write operation, the Write Enable (WREN) instruction must be executed. CE# must remain active-low for the duration of the Byte Program instruction. The Byte Program instruction is initiated by executing an 8-bit command, 02H, followed by address bits [A23-A0]. Following the address, the data is input in order from MSb (bit 7) to LSb (bit 0). CE# must be driven high before the instruction is executed. The user may poll the BUSY bit in the software STATUS Register or wait TBP for the completion of the internal self-timed Byte Program operation. See Figure 4-5 for the Byte Program sequence.

FIGURE 4-5: BYTE PROGRAM SEQUENCE
4.4.4 AUTO ADDRESS INCREMENT (AAI) WORD PROGRAM

The AAI program instruction allows multiple bytes of data to be programmed without re-issuing the next sequential address location. This feature decreases total programming time when multiple bytes or entire memory array is to be programmed. An AAI Word program instruction pointing to a protected memory area will be ignored. The selected address range must be in the erased state (FFH) when initiating an AAI Word Program operation. While within AAI Word programming sequence, only the following instructions are valid: for software end of write detection—AAI Word (ADH), WRDI (04H), and RDSR (05H); for hardware end of write detection—AAI Word (ADH) and WRDI (04H).

There are three options to determine the completion of each AAI Word program cycle: hardware detection by reading the Serial Output, software detection by polling the BUSY bit in the software STATUS Register, or wait TxB. Refer to Section 4.4.5 “End of Write Detection” for details.

Prior to any write operation, the Write Enable (WREN) instruction must be executed. Initiate the AAI Word Program instruction by executing an 8-bit command, ADH, followed by address bits [A23-A0]. Following the addresses, two bytes of data are input sequentially, each one from MSb (Bit 7) to LSb (Bit 0). The first byte of data (D0) is programmed into the initial address [A23-A1] with A0 = 0, the second byte of Data (D1) is programmed into the initial address [A23-A1] with A0 = 1. CE# must be driven high before executing the AAI Word Program instruction. Check the Busy status before entering the next valid command. Once the device indicates it is no longer busy, data for the next two sequential addresses may be programmed, followed by the next two, and so on.

When programming the last desired word, or the highest unprotected memory address, check the busy status using either the hardware or software (RDSR instruction) method to check for program completion. Once programming is complete, use the applicable method to terminate AAI. If the device is in Software End of Write Detection mode, execute the Write-Disable (WRDI) instruction, 04H. If the device is in AAI Hardware End of Write Detection mode, execute the Write Disable (WRDI) instruction, 04H, followed by the 8-bit DBSY command, 80H. There is no wrap mode during AAI programming once the highest unprotected memory address is reached. See Figure 4-8 and Figure 4-9 for the AAI Word programming sequence.

4.4.5 END OF WRITE DETECTION

There are three methods to determine completion of a program cycle during AAI Word programming: hardware detection by reading the Serial Output, software detection by polling the BUSY bit in the Software STATUS Register, or wait TxB. The Hardware End of Write detection method is described in the section below.
FIGURE 4-8: AUTO ADDRESS INCREMENT (AAI) WORD PROGRAM SEQUENCE WITH HARDWARE END OF WRITE DETECTION

Note 1: Valid commands during AAI programming: AAI command or WRDI command.

2: User must configure the SO pin to output Flash Busy status during AAI programming.

FIGURE 4-9: AUTO ADDRESS INCREMENT (AAI) WORD PROGRAM SEQUENCE WITH SOFTWARE END OF WRITE DETECTION

Note 1: Valid commands during AAI programming: RDSR command or WRDI command.
4.4.7 4-KBYTE SECTOR ERASE

The Sector Erase instruction clears all bits in the selected 4-Kbyte sector to FFH. A Sector Erase instruction applied to a protected memory area will be ignored. Prior to any Write operation, the Write Enable (WREN) instruction must be executed. CE# must remain active-low for the duration of any command sequence. The Sector Erase instruction is initiated by executing an 8-bit command, 20H, followed by address bits [A23-A0]. Address bits [AMS-A12] (AMS = Most Significant address) are used to determine the sector address (SAx), remaining address bits can be Vil or VIH. CE# must be driven high before the instruction is executed. The user may poll the BUSY bit in the Software STATUS Register or wait Tse for the completion of the internal self-timed Sector Erase cycle. See Figure 4-10 for the Sector Erase sequence.

