Features

• High Peak Output Current: 500 mA (typical)
• Wide Input Supply Voltage Operating Range:
 - 4.5V to 18V
• Low Shoot-Through/Cross-Conduction Current in Output Stage
• High Capacitive Load Drive Capability:
 - 470 pF in 19 ns (typical)
 - 1000 pF in 34 ns (typical)
• Short Delay Times: 35 ns (typical)
• Matched Rise/Fall Times
• Low Supply Current:
 - With Logic ‘1’ Input – 0.85 mA (typical)
 - With Logic ‘0’ Input – 0.1 mA (typical)
• Latch-Up Protected: Will Withstand 500 mA Reverse Current
• Logic Input Will Withstand Negative Swing up to 5V
• Space-Saving 5-Lead SOT-23 Package

Applications

• Switch Mode Power Supplies
• Pulse Transformer Drive
• Line Drivers
• Motor and Solenoid Drive

General Description

The MCP1401/02 are high-speed MOSFET drivers capable of providing 500 mA of peak current. The inverting or non-inverting single channel output is directly controlled from either TTL or CMOS (3V to 18V). These devices also feature low shoot-through current, matched rise/fall times and propagation delays which make them ideal for high switching frequency applications.

The MCP1401/02 devices operate from a single 4.5V to 18V power supply and can easily charge and discharge 470 pF gate capacitance in under 19 ns (typical). They provide low enough impedances in both the On and Off states to ensure the MOSFET’s intended state will not be affected, even by large transients.

These devices are highly latch-up resistant under any conditions within their power and voltage ratings. They are not subject to damage when up to 5V of noise spiking (of either polarity) occurs on the Ground pin. They can accept, without damage or logic upset, up to 500 mA of reverse current being forced back into their outputs. All terminals are fully protected against Electrostatic Discharge (ESD) up to 1 kV (HBM) and 300V (MM).

Package Types

![SOT-23 Package Diagram]

MCP1401 MCP1402
GND 5 OUT OUT
VDD 2
IN 3 4 GND GND
MCP1401/02

Functional Block Diagram

Effective Input C = 25 pF
(Each Input)

4.7V

850 µA

300 mV

MCP1401 Inverting
MCP1402 Non-inverting

Non-inverting

Inverting

VDD

Output

GND

(Each Input)
1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings†

Supply Voltage ... +20V
Input Voltage (VDD + 0.3V) to (GND – 5V)
Input Current (VIN > VDD) 50 mA
Package Power Dissipation (TA = 50°C)
SOT-23-5 ..0.39W

† Notice: Stresses above those listed under “Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability.

DC CHARACTERISTICS (Note 2)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logic ’1’, High Input Voltage</td>
<td>VIH</td>
<td>2.4</td>
<td>1.5</td>
<td>—</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Logic ’0’, Low Input Voltage</td>
<td>VIL</td>
<td>—</td>
<td>1.3</td>
<td>0.8</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Input Current</td>
<td>IN</td>
<td>-1</td>
<td>—</td>
<td>1</td>
<td>µA</td>
<td>0V ≤ VIN ≤ VDD</td>
</tr>
<tr>
<td>Input Voltage</td>
<td>VIN</td>
<td>-5</td>
<td>—</td>
<td>VDD + 0.3</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Output</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Output Voltage</td>
<td>VOH</td>
<td>VDD – 0.025</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>DC Test</td>
</tr>
<tr>
<td>Low Output Voltage</td>
<td>VLL</td>
<td>—</td>
<td>—</td>
<td>0.025</td>
<td>V</td>
<td>DC Test</td>
</tr>
<tr>
<td>Output Resistance, High</td>
<td>R OH</td>
<td>—</td>
<td>12</td>
<td>18</td>
<td>Ω</td>
<td>IOUT = 10 mA, VDD = 18V</td>
</tr>
<tr>
<td>Output Resistance, Low</td>
<td>ROL</td>
<td>—</td>
<td>10</td>
<td>16</td>
<td>Ω</td>
<td>IOUT = 10 mA, VDD = 18V</td>
</tr>
<tr>
<td>Peak Output Current</td>
<td>IPK</td>
<td>—</td>
<td>0.5</td>
<td>—</td>
<td>A</td>
<td>VDD = 18V (Note 2)</td>
</tr>
<tr>
<td>Latch-Up Protection Withstand Reverse Current</td>
<td>IREV</td>
<td>—</td>
<td>> 0.5</td>
<td>—</td>
<td>A</td>
<td>Duty cycle ≤ 2%, t ≤ 300 µs</td>
</tr>
</tbody>
</table>

