MCP1700

Low Quiescent Current LDO

Features:

- 1.6 µA Typical Quiescent Current
- Input Operating Voltage Range: 2.3V to 6.0V
- Output Voltage Range: 1.2V to 5.0V
- 250 mA Output Current for Output Voltages ≥ 2.5V
- 200 mA Output Current for Output Voltages < 2.5V
- Low Dropout (LDO) Voltage
 - 178 mV Typical @ 250 mA for V_OUT = 2.8V
- 0.4% Typical Output Voltage Tolerance
- Standard Output Voltage Options:
 - 1.2V, 1.8V, 2.5V, 2.8V, 3.0V, 3.3V, 5.0V
- Stable with 1.0 µF Ceramic Output Capacitor
- Short Circuit Protection
- Overtemperature Protection

Applications:

- Battery-Powered Devices
- Battery-Powered Alarm Circuits
- Smoke Detectors
- CO₂ Detectors
- Pagers and Cellular Phones
- Smart Battery Packs
- Low Quiescent Current Voltage Reference
- PDAs
- Digital Cameras
- Microcontroller Power

Related Literature:

- AN765, “Using Microchip’s Micropower LDOs” (DS00765), Microchip Technology Inc., 2002
- AN766, “Pin-Compatible CMOS Upgrades to Bipolar LDOs” (DS00766), Microchip Technology Inc., 2002
- AN792, “A Method to Determine How Much Power a SOT23 Can Dissipate in an Application” (DS00792), Microchip Technology Inc., 2001

General Description:

The MCP1700 is a family of CMOS low dropout (LDO) voltage regulators that can deliver up to 250 mA of current while consuming only 1.6 µA of quiescent current (typical). The input operating range is specified from 2.3V to 6.0V, making it an ideal choice for two and three primary cell battery-powered applications, as well as single cell Li-Ion-powered applications.

The MCP1700 is capable of delivering 250 mA with only 178 mV of input to output voltage differential (V_OUT = 2.8V). The output voltage tolerance of the MCP1700 is typically ±0.4% at +25°C and ±3% maximum over the operating junction temperature range of -40°C to +125°C.

Output voltages available for the MCP1700 range from 1.2V to 5.0V. The LDO output is stable when using only 1 µF output capacitance. Ceramic, tantalum or aluminum electrolytic capacitors can all be used for input and output. Overcurrent limit and overtemperature shutdown provide a robust solution for any application.

Package options include SOT-23, SOT-89, TO-92 and 2x2 DFN-6.

Package Types

3-Pin SOT-23

3-Pin SOT-89

2x2 DFN-6*

* Includes Exposed Thermal Pad (EP); see Table 3-1.
MCP1700

Functional Block Diagrams

Typical Application Circuits
1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

V_{DD} ..+6.5V
All inputs and outputs w.r.t.(V_{SS} - 0.3V) to (V_{IN} + 0.3V)
Peak Output CurrentInternally Limited
Storage Temperature-65°C to +150°C
Maximum Junction Temperature................................... 150°C
Operating Junction Temperature...................-40°C to +125°C
ESD protection on all pins (HBM,MM)............... ≥ 4 kV; ≥ 400V

† Notice: Stresses above those listed under “Maximum Ratings” may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