FIGURE 4-10: SECTOR ERASE SEQUENCE

4.4.8 32-KBYTE AND 64-KBYTE BLOCK ERASE

The 32-Kbyte Block Erase instruction clears all bits in the selected 32 Kbyte block to FFH. A Block Erase instruction applied to a protected memory area will be ignored. The 64-Kbyte Block-Erase instruction clears all bits in the selected 64 Kbyte block to FFH. A Block Erase instruction applied to a protected memory area will be ignored. Prior to any Write operation, the Write Enable (WREN) instruction must be executed. CE# must remain active-low for the duration of any command sequence. The 32-Kbyte Block Erase instruction is initiated by executing an 8-bit command, 52H, followed by address bits [A23-A0]. Address bits [AMS-A15] (AMS = Most Significant Address) are used to determine block address (BAx), remaining address bits can be Vil or VIH. CE# must be driven high before the instruction is executed. The 64-Kbyte Block Erase instruction is initiated by executing an 8-bit command D8H, followed by address bits [A23-A0]. Address bits [AMS-A15] are used to determine block address (BAx), remaining address bits can be Vil or VIH. CE# must be driven high before the instruction is executed. The user may poll the BUSY bit in the Software STATUS Register or wait Tbe for the completion of the internal self-timed 32-Kbyte Block Erase or 64-Kbyte Block Erase cycles. See Figure 4-11 and Figure 4-12 for the 32-Kbyte Block Erase and 64-Kbyte Block Erase sequences.

FIGURE 4-11: 32-KBYTE BLOCK ERASE SEQUENCE

FIGURE 4-12: 64-KBYTE BLOCK ERASE SEQUENCE
4.4.9 CHIP ERASE

The Chip Erase instruction clears all bits in the device to FFH. A Chip Erase instruction will be ignored if any of the memory area is protected. Prior to any Write operation, the Write Enable (WREN) instruction must be executed. CE# must remain active-low for the duration of the Chip Erase instruction sequence. The Chip Erase instruction is initiated by executing an 8-bit command, 60H or C7H. CE# must be driven high before the instruction is executed. The user may poll the BUSY bit in the Software STATUS Register or wait TCE for the completion of the internal self-timed Chip Erase cycle. See Figure 4-13 for the Chip Erase sequence.

FIGURE 4-13: CHIP ERASE SEQUENCE

4.4.10 READ STATUS REGISTER (RDSR)

The Read STATUS Register (RDSR) instruction allows reading of the STATUS Register. The STATUS Register may be read at any time even during a write (program/erase) operation. When a write operation is in progress, the BUSY bit may be checked before sending any new commands to assure that the new commands are properly received by the device. CE# must be driven low before the RDSR instruction is entered and remain low until the status data is read. Read STATUS Register is continuous with ongoing clock cycles until it is terminated by a low-to-high transition of the CE#. See Figure 4-14 for the RDSR instruction sequence.

FIGURE 4-14: READ STATUS REGISTER (RDSR) SEQUENCE

4.4.11 WRITE ENABLE (WREN) SEQUENCE

The Write Enable (WREN) instruction sets the Write-Enable Latch bit in the STATUS Register to '1' allowing Write operations to occur. The WREN instruction must be executed prior to any write (program/erase) operation. The WREN instruction may also be used to allow execution of the Write STATUS Register (WRSR) instruction; however, the Write Enable Latch bit in the STATUS Register will be cleared upon the rising edge CE# of the WRSR instruction. CE# must be driven high before the WREN instruction is executed.

FIGURE 4-15: WRITE ENABLE (WREN) SEQUENCE
4.4.12 WRITE DISABLE (WRDI)

The Write Disable (WRDI) instruction resets the Write-Enable-Latch bit and AAI bit to '0' disabling any new Write operations from occurring. The WRDI instruction will not terminate any programming operation in progress. Any program operation in progress may continue up to TBP after executing the WRDI instruction. CE# must be driven high before the WRDI instruction is executed.

FIGURE 4-16: WRITE DISABLE (WRDI) SEQUENCE

![Diagram of WRDI sequence]

4.4.13 ENABLE WRITE STATUS REGISTER (EWSR)

The Enable Write STATUS Register (EWSR) instruction arms the Write STATUS Register (WRSR) instruction and opens the STATUS Register for alteration. The Write STATUS Register instruction must be executed immediately after the execution of the Enable Write STATUS Register instruction. This two-step instruction sequence of the EWSR instruction followed by the WRSR instruction works like SDP (software data protection) command structure which prevents any accidental alteration of the STATUS Register values. CE# must be driven low before the EWSR instruction is entered and must be driven high before the EWSR instruction is executed.