Switching Time (Note 1)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rise Time</td>
<td>tR</td>
<td>—</td>
<td>19</td>
<td>25</td>
<td>ns</td>
<td>Figure 4-1, Figure 4-2</td>
</tr>
<tr>
<td>Fall Time</td>
<td>tF</td>
<td>—</td>
<td>15</td>
<td>20</td>
<td>ns</td>
<td>Figure 4-1, Figure 4-2</td>
</tr>
<tr>
<td>Delay Time</td>
<td>tD1</td>
<td>—</td>
<td>35</td>
<td>40</td>
<td>ns</td>
<td>Figure 4-1, Figure 4-2</td>
</tr>
<tr>
<td>Delay Time</td>
<td>tD2</td>
<td>—</td>
<td>35</td>
<td>40</td>
<td>ns</td>
<td>Figure 4-1, Figure 4-2</td>
</tr>
</tbody>
</table>

Power Supply

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>VDD</td>
<td>4.5</td>
<td>—</td>
<td>18.0</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Power Supply Current</td>
<td>IS</td>
<td>—</td>
<td>0.85</td>
<td>1.1</td>
<td>mA</td>
<td>VIN = 3V</td>
</tr>
<tr>
<td></td>
<td>IS</td>
<td>—</td>
<td>0.10</td>
<td>0.20</td>
<td>mA</td>
<td>VIN = 0V</td>
</tr>
</tbody>
</table>

Note 1: Switching times ensured by design.
Note 2: Tested during characterization, not production tested.
DC CHARACTERISTICS (OVER OPERATING TEMPERATURE RANGE)

Electrical Specifications: Unless otherwise indicated, operating temperature range with $4.5V \leq V_{DD} \leq 18V$.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logic ‘1’, High Input Voltage</td>
<td>V_{IH}</td>
<td>2.4</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Logic ‘0’, Low Input Voltage</td>
<td>V_{IL}</td>
<td>—</td>
<td>—</td>
<td>0.8</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Input Current</td>
<td>I_{IN}</td>
<td>-10</td>
<td>—</td>
<td>+10</td>
<td>μA</td>
<td>$0V \leq V_{IN} \leq V_{DD}$</td>
</tr>
<tr>
<td>Input Voltage</td>
<td>V_{IN}</td>
<td>-5</td>
<td>—</td>
<td>$V_{DD} + 0.3$</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Output</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Output Voltage</td>
<td>V_{OH}</td>
<td>$V_{DD} - 0.025$</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>DC TEST</td>
</tr>
<tr>
<td>Low Output Voltage</td>
<td>V_{OL}</td>
<td>—</td>
<td>—</td>
<td>0.025</td>
<td>V</td>
<td>DC TEST</td>
</tr>
<tr>
<td>Output Resistance, High</td>
<td>R_{OH}</td>
<td>—</td>
<td>16</td>
<td>18</td>
<td>Ω</td>
<td>$I_{OUT} = 10$ mA, $V_{DD} = 18V$</td>
</tr>
<tr>
<td>Output Resistance, Low</td>
<td>R_{OL}</td>
<td>—</td>
<td>16</td>
<td>19</td>
<td>Ω</td>
<td>$I_{OUT} = 10$ mA, $V_{DD} = 18V$</td>
</tr>
<tr>
<td>Switching Time (Note 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rise Time</td>
<td>t_{R}</td>
<td>—</td>
<td>20</td>
<td>30</td>
<td>ns</td>
<td>Figure 4-1, Figure 4-2</td>
</tr>
<tr>
<td>Fall Time</td>
<td>t_{F}</td>
<td>—</td>
<td>18</td>
<td>28</td>
<td>ns</td>
<td>Figure 4-1, Figure 4-2</td>
</tr>
<tr>
<td>Delay Time</td>
<td>t_{D1}</td>
<td>—</td>
<td>40</td>
<td>51</td>
<td>ns</td>
<td>Figure 4-1, Figure 4-2</td>
</tr>
<tr>
<td>Delay Time</td>
<td>t_{D2}</td>
<td>—</td>
<td>40</td>
<td>51</td>
<td>ns</td>
<td>Figure 4-1, Figure 4-2</td>
</tr>
<tr>
<td>Power Supply</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply Voltage</td>
<td>V_{DD}</td>
<td>4.5</td>
<td>—</td>
<td>18.0</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Power Supply Current</td>
<td>I_{S}</td>
<td>—</td>
<td>0.90</td>
<td>1.10</td>
<td>mA</td>
<td>$V_{IN} = 3V$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>0.11</td>
<td>0.20</td>
<td>mA</td>
<td>$V_{IN} = 0V$</td>
</tr>
</tbody>
</table>