DC CHARACTERISTICS

Electrical Characteristics: Unless otherwise specified, all limits are established for VIN = V_R + 1V, ILOAD = 100 μA, C_{OUT} = 1 μF (X7R), C_{IN} = 1 μF (X7R), T_A = +25°C.
Boldface type applies for junction temperatures, T_J (Note 6) of -40°C to +125°C.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input/Output Characteristic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Operating Voltage</td>
<td>VIN</td>
<td>2.3</td>
<td>—</td>
<td>6.0</td>
<td>V</td>
<td>Note 1</td>
</tr>
<tr>
<td>Input Quiescent Current</td>
<td>I_Q</td>
<td>—</td>
<td>1.6</td>
<td>4</td>
<td>μA</td>
<td>I_L = 0 mA, VIN = V_R + 1V</td>
</tr>
<tr>
<td>Maximum Output Current</td>
<td>I_{OUT_mA}</td>
<td>250</td>
<td>—</td>
<td>—</td>
<td>mA</td>
<td>For V_R ≥ 2.5V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200</td>
<td>—</td>
<td>—</td>
<td></td>
<td>For V_R < 2.5V</td>
</tr>
<tr>
<td>Output Short Circuit Current</td>
<td>I_{OUT_SC}</td>
<td>—</td>
<td>408</td>
<td>—</td>
<td>mA</td>
<td>VIN = V_R + 1V, V_{OUT} = GND</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Current (peak current) measured 10 ms after short is applied.</td>
</tr>
<tr>
<td>Output Voltage Regulation</td>
<td>V_{OUT}</td>
<td>V_R - 2.0%</td>
<td>V_R ± 0.4%</td>
<td>V_R + 2.0%</td>
<td>V_R + 3.0%</td>
<td>V</td>
</tr>
<tr>
<td>V_{OUT} Temperature Coefficient</td>
<td>TCV_{OUT}</td>
<td>—</td>
<td>50</td>
<td>—</td>
<td>ppm/°C</td>
<td>Note 3</td>
</tr>
<tr>
<td>Line Regulation</td>
<td>ΔV_{OUT}/ (V_{OUT}×ΔV_{IN})</td>
<td>-1.0</td>
<td>±0.75</td>
<td>+1.0</td>
<td>%/V</td>
<td>(V_R + 1)/VIN ≤ V_{IN} ≤ 6V</td>
</tr>
<tr>
<td>Load Regulation</td>
<td>ΔV_{OUT}/V_{OUT}</td>
<td>-1.5</td>
<td>±1.0</td>
<td>+1.5</td>
<td>%</td>
<td>I_L = 0.1 mA to 250 mA for V_R ≥ 2.5V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I_L = 0.1 mA to 200 mA for V_R < 2.5V</td>
</tr>
<tr>
<td>Dropout Voltage</td>
<td>V_{IN} - V_{OUT}</td>
<td>—</td>
<td>178</td>
<td>350</td>
<td>mV</td>
<td>I_L = 250 mA, (Note 1, Note 5)</td>
</tr>
<tr>
<td>V_R < 2.5V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dropout Voltage</td>
<td>V_{IN} - V_{OUT}</td>
<td>—</td>
<td>150</td>
<td>350</td>
<td>mV</td>
<td>I_L = 200 mA, (Note 1, Note 5)</td>
</tr>
<tr>
<td>V_R < 2.5V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Rise Time</td>
<td>T_R</td>
<td>—</td>
<td>500</td>
<td>—</td>
<td>μs</td>
<td>10% V_R to 90% V_R, VIN = 0V to 6V, R_L = 50Ω resistive</td>
</tr>
</tbody>
</table>

Note:
1: The minimum V_{IN} must meet two conditions: V_{IN} ≥ 2.3V and V_{IN} ≥ (V_R + 3.0%) + V_DROPOUT.
2: V_R is the nominal regulator output voltage. For example: V_R = 1.2V, 1.5V, 1.8V, 2.5V, 2.8V, 3.0V, 3.3V, 4.0V, 5.0V. The input voltage V_{IN} = V_R + 1.0V, I_{OUT} = 100 μA.
3: TCV_{OUT} = (V_{OUT}-HIGH - V_{OUT}-LOW) *ΔV/ / (V_R × ΔTemperature), V_{OUT}-HIGH = highest voltage measured over the temperature range, V_{OUT}-LOW = lowest voltage measured over the temperature range.
4: Load regulation is measured at a constant junction temperature using low duty cycle pulse testing. Changes in output voltage due to heating effects are determined using thermal regulation specification TCV_{OUT}.
5: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its measured value with a V_R + 1V differential applied.
6: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air (i.e., T_A, T_J, θ_JA). Exceeding the maximum allowable power dissipation will cause the device operating junction temperature to exceed the maximum 150°C rating. Sustained junction temperatures above 150°C can impact the device reliability.
7: The junction temperature is approximated by soaking the device under test at an ambient temperature equal to the desired Junction temperature. The test time is small enough such that the rise in the Junction temperature over the ambient temperature is not significant.
DC CHARACTERISTICS (CONTINUED)

Electrical Characteristics:
Unless otherwise specified, all limits are established for $V_{IN} = V_R + 1V$, $I_{LOAD} = 100\ \mu A$, $C_{OUT} = 1\ \mu F$ (X7R), $C_{IN} = 1\ \mu F$ (X7R), $T_A = +25\degree C$.