FIGURE 4-17: ENABLE WRITE STATUS REGISTER (EWSR) OR WRITE ENABLE (WREN) AND WRITE STATUS REGISTER (WRSR) SEQUENCE

![Diagram of EWSR and WRSR sequence]

4.4.14 WRITE STATUS REGISTER (WRSR)

The Write STATUS Register instruction writes new values to the BP3, BP2, BP1, BP0, and BPL bits of the STATUS Register. CE# must be driven low before the command sequence of the WRSR instruction is entered and driven high before the WRSR instruction is executed. See Figure 4-17 for EWSR or WREN and WRSR instruction sequences.

Executing the Write STATUS Register instruction will be ignored when WP# is low and BPL bit is set to '1'. When the WP# is low, the BPL bit can only be set from '0' to '1' to lock-down the STATUS Register, but cannot be reset from '1' to '0'. When WP# is high, the lock-down function of the BPL bit is disabled and the BPL, BP0, and BP1 and BP2 bits in the STATUS Register can all be changed. As long as BPL bit is set to '0' or WP# pin is driven high (VIH) prior to the low-to-high transition of the CE# pin at the end of the WRSR instruction, the bits in the STATUS Register can all be altered by the WRSR instruction. In this case, a single WRSR instruction can set the BPL bit to '1' to lock down the STATUS register as well as altering the BP0, BP1, and BP2 bits at the same time. See Table 4-1 for a summary description of WP# and BPL functions.
4.4.15 JEDEC READ-ID

The JEDEC Read-ID instruction identifies the device as SST25VF080B and the manufacturer as Microchip. The device information can be read from executing the 8-bit command, 9FH. Following the JEDEC Read-ID instruction, the 8-bit manufacturer’s ID, BFH, is output from the device. After that, a 16-bit device ID is shifted out on the SO pin. Byte 1, BFH, identifies the manufacturer as Microchip. Byte 2, 25H, identifies the memory type as SPI Serial Flash. Byte 3, 8EH, identifies the device as SST25VF080B. The instruction sequence is shown in Figure 4-18. The JEDEC Read ID instruction is terminated by a low to high transition on CE# at any time during data output.

FIGURE 4-18: JEDEC READ-ID SEQUENCE

[Diagram showing the JEDEC READ-ID sequence]

TABLE 4-5: JEDEC READ-ID DATA

<table>
<thead>
<tr>
<th>Manufacturer’s ID</th>
<th>Device ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory Type</td>
<td>Memory Capacity</td>
</tr>
<tr>
<td>Byte1</td>
<td>Byte 2</td>
</tr>
<tr>
<td></td>
<td>BFH</td>
</tr>
</tbody>
</table>

4.4.16 READ-ID (RDID)

The Read-ID (RDID) instruction identifies the devices as SST25VF080B and manufacturer as Microchip. This command is backward compatible and should be used as default device identification when multiple versions of SPI Serial Flash devices are used in a design. The device information can be read from executing an 8-bit command, 90H or ABH, followed by address bits [A23-A0]. Following the Read-ID instruction, the manufacturer’s ID is located in address 00000H and the device ID is located in address 0001H. Once the device is in Read-ID mode, the manufacturer’s and device ID output data toggles between address 00000H and 0001H until terminated by a low-to-high transition on CE#.

Refer to Table 4-5 and Table 4-6 for device identification data.
FIGURE 4-19: READ-ID SEQUENCE

Note 1: The manufacturer’s and device ID output stream is continuous until terminated by a low-to-high transition on CE#.
Device ID = 8EH for SST25VF080B.

TABLE 4-6: PRODUCT IDENTIFICATION

<table>
<thead>
<tr>
<th>Address</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer's ID</td>
<td>BFH</td>
</tr>
<tr>
<td>Device ID</td>
<td></td>
</tr>
<tr>
<td>SST25VF080B</td>
<td>8EH</td>
</tr>
</tbody>
</table>
5.0 ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings (†)

Temperature under bias .. -55°C to +125°C
Storage temperature .. -65°C to +150°C
DC voltage on any pin to ground potential ... -0.5V to VDD+0.5V
Transient voltage (<20 ns) on any pin to ground potential .. -2.0V to VDD+2.0V
Package power dissipation capability (TA = 25°C) .. 1.0W
Surface mount solder reflow temperature .. 260°C for 10 seconds
Output short circuit current (1) .. 50 mA

† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the
device. This is a stress rating only and functional operation of the device at those or any other conditions above those
indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability.