Note 1: Switching times ensured by design.
2: Tested during characterization, not production tested.

TEMPERATURE CHARACTERISTICS

Electrical Specifications: Unless otherwise noted, all parameters apply with $4.5V \leq V_{DD} \leq 18V$.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Ranges</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specified Temperature Range</td>
<td>T_{A}</td>
<td>-40</td>
<td>—</td>
<td>+125</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{J}</td>
<td>—</td>
<td>—</td>
<td>+150</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>T_{A}</td>
<td>-65</td>
<td>—</td>
<td>+150</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Package Thermal Resistances</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance, 5L-SOT-23</td>
<td>θ_{JA}</td>
<td>—</td>
<td>220.7</td>
<td>—</td>
<td>°C/W</td>
<td></td>
</tr>
</tbody>
</table>
2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

Note: Unless otherwise indicated, $T_A = +25^\circ C$ with $4.5V \leq V_{DD} \leq 18V$.

FIGURE 2-1: Rise Time vs. Supply Voltage.

FIGURE 2-2: Rise Time vs. Capacitive Load.

FIGURE 2-3: Rise and Fall Times vs. Temperature.

FIGURE 2-4: Fall Time vs. Supply Voltage.

FIGURE 2-5: Fall Time vs. Capacitive Load.

FIGURE 2-6: Propagation Delay vs. Input Amplitude.
Note: Unless otherwise indicated, $T_A = +25^\circ C$ with $4.5V \leq V_{DD} \leq 18V$.

FIGURE 2-7: Propagation Delay Time vs. Supply Voltage.

FIGURE 2-8: Propagation Delay Time vs. Temperature.

FIGURE 2-9: Quiescent Current vs. Supply Voltage.

FIGURE 2-10: Quiescent Current vs. Temperature.

FIGURE 2-11: Input Threshold vs. Supply Voltage.

FIGURE 2-12: Input Threshold vs. Temperature.

Note: Unless otherwise indicated, $T_A = +25^\circ C$ with $4.5V \leq V_{DD} \leq 18V$.

FIGURE 2-14: Supply Current vs. Capacitive Load.

FIGURE 2-15: Supply Current vs. Capacitive Load.

FIGURE 2-16: Supply Current vs. Frequency.

FIGURE 2-17: Supply Current vs. Frequency.

FIGURE 2-18: Supply Current vs. Frequency.
Note: Unless otherwise indicated, $T_A = +25^\circ\text{C}$ with $4.5\text{V} \leq V_{\text{DD}} \leq 18\text{V}$.

FIGURE 2-19: Output Resistance (Output High) vs. Supply Voltage.