Boldface type applies for junction temperatures, T_J (*Note 6*) of -40°C to +125°C.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Noise</td>
<td>e_N</td>
<td>3</td>
<td></td>
<td></td>
<td>$\mu V/(Hz)^{1/2}$</td>
<td>$I_L = 100\ \mu A$, $f = 1\ \text{kHz}$, $C_{OUT} = 1\ \mu F$</td>
</tr>
<tr>
<td>Power Supply Ripple Rejection Ratio</td>
<td>PSRR</td>
<td></td>
<td>44</td>
<td></td>
<td>dB</td>
<td>$f = 100\ \text{Hz}$, $C_{OUT} = 1\ \mu F$, $I_L = 50\ \mu A$, $V_{INAC} = 100\ \text{mV pk-pk}$, $C_{IN} = 0\ \mu F$, $V_R = 1.2V$</td>
</tr>
<tr>
<td>Thermal Shutdown Protection</td>
<td>TSD</td>
<td></td>
<td>140</td>
<td></td>
<td>°C</td>
<td>$V_{IN} = V_R + 1V$, $I_L = 100\ \mu A$</td>
</tr>
</tbody>
</table>

Note 1: The minimum V_{IN} must meet two conditions: $V_{IN} \geq 2.3V$ and $V_{IN} \geq (V_R + 3.0\%) + V_{DROPOUT}$.

Note 2: V_R is the nominal regulator output voltage. For example: $V_R = 1.2V$, 1.5V, 1.8V, 2.5V, 2.8V, 3.0V, 3.3V, 4.0V, 5.0V. The input voltage $V_{IN} = V_R + 1.0V$, $I_{OUT} = 100\ \mu A$.

Note 3: $TC_{VOUT} = (V_{OUT-HIGH} - V_{OUT-LOW}) \times 10^6 / (V_R \times \Delta\text{Temperature})$, $V_{OUT-HIGH}$ = highest voltage measured over the temperature range, $V_{OUT-LOW}$ = lowest voltage measured over the temperature range.

Note 4: Load regulation is measured at a constant junction temperature using low duty cycle pulse testing. Changes in output voltage due to heating effects are determined using thermal regulation specification TC_{VOUT}.

Note 5: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its measured value with a $V_R + 1\ \text{V}$ differential applied.

Note 6: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air (i.e., T_A, T_J, θ_{JA}). Exceeding the maximum allowable power dissipation will cause the device operating junction temperature to exceed the maximum 150°C rating. Sustained junction temperatures above 150°C can impact the device reliability.

Note 7: The junction temperature is approximated by soaking the device under test at an ambient temperature equal to the desired Junction temperature. The test time is small enough such that the rise in the Junction temperature over the ambient temperature is not significant.

TEMPERATURE SPECIFICATIONS

Electrical Characteristics: Unless otherwise specified, all limits are established for $V_{IN} = V_R + 1V$, $I_{LOAD} = 100\ \mu A$, $C_{OUT} = 1\ \mu F$ (X7R), $C_{IN} = 1\ \mu F$ (X7R), $T_A = +25\degree C$.

Boldface type applies for junction temperatures, T_J (*Note 1*) of -40°C to +125°C.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Ranges</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specified Temperature Range</td>
<td>T_A</td>
<td>-40</td>
<td></td>
<td>+125</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>T_J</td>
<td>-40</td>
<td></td>
<td>+125</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>T_A</td>
<td>-65</td>
<td></td>
<td>+150</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Thermal Package Resistance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance, 2x2 DFN</td>
<td>θ_{JA}</td>
<td>91</td>
<td></td>
<td></td>
<td>°C/W</td>
<td>EIA/JEDEC® JESD51-7 EIA/JEDEC® JESD51-7 EIA/JEDEC® JESD51-7</td>
</tr>
<tr>
<td></td>
<td>θ_{JC}</td>
<td></td>
<td></td>
<td></td>
<td>°C/W</td>
<td>FR-4 0.063 4-Layer Board FR-4 0.063 4-Layer Board FR-4 0.063 4-Layer Board</td>
</tr>
<tr>
<td>Thermal Resistance, SOT-23</td>
<td>θ_{JA}</td>
<td>336</td>
<td></td>
<td></td>
<td>°C/W</td>
<td>EIA/JEDEC JESD51-7 EIA/JEDEC JESD51-7 EIA/JEDEC JESD51-7</td>
</tr>
<tr>
<td></td>
<td>θ_{JC}</td>
<td>110</td>
<td></td>
<td></td>
<td>°C/W</td>
<td>FR-4 0.063 4-Layer Board FR-4 0.063 4-Layer Board FR-4 0.063 4-Layer Board</td>
</tr>
<tr>
<td>Thermal Resistance, SOT-89</td>
<td>θ_{JA}</td>
<td>180</td>
<td></td>
<td></td>
<td>°C/W</td>
<td>EIA/JEDEC JESD51-7 EIA/JEDEC JESD51-7 EIA/JEDEC JESD51-7</td>
</tr>
<tr>
<td></td>
<td>θ_{JC}</td>
<td>52</td>
<td></td>
<td></td>
<td>°C/W</td>
<td>FR-4 0.063 4-Layer Board FR-4 0.063 4-Layer Board FR-4 0.063 4-Layer Board</td>
</tr>
<tr>
<td>Thermal Resistance, TO-92</td>
<td>θ_{JA}</td>
<td>160</td>
<td></td>
<td></td>
<td>°C/W</td>
<td></td>
</tr>
<tr>
<td></td>
<td>θ_{JC}</td>
<td>66.3</td>
<td></td>
<td></td>
<td>°C/W</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air (i.e., T_A, T_J, θ_{JA}). Exceeding the maximum allowable power dissipation will cause the device operating junction temperature to exceed the maximum 150°C rating. Sustained junction temperatures above 150°C can impact the device reliability.
2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