Note 1: Output shorted for no more than one second. No more than one output shorted at a time.

TABLE 5-1: OPERATING RANGE

<table>
<thead>
<tr>
<th>Range</th>
<th>Ambient Temp.</th>
<th>Vdd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial</td>
<td>0°C to +70°C</td>
<td>2.7V-3.6V</td>
</tr>
<tr>
<td>Industrial</td>
<td>-40°C to +85°C</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 5-2: AC CONDITIONS OF TEST (1)

<table>
<thead>
<tr>
<th>Input Rise/Fall Time</th>
<th>Output Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 ns</td>
<td>CL = 30 pF</td>
</tr>
</tbody>
</table>

Note 1: See Figure 5-2 and Figure 5-3.

5.1 Power-Up Specifications

All functionalities and DC specifications are specified for a VDD ramp rate of greater than 1V per 100 ms (0V to 3.0V in less than 300 ms). See Table 5-3 and Figure 5-1 for more information.

TABLE 5-3: RECOMMENDED SYSTEM POWER-UP/POWER-DOWN TIMINGS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPU-READ(1)</td>
<td>VDD Minimum to Read Operation</td>
<td>100</td>
<td>µs</td>
</tr>
<tr>
<td>TPU-WRITE(1)</td>
<td>VDD Minimum to Write Operation</td>
<td>100</td>
<td>µs</td>
</tr>
</tbody>
</table>

Note 1: This parameter is measured only for initial qualification and after a design or process change that could affect this parameter.
FIGURE 5-1: POWER-UP TIMING DIAGRAM

Chip selection is not allowed. Commands may not be accepted or properly interpreted by the device.

FIGURE 5-2: C INPUT/OUTPUT REFERENCE WAVEFORMS

FIGURE 5-3: A TEST LOAD EXAMPLE
6.0 DC CHARACTERISTICS

TABLE 6-1: DC OPERATING CHARACTERISTICS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Limits</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDDR1</td>
<td>Read Current</td>
<td>—</td>
<td>10 mA CE# = 0.1 VDD/0.9 VDD@25 MHz, SO = Open</td>
</tr>
<tr>
<td>IDDR2</td>
<td>Read Current</td>
<td>—</td>
<td>15 mA CE# = 0.1 VDD/0.9 VDD@50 MHz, SO = Open</td>
</tr>
<tr>
<td>IDDW</td>
<td>Program and Erase Current</td>
<td>—</td>
<td>30 mA CE# = VDD</td>
</tr>
<tr>
<td>ISB</td>
<td>Standby Current</td>
<td>—</td>
<td>30 µA CE# = VDD, VIN = VDD or VSS</td>
</tr>
<tr>
<td>IIL</td>
<td>Input Leakage Current</td>
<td>—</td>
<td>1 µA VIN = GND to VDD, VDD = VDD Max</td>
</tr>
<tr>
<td>ILO</td>
<td>Output Leakage Current</td>
<td>—</td>
<td>1 µA VOUT = GND to VDD, VDD = VDD Max</td>
</tr>
<tr>
<td>VIH</td>
<td>Input High Voltage</td>
<td>0.7 VDD—</td>
<td>V VDD = VDD Max</td>
</tr>
<tr>
<td>VOL1</td>
<td>Output Low Voltage</td>
<td>—</td>
<td>0.2 V IOL = 100 µA, VDD = VDD Min</td>
</tr>
<tr>
<td>VOL2</td>
<td>Output Low Voltage</td>
<td>—</td>
<td>0.4 V IOL = 1.6 mA, VDD = VDD Min</td>
</tr>
<tr>
<td>VOH</td>
<td>Output High Voltage</td>
<td>VDD-0.2—</td>
<td>V IOH = -100 µA, VDD = VDD Min</td>
</tr>
</tbody>
</table>

TABLE 6-2: Capacitance (TA = 25°C, f = 1 MHz, Other Pins Open)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Test Condition</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>COUT(1)</td>
<td>Output Pin Capacitance</td>
<td>VOUT = 0V</td>
<td>12 pF</td>
</tr>
<tr>
<td>CIN(1)</td>
<td>Input Capacitance</td>
<td>VIN = 0V</td>
<td>6 pF</td>
</tr>
</tbody>
</table>

Note 1: This parameter is measured only for initial qualification and after a design or process change that could affect this parameter.