FIGURE 2-20: Output Resistance (Output Low) vs. Supply Voltage.

FIGURE 2-21: Crossover Energy vs. Supply Voltage.
3.0 PIN DESCRIPTIONS

The description of the pins are listed in Table 3-1.

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>MCP1401</th>
<th>MCP1402</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>2</td>
<td>V_DD</td>
<td>V_DD</td>
<td>Supply Input</td>
</tr>
<tr>
<td>3</td>
<td>IN</td>
<td>IN</td>
<td>Control Input</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>5</td>
<td>OUT</td>
<td>OUT</td>
<td>Output</td>
</tr>
</tbody>
</table>

Note 1: Duplicate pins must be connected for proper operation.

3.1 Supply Input (V_DD)

V_DD is the bias supply input for the MOSFET driver and has a voltage range of 4.5V to 18V. This input must be decoupled to ground with a local capacitor. This bypass capacitor provides a localized low-impedance path for the peak currents that are to be provided to the load.

3.2 Control Input (IN)

The MOSFET driver input is a high-impedance, TTL/CMOS-compatible input. The input also has hysteresis between the high and low input levels, allowing them to be driven from slow rising and falling signals and to provide noise immunity.

3.3 Ground (GND)

Ground is the Device Return pin. The Ground pin should have a low-impedance connection to the bias supply source return. High peak currents will flow out the Ground pin when the capacitive load is being discharged.

3.4 Output (OUT, OUT)

The output is a CMOS push-pull output that is capable of sourcing and sinking 0.5A of peak current (V_DD = 18V). The low output impedance ensures the gate of the external MOSFET will stay in the intended state even during large transients. This output also has a reverse current latch-up rating of 0.5A.
4.0 APPLICATION INFORMATION

4.1 General Information
MOSFET drivers are high-speed, high-current devices which are intended to source/sink high peak currents to charge/discharge the gate capacitance of external MOSFETs or IGBTs. In high-frequency switching power supplies, the PWM controller may not have the drive capability to directly drive the power MOSFET. A MOSFET driver like the MCP1401/02 family can be used to provide additional source/sink current capability.

4.2 MOSFET Driver Timing
The ability of a MOSFET driver to transition from a fully-off state to a fully-on state is characterized by the driver’s rise time (\(t_R\)), fall time (\(t_F\)), and propagation delays (\(t_{D1}\) and \(t_{D2}\)). The MCP1401/02 family of drivers can typically charge and discharge a 470 pF load capacitance in 19 ns, along with a typical matched propagation delay of 35 ns. Figures 4-1 and 4-2 show the test circuit and timing waveform used to verify the MCP1401/02 timing.

4.3 Decoupling Capacitors
Careful layout and decoupling capacitors are highly recommended when using MOSFET drivers. Large currents are required to charge and discharge capacitive loads quickly. For example, approximately 550 mA are needed to charge a 470 pF load with 18V in 15 ns.

To operate the MOSFET driver over a wide frequency range with low supply impedance, it is recommended to place a ceramic and low ESR film capacitor in parallel between the driver \(V_{DD}\) and GND. A 1.0 µF low ESR film capacitor and a 0.1 µF ceramic capacitor placed between pins 2 and 1 should be used. These capacitors should be placed close to the driver to minimize circuit board parasitics and provide a local source for the required current.

4.4 PCB Layout Considerations
Proper Printed Circuit Board (PCB) layout is important in a high-current, fast switching circuit to provide proper device operation and robustness of design. PCB trace loop area and inductance should be minimized by the use of ground planes or trace under MOSFET gate drive signals, separate analog and power grounds, and local driver decoupling.

Placing a ground plane beneath the MCP1401/02 will help as a radiated noise shield and it will provide some heat sinking for power dissipated within the device.
4.5 Power Dissipation

The total internal power dissipation in a MOSFET driver is the summation of three separate power dissipation elements.