Note: Unless otherwise indicated: VR = 1.8V, COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), IL = 100 µA, TA = +25°C, VIN = VR + 1V.

Note: Junction Temperature (TJ) is approximated by soaking the device under test to an ambient temperature equal to the desired junction temperature. The test time is small enough such that the rise in Junction temperature over the Ambient temperature is not significant.

FIGURE 2-1: Input Quiescent Current vs. Input Voltage.

FIGURE 2-2: Ground Current vs. Load Current.

FIGURE 2-3: Quiescent Current vs. Junction Temperature.

FIGURE 2-4: Output Voltage vs. Input Voltage (VR = 1.2V).

FIGURE 2-5: Output Voltage vs. Input Voltage (VR = 1.8V).

FIGURE 2-6: Output Voltage vs. Input Voltage (VR = 2.8V).
Note: Unless otherwise indicated: VR = 1.8V, COUT = 1 μF Ceramic (X7R), CIN = 1 μF Ceramic (X7R), IL = 100 μA, TA = +25°C, VIN = VR + 1V.

FIGURE 2-7: Output Voltage vs. Input Voltage (VR = 5.0V).

FIGURE 2-8: Output Voltage vs. Load Current (VR = 1.2V).

FIGURE 2-9: Output Voltage vs. Load Current (VR = 1.8V).

FIGURE 2-10: Output Voltage vs. Load Current (VR = 2.8V).

FIGURE 2-11: Output Voltage vs. Load Current (VR = 5.0V).

FIGURE 2-12: Dropout Voltage vs. Load Current (VR = 2.8V).
Note: Unless otherwise indicated: \(V_R = 1.8\text{V}, C_{OUT} = 1 \mu\text{F Ceramic (X7R)}, C_{IN} = 1 \mu\text{F Ceramic (X7R)}, I_L = 100 \mu\text{A}, T_A = +25^\circ\text{C}, V_{IN} = V_R + 1\text{V}. \)

FIGURE 2-13: Dropout Voltage vs. Load Current \((V_R = 5.0\text{V})\).

FIGURE 2-14: Power Supply Ripple Rejection vs. Frequency \((V_R = 1.2\text{V})\).

FIGURE 2-15: Power Supply Ripple Rejection vs. Frequency \((V_R = 2.8\text{V})\).

FIGURE 2-16: Noise vs. Frequency.

FIGURE 2-17: Dynamic Load Step \((V_R = 1.2\text{V})\).

FIGURE 2-18: Dynamic Load Step \((V_R = 1.8\text{V})\).
MCP1700

Note: Unless otherwise indicated: \(V_R = 1.8\, \text{V} \), \(C_{OUT} = 1\, \mu\text{F} \) Ceramic (X7R), \(C_{IN} = \mu\text{F} \) Ceramic (X7R), \(I_L = 100\, \mu\text{A} \), \(T_A = +25^\circ\text{C} \), \(V_{IN} = V_R + 1\, \text{V} \).

FIGURE 2-19: Dynamic Load Step
\((V_R = 2.8\, \text{V})\).

FIGURE 2-20: Dynamic Load Step
\((V_R = 1.8\, \text{V})\).

FIGURE 2-21: Dynamic Load Step
\((V_R = 2.8\, \text{V})\).

FIGURE 2-22: Dynamic Load Step
\((V_R = 5.0\, \text{V})\).

FIGURE 2-23: Dynamic Line Step
\((V_R = 2.8\, \text{V})\).

FIGURE 2-24: Start-up from \(V_{IN} \)
\((V_R = 1.2\, \text{V})\).
Note: Unless otherwise indicated: $V_R = 1.8V$, $C_{OUT} = 1 \mu F$ Ceramic (X7R), $C_{IN} = 1 \mu F$ Ceramic (X7R), $I_L = 100 \mu A$, $T_A = +25^\circ C$, $V_{IN} = V_R + 1V$.