TABLE 6-3: RELIABILITY CHARACTERISTICS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Minimum Specification</th>
<th>Unit</th>
<th>Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEND(1)</td>
<td>Endurance</td>
<td>10,000</td>
<td>Cycles</td>
<td>JEDEC Standard A117</td>
</tr>
<tr>
<td>TDR(1)</td>
<td>Data Retention</td>
<td>100</td>
<td>Years</td>
<td>JEDEC Standard A103</td>
</tr>
<tr>
<td>ILTH(1)</td>
<td>Latch Up</td>
<td>100 + IDD</td>
<td>mA</td>
<td>JEDEC Standard 78</td>
</tr>
</tbody>
</table>

Note 1: This parameter is measured only for initial qualification and after a design or process change that could affect this parameter.
7.0 AC CHARACTERISTICS

TABLE 7-1: AC OPERATING CHARACTERISTICS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>25 MHz</th>
<th>50 MHz</th>
<th>66 MHz</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCLK(3)</td>
<td>Serial Clock Frequency</td>
<td>—</td>
<td>25</td>
<td>—</td>
<td>50</td>
</tr>
<tr>
<td>TSCKH</td>
<td>Serial Clock High Time</td>
<td>18</td>
<td>—</td>
<td>9</td>
<td>—</td>
</tr>
<tr>
<td>TSCKL</td>
<td>Serial Clock Low Time</td>
<td>18</td>
<td>—</td>
<td>9</td>
<td>—</td>
</tr>
<tr>
<td>TSCKR(4)</td>
<td>Serial Clock Rise Time (slew rate)</td>
<td>0.1</td>
<td>—</td>
<td>0.1</td>
<td>—</td>
</tr>
<tr>
<td>TSCKF</td>
<td>Serial Clock Fall Time (slew rate)</td>
<td>0.1</td>
<td>—</td>
<td>0.1</td>
<td>—</td>
</tr>
<tr>
<td>TCES(5)</td>
<td>CE# Active Setup Time</td>
<td>10</td>
<td>—</td>
<td>5</td>
<td>—</td>
</tr>
<tr>
<td>TCEH(5)</td>
<td>CE# Active Hold Time</td>
<td>10</td>
<td>—</td>
<td>5</td>
<td>—</td>
</tr>
<tr>
<td>TCHS(5)</td>
<td>CE# Not Active Setup Time</td>
<td>10</td>
<td>—</td>
<td>5</td>
<td>—</td>
</tr>
<tr>
<td>TCHH(5)</td>
<td>CE# Not Active Hold Time</td>
<td>10</td>
<td>—</td>
<td>5</td>
<td>—</td>
</tr>
<tr>
<td>TCPH</td>
<td>CE# High Time</td>
<td>100</td>
<td>—</td>
<td>50</td>
<td>—</td>
</tr>
<tr>
<td>TCHZ</td>
<td>CE# High-to-High Z Output</td>
<td>10</td>
<td>—</td>
<td>5</td>
<td>—</td>
</tr>
<tr>
<td>TCLZ</td>
<td>SCK Low-to-Low Z Output</td>
<td>0</td>
<td>—</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>TDS</td>
<td>Data In Setup Time</td>
<td>5</td>
<td>—</td>
<td>2</td>
<td>—</td>
</tr>
<tr>
<td>TDH</td>
<td>Data In Hold Time</td>
<td>5</td>
<td>—</td>
<td>5</td>
<td>—</td>
</tr>
<tr>
<td>THLS</td>
<td>HOLD# Low Setup Time</td>
<td>10</td>
<td>—</td>
<td>5</td>
<td>—</td>
</tr>
<tr>
<td>THHS</td>
<td>HOLD# High Setup Time</td>
<td>10</td>
<td>—</td>
<td>5</td>
<td>—</td>
</tr>
<tr>
<td>THLH</td>
<td>HOLD# Low Hold Time</td>
<td>10</td>
<td>—</td>
<td>5</td>
<td>—</td>
</tr>
<tr>
<td>THHH</td>
<td>HOLD# High Hold Time</td>
<td>10</td>
<td>—</td>
<td>5</td>
<td>—</td>
</tr>
<tr>
<td>THZ</td>
<td>HOLD# Low-to-High Z Output</td>
<td>—</td>
<td>20</td>
<td>—</td>
<td>8</td>
</tr>
<tr>
<td>TLZ</td>
<td>HOLD# High-to-Low Z Output</td>
<td>—</td>
<td>15</td>
<td>—</td>
<td>8</td>
</tr>
<tr>
<td>TOH</td>
<td>Output Hold from SCK Change</td>
<td>0</td>
<td>—</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>TV</td>
<td>Output Valid from SCK</td>
<td>—</td>
<td>15</td>
<td>—</td>
<td>8</td>
</tr>
<tr>
<td>TSE</td>
<td>Sector Erase</td>
<td>—</td>
<td>25</td>
<td>—</td>
<td>25</td>
</tr>
<tr>
<td>TBE</td>
<td>Block Erase</td>
<td>—</td>
<td>25</td>
<td>—</td>
<td>25</td>
</tr>
<tr>
<td>TSCE</td>
<td>Chip Erase</td>
<td>—</td>
<td>50</td>
<td>—</td>
<td>50</td>
</tr>
<tr>
<td>TBP</td>
<td>Byte Program</td>
<td>—</td>
<td>10</td>
<td>—</td>
<td>10</td>
</tr>
</tbody>
</table>