EQUATION 4-1:

\[P_T = P_L + P_Q + P_{CC} \]

Where:
- \(P_T \) = Total power dissipation
- \(P_L \) = Load power dissipation
- \(P_Q \) = Quiescent power dissipation
- \(P_{CC} \) = Operating power dissipation

4.5.1 CAPACITIVE LOAD DISSIPATION

The power dissipation caused by a capacitive load is a direct function of frequency, total capacitive load, and supply voltage. The power lost in the MOSFET driver for a complete charging and discharging cycle of a MOSFET is shown in Equation 4-2.

EQUATION 4-2:

\[P_L = f \times C_T \times V_{DD}^2 \]

Where:
- \(f \) = Switching frequency
- \(C_T \) = Total load capacitance
- \(V_{DD} \) = MOSFET driver supply voltage

4.5.2 QUIESCENT POWER DISSIPATION

The power dissipation associated with the quiescent current draw depends upon the state of the Input pin. The MCP1401/02 devices have a quiescent current draw of 0.85 mA (typical) when the input is high and of 0.1 mA (typical) when the input is low. The quiescent power dissipation is shown in Equation 4-3.

EQUATION 4-3:

\[P_Q = (I_{QH} \times D + I_{QL} \times (1 - D)) \times V_{DD} \]

Where:
- \(I_{QH} \) = Quiescent current in the high state
- \(D \) = Duty cycle
- \(I_{QL} \) = Quiescent current in the low state
- \(V_{DD} \) = MOSFET driver supply voltage

4.5.3 OPERATING POWER DISSIPATION

The operating power dissipation occurs each time the MOSFET driver output transitions because, for a very short period of time, both MOSFETs in the output stage are on simultaneously. This cross-conduction current leads to a power dissipation described in Equation 4-4.

EQUATION 4-4:

\[P_{CC} = CC \times f \times V_{DD} \]

Where:
- \(CC \) = Cross-conduction constant (A * sec)
- \(f \) = Switching frequency
- \(V_{DD} \) = MOSFET driver supply voltage
5.0 PACKAGING INFORMATION

5.1 Package Marking Information

Legend:
- XX...X Customer-specific information
- Y Year code (last digit of calendar year)
- YY Year code (last 2 digits of calendar year)
- WW Week code (week of January 1 is week '01')
- NNN Alphanumeric traceability code
- 3 Pb-free JEDEC® designator for Matte Tin (Sn)
- * This package is Pb-free. The Pb-free JEDEC designator (3) can be found on the outer packaging for this package.

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.
5-Lead Plastic Small Outline Transistor (OT) [SOT-23]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension</td>
<td>MIN</td>
</tr>
<tr>
<td>Number of Pins</td>
<td>N</td>
</tr>
<tr>
<td>Lead Pitch</td>
<td>e</td>
</tr>
<tr>
<td>Outside Lead Pitch</td>
<td>e1</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>A2</td>
</tr>
<tr>
<td>Standoff</td>
<td>A1</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>E1</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
</tr>
<tr>
<td>Foot Length</td>
<td>L</td>
</tr>
<tr>
<td>Footprint</td>
<td>L1</td>
</tr>
<tr>
<td>Foot Angle</td>
<td>φ</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
</tr>
<tr>
<td>Lead Width</td>
<td>b</td>
</tr>
</tbody>
</table>

Notes:
1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.127 mm per side.
2. Dimensioning and tolerancing per ASME Y14.5M.
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
5-Lead Plastic Small Outline Transistor (OT) [SOT-23]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Recommended Land Pattern

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Limits</td>
<td>MIN</td>
</tr>
<tr>
<td>Contact Pitch</td>
<td>E</td>
</tr>
<tr>
<td>Contact Pad Spacing</td>
<td>C</td>
</tr>
<tr>
<td>Contact Pad Width (X5)</td>
<td>X</td>
</tr>
<tr>
<td>Contact Pad Length (X5)</td>
<td>Y</td>
</tr>
<tr>
<td>Distance Between Pads</td>
<td>G</td>
</tr>
<tr>
<td>Distance Between Pads</td>
<td>GX</td>
</tr>
<tr>
<td>Overall Width</td>
<td>Z</td>
</tr>
</tbody>
</table>

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

 BSC: Basic Dimension. Theoretically exact value shown without tolerances.