Note:
1: VDD = 3.0V to 3.6V, CL = 15 pF.
2: Characterized, but not fully tested.
3: Maximum clock frequency for Read Instruction, 03H, is 25 MHz.
4: Maximum Rise and Fall time may be limited by TSCKH and TSCKL requirements.
5: Relative to SCK.
FIGURE 7-1: SERIAL INPUT TIMING DIAGRAM

FIGURE 7-2: SERIAL OUTPUT TIMING DIAGRAM

FIGURE 7-3: HOLD TIMING DIAGRAM
8.0 PACKAGING INFORMATION

8.1 Package Marking Information

Legend:

XX...X Part number or part number code
Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week ‘01’)
NNN Alphanumeric traceability code (2 characters for small packages)
\(\text{e3}\) Pb-free JEDEC® designator for Matte Tin (Sn)

Note: For very small packages with no room for the Pb-free JEDEC® designator \(\text{e3}\), the marking will only appear on the outer carton or reel label.

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.
Package Marking Information (Continued)

8-Contact WSON (6 mm x 5 mm)

- Part Number: SST25VF080B
- 1st Line Marking Codes: 25VF080B 50-4C-QAF 200513F-A

16-Ball XFBGA

- Part Number: SST25VF080B
- 1st Line Marking Codes: V80B 00513F

<table>
<thead>
<tr>
<th>Part Number</th>
<th>1st Line Marking Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>SST25VF080B</td>
<td>PDIP 25VF080B SOIC 25VF080B WDFN 25VF080B XFBGA 25VF080B</td>
</tr>
</tbody>
</table>
8-Lead Plastic Dual In-Line (P) - 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging
8-Lead Plastic Dual In-Line (P) - 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

ALTERNATE LEAD DESIGN (NOTE 5)

<table>
<thead>
<tr>
<th>Units</th>
<th>Dimension Limits</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Pins</td>
<td>N</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pitch</td>
<td>e</td>
<td>.100 BSC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Top to Seating Plane</td>
<td>A</td>
<td>-</td>
<td>-</td>
<td>.210</td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>A2</td>
<td>.115</td>
<td>.130</td>
<td>.195</td>
</tr>
<tr>
<td>Base to Seating Plane</td>
<td>A1</td>
<td>.015</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Shoulder to Shoulder Width</td>
<td>E</td>
<td>.290</td>
<td>.310</td>
<td>.325</td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>E1</td>
<td>.240</td>
<td>.250</td>
<td>.280</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
<td>.348</td>
<td>.365</td>
<td>.400</td>
</tr>
<tr>
<td>Tip to Seating Plane</td>
<td>L</td>
<td>.115</td>
<td>.130</td>
<td>.150</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
<td>.008</td>
<td>.010</td>
<td>.015</td>
</tr>
<tr>
<td>Upper Lead Width</td>
<td>b1</td>
<td>.040</td>
<td>.060</td>
<td>.070</td>
</tr>
<tr>
<td>Lower Lead Width</td>
<td>b</td>
<td>.014</td>
<td>.018</td>
<td>.022</td>
</tr>
<tr>
<td>Overall Row Spacing</td>
<td>eB</td>
<td>-</td>
<td>-</td>
<td>.430</td>
</tr>
</tbody>
</table>

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. § Significant Characteristic
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010” per side.
4. Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
5. Lead design above seating plane may vary, based on assembly vendor.

Microchip Technology Drawing No. C04-018-P Rev E Sheet 2 of 2
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

8-Lead Small Outline Integrated Circuit (S2AE/F) - .208 Inch Body [SOIC]

Note:
1. All linear dimensions are in millimeters (max/min).
2. Coplanarity: 0.1 mm
3. Maximum allowable mold flash is 0.15 mm at the package ends and 0.25 mm between leads.
8-Lead Very, Very Thin Small Outline No-Leads (QAE/F) - 5x6 mm Body [WSON]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Note:

1. All linear dimensions are in millimeters (max/min).
2. Untoleranced dimensions (shown with box surround) are nominal target dimensions.
3. The external paddle is electrically connected to the die back-side and possibly to certain VSS leads. This paddle can be soldered to the PC board; it is suggested to connect this paddle to the VSS of the unit. Connection of this paddle to any other voltage potential can result in shorts and/or electrical malfunction of the device.
16-bump Super-thin-profile, Fine-pitch, Ball Grid Array [XFBGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Note:
1. This specific package is not registered in JEDEC Publication 95.
2. All linear dimensions are in millimeters.
4. Top View body tolerance is 0.05 mm.
5. Coplanarity is 0.05 mm.
6. Ball width at interface to package body is 0.25 mm (0.03 mm).

© 2005-2020 Microchip Technology Inc. DS20005045D-page 28

9.0 REVISION HISTORY

Revision D (March 2020)

Revision C (February 2015)
Corrected a typo on page 8.

Revision B (June 2014)
EOL of all 80 MHz parts. Replacement parts are the 50 MHz counterparts found in this document. Removed all 80 MHz information. See DS20005266. EOL of SAE package. Updated document to new format. Replaced all package drawings with drawings in the new format.

Revision A (September 2011)
Added “Power-Up Specifications” on page 21. Updated Table 5-7 on page 21. Released document under letter revision system. Updated Spec number from S71296 to DS25045.

Revision 05 (February 2011)

Revision 04 (January 2010)
Added 80 MHz High Speed Clock Frequency to Features. Removed Maximum Frequency from Table 4-4 on page 7. Edited “Read (25 MHz)” on page 8 and “High-Speed-Read (66 MHz)” on page 8. Added 80 MHz information to “Electrical Specifications” on page 18. Edited Product Ordering Information. Added Valid Combinations SST25VF080B-80-4C-S2AE, SST25VF080B-80-4I-S2AE, SST25VF080B-80-4C-QAE, and SST25VF080B-80-4I-QAE.

Revision 03 (March 2009)
Modified "Features", “Features”, “Pin Description”, “Packaging Diagrams” and “Packaging Diagrams” to include the PAE package. Updated Figures 4-8 and 4-9 on page 11.

Revision 02 (June 2007)
Updated Features. Updated Table 4-4 on page 7. Updated “High-Speed-Read (66 MHz)” on page 8. Updated Table 5-6 on page 19.

Revision 01 (January 2006)
Migrated document to a Data Sheet. Updated Surface Mount Solder Reflow Temperature information.

Revision 00 (September 2005)
Initial release of the document
THE MICROCHIP WEBSITE

Microchip provides online support via our website at www.microchip.com. This website is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the website contains the following information:

• **Product Support** – Data sheets and errata, application notes and sample programs, design resources, user’s guides and hardware support documents, latest software releases and archived software

• **General Technical Support** – Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing

• **Business of Microchip** – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip’s customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip website at www.microchip.com. Under “Support”, click on “Customer Change Notification” and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

• Distributor or Representative
• Local Sales Office
• Field Application Engineer (FAE)
• Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the website at: http://microchip.com/support
PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>Device</th>
<th>Operating Frequency</th>
<th>Minimum Endurance</th>
<th>Temp Range</th>
<th>Package</th>
<th>Environmental Attribute</th>
<th>Tape and Reel Indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SST25VF080B</td>
<td>= 8 Mbit, 2.7V-3.6V, SPI Flash Memory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>= 50 MHz/66 MHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>= 10,000 cycles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>= -40°C to +85°C (Industrial)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>= 0°C to +70°C (Commercial)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>= PDIP (300 mil Body), 8-lead</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S2</td>
<td>= SOIC (200 mil Body), 8-lead</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q</td>
<td>= WSON (6 mm x 5 mm Body), 8-contact</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Z</td>
<td>= XFBGA Z-Scale (2 mm x 2 mm Body), 16-bump</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>= 8 leads or contacts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>= 16 bumps</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>= Matte Tin finish</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>= Nickel plating with Gold top (outer) layer finish or Matte Tin finish</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Blank</td>
<td>= Standard packaging (tube or tray)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>= Tape and Reel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valid Combinations:

a) SST25VF080B-50-4C-S2AF
b) SST25VF080B-50-4C-S2AF-T
c) SST25VF080B-50-4I-S2AF
d) SST25VF080B-50-4I-S2AF-T
e) SST25VF080B-50-4I-S2AE
f) SST25VF080B-50-4I-S2AE-T
g) SST25VF080B-50-4C-QAF
h) SST25VF080B-50-4C-QAF-T
i) SST25VF080B-50-4I-QAF
j) SST25VF080B-50-4I-QAF-T
k) SST25VF080B-50-4I-QAE
l) SST25VF080B-50-4I-QAE-T
m) SST25VF080B-50-4C-PAE
n) SST25VF080B-50-4I-ZCE