 Microchip Technology Drawing No. C04-2091A
APPENDIX A: REVISION HISTORY

Revision D (June 2014)
The following is the list of modifications:
1. Updated Figure 2-19 and Figure 2-20.

Revision C (September 2013)
The following is the list of modifications:
1. Updated values for Electrostatic Discharge (ESD) protection in the Section “General Description”.
2. Updated package drawings in Section 5.0 “Packaging Information”.
3. Updated ROH and ROL numbers in the “DC Characteristics (Over Operating Temperature Range)” table.

Revision B (December 2007)
The following is the list of modifications:
1. Updated the low supply current values.
2. Updated Section 5.1 “Package Marking Information”.

Revision A (June 2007)
• Original Release of this Document.
PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.

<table>
<thead>
<tr>
<th>Device</th>
<th>Tape & Reel</th>
<th>Temperature Range</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCP1401: 500 mA MOSFET Driver, Inverting</td>
<td>T = Tape and Reel</td>
<td>E = -40°C to +125°C</td>
<td>OT = Plastic Thin Small Outline Transistor (OT), 5-Lead</td>
</tr>
<tr>
<td>MCP1402: 500 mA MOSFET Driver, Non-Inverting</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Examples:

a) MCP1401T-E/OT: 500 mA Inverting MOSFET Driver, 5LD SOT-23 package.

a) MCP1402T-E/OT 500 mA Non-Inverting MOSFET Driver, 5LD SOT-23 package.

* All package offerings are Pb Free (Lead Free)
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, flexPWR, JukeBlox, KEELOG, KEELOG logo, Kleer, LANCheck, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PICIC2 logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

The Embedded Control Solutions Company and mTouch are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet, KleerNet logo, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2007-2014, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

AMERICAS

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support: http://www.microchip.com/support
Web Address: www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Austin, TX
Tel: 512-257-3370

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 866-257-3370
Fax: 866-257-3371

Cleveland
Independence, OH
Tel: 440-868-2700
Fax: 440-868-2701

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-7424

Detroit
Novi, MI
Tel: 888-293-7582
Fax: 888-293-7583

Houston, TX
Tel: 832-894-5983

Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5435

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9524

New York, NY
Tel: 631-435-6000

San Jose, CA
Tel: 408-735-9110

Canada - Toronto
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway Harbour City, Kowloon
Hong Kong
Tel: 852-2943-5100
Fax: 852-2943-531

Australia - Sydney
Tel: 61-2-9888-6733
Fax: 61-2-9888-6755

China - Beijing
Tel: 86-10-8596-7000
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500

China - Hangzhou
Tel: 86-571-8792-8115
Fax: 86-571-8792-8116

China - Hong Kong SAR
Tel: 852-2943-5100
Fax: 852-2943-531

China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8684-2200
Fax: 86-755-8203-1760

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130

China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-3019-1500

Japan - Osaka
Tel: 81-6-6152-7160
Fax: 81-6-6152-9310

Japan - Tokyo
Tel: 81-3-6880-3770
Fax: 81-3-6880-3771

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955

Taiwan - Kaohsiung
Tel: 886-7-213-7830

Taiwan - Taipei
Tel: 886-2-2508-8600
Fax: 886-2-2508-1012

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-63-63-20
Fax: 33-1-69-30-90-79

Germany - Dusseldorf
Tel: 49-2129-3766400

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Germany - Pforzheim
Tel: 49-7231-424750

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-666781

Italy - Venice
Tel: 39-049-7625286

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Poland - Warsaw
Tel: 48-22-3325737

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

Sweden - Stockholm
Tel: 46-8-5090-4654

UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

03/25/14