Note 1: Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option.
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BersiTime, BittCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANcheck, LinkMD, maxStylus, maxTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLazer, PackeTime, PIC, picPower, PICSTART, PIC32 logo, PolaFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNlC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, nTouch, Powermate 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2005-2020, Microchip Technology Incorporated, All Rights Reserved.

ISBN: 978-1-5224-5861-6

For information regarding Microchip’s Quality Management Systems, please visit www.microchip.com/quality.
Worldwide Sales and Service

<table>
<thead>
<tr>
<th>AMERICAS</th>
<th>ASIA/PACIFIC</th>
<th>ASIA/PACIFIC</th>
<th>EUROPE</th>
</tr>
</thead>
</table>
| Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/support
Web Address:
www.microchip.com | Australia - Sydney
Tel: 61-2-9868-6733 | India - Bangalore
Tel: 91-80-3090-4444 | Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393 |
| China - Beijing
Tel: 86-10-8569-7000 | China - New Delhi
Tel: 91-11-4160-8631 | Denmark - Copenhagen
Tel: 45-4485-5910
Fax: 45-4485-2829 |
| China - Chengdu
Tel: 86-28-8665-5511 | China - Pune
Tel: 91-20-4121-0141 | Finland - Espoo
Tel: 358-9-4520-820 |
| China - Chongqing
Tel: 86-23-8980-9588 | Japan - Osaka
Tel: 81-6-6152-7160 | France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79 |
| China - Dongguan
Tel: 86-769-8702-9880 | Japan - Tokyo
Tel: 81-3-6880-3770 | Germany - Garching
Tel: 49-8931-9700 |
| China - Guangzhou
Tel: 86-8-20-8755-8029 | Korea - Daegu
Tel: 82-53-744-4301 | Germany - Haan
Tel: 49-2129-3766400 |
| China - Hangzhou
Tel: 86-571-8792-8115 | Korea - Seoul
Tel: 82-2-554-7200 | Germany - Heilbronn
Tel: 49-7131-72400 |
| China - Hong Kong SAR
Tel: 852-2943-5100 | Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906 | Germany - Karlsruhe
Tel: 49-721-625370 |
| China - Nanjing
Tel: 86-25-8473-2460 | Malaysia - Penang
Tel: 60-4-227-8870 | Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44 |
| China - Qingdao
Tel: 86-532-8502-7355 | Philippines - Manila
Tel: 63-2-634-9065 | Germany - Rosenheim
Tel: 49-8031-354-560 |
| China - Shanghai
Tel: 86-21-3326-8000 | Singapore
Tel: 65-6334-8870 | Israel - Ra'anana
Tel: 972-9-744-7705 |
| China - Shenyang
Tel: 86-24-2334-2829 | Taiwan - Hsin Chu
Tel: 886-3-577-8366 | Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781 |
| China - Shenzhen
Tel: 86-755-8864-2200 | Taiwan - Kaohsiung
Tel: 886-7-213-7830 | Italy - Padova
Tel: 39-049-7625286 |
| China - Suzhou
Tel: 86-186-6233-1526 | Taiwan - Taipei
Tel: 886-2-2508-8600 | Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340 |
| China - Wuhan
Tel: 86-27-5980-5300 | Thailand - Bangkok
Tel: 66-2-694-1351 | Norway - Trondheim
Tel: 47-7288-4388 |
| China - Xian
Tel: 86-29-8833-7252 | Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100 | Poland - Warsaw
Tel: 48-22-3325737 |
| China - Xiamen
Tel: 86-592-2388138 | | Romania - Bucharest
Tel: 40-21-407-87-50 |
| China - Zhuhai
Tel: 86-756-3020040 | | Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91 |
| | | Sweden - Gothenburg
Tel: 46-31-704-60-40 |
| | | Sweden - Stockholm
Tel: 46-8-5090-4654 |
| | | UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820 |

© 2005-2020 Microchip Technology Inc.
DS20005045D-page 33
02/28/20