FIGURE 2-25: Start-up from V_{IN} ($V_R = 1.8V$).

FIGURE 2-26: Start-up from V_{IN} ($V_R = 2.8V$).

FIGURE 2-27: Load Regulation vs. Junction Temperature ($V_R = 1.8V$).

FIGURE 2-28: Load Regulation vs. Junction Temperature ($V_R = 2.8V$).

FIGURE 2-29: Load Regulation vs. Junction Temperature ($V_R = 5.0V$).

FIGURE 2-30: Line Regulation vs. Temperature ($V_R = 1.2V, 1.8V, 2.8V$).
3.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 3-1.

TABLE 3-1: PIN FUNCTION TABLE

<table>
<thead>
<tr>
<th>Pin No. SOT-23</th>
<th>Pin No. SOT-89</th>
<th>Pin No. TO-92</th>
<th>Pin No. 2x2 DFN-6</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>GND</td>
<td>Ground Terminal</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>V_OUT</td>
<td>Regulated Voltage Output</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>V_IN</td>
<td>Unregulated Supply Voltage</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
<td>2, 4, 5</td>
<td>NC</td>
<td>No Connect</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
<td>7</td>
<td>EP</td>
<td>Exposed Thermal Pad</td>
</tr>
</tbody>
</table>

3.1 Ground Terminal (GND)

Regulator ground. Tie GND to the negative side of the output and the negative side of the input capacitor. Only the LDO bias current (1.6 µA typical) flows out of this pin; there is no high current. The LDO output regulation is referenced to this pin. Minimize voltage drops between this pin and the negative side of the load.

3.2 Regulated Output Voltage (V_OUT)

Connect V_OUT to the positive side of the load and the positive terminal of the output capacitor. The positive side of the output capacitor should be physically located as close to the LDO V_OUT pin as is practical. The current flowing out of this pin is equal to the DC load current.

3.3 Unregulated Input Voltage Pin (V_IN)

Connect V_IN to the input unregulated source voltage. As with all low dropout linear regulators, low source impedance is necessary for the stable operation of the LDO. The amount of capacitance required to ensure low source impedance will depend on the proximity of the input source capacitors or battery type. For most applications, 1 µF of capacitance will ensure stable operation of the LDO circuit. For applications that have load currents below 100 mA, the input capacitance requirement can be lowered. The type of capacitor used can be ceramic, tantalum or aluminum electrolytic. The low ESR characteristics of the ceramic will yield better noise and PSRR performance at high frequency.

3.4 No Connect (NC)

No internal connection. The pins marked NC are true “No Connect” pins.

3.5 Exposed Thermal Pad (EP)

There is an internal electrical connection between the Exposed Thermal Pad (EP) and the GND pin; they must be connected to the same potential on the Printed Circuit Board (PCB).
4.0 DETAILED DESCRIPTION

4.1 Output Regulation

A portion of the LDO output voltage is fed back to the internal error amplifier and compared with the precision internal bandgap reference. The error amplifier output will adjust the amount of current that flows through the P-Channel pass transistor, thus regulating the output voltage to the desired value. Any changes in input voltage or output current will cause the error amplifier to respond and adjust the output voltage to the target voltage (refer to Figure 4-1).

4.2 Overcurrent

The MCP1700 internal circuitry monitors the amount of current flowing through the P-Channel pass transistor. In the event of a short circuit or excessive output current, the MCP1700 will turn off the P-Channel device for a short period, after which the LDO will attempt to restart. If the excessive current remains, the cycle will repeat itself.

4.3 Overtemperature

The internal power dissipation within the LDO is a function of input-to-output voltage differential and load current. If the power dissipation within the LDO is excessive, the internal junction temperature will rise above the typical shutdown threshold of 140°C. At that point, the LDO will shut down and begin to cool to the typical turn-on junction temperature of 130°C. If the power dissipation is low enough, the device will continue to cool and operate normally. If the power dissipation remains high, the thermal shutdown protection circuitry will again turn off the LDO, protecting it from catastrophic failure.

FIGURE 4-1: Block Diagram.
5.0 FUNCTIONAL DESCRIPTION

The MCP1700 CMOS low dropout linear regulator is intended for applications that need the lowest current consumption while maintaining output voltage regulation. The operating continuous load of the MCP1700 ranges from 0 mA to 250 mA ($V_R \geq 2.5V$). The input operating voltage ranges from 2.3V to 6.0V, making it capable of operating from two, three or four alkaline cells or a single Li-Ion cell battery input.

5.1 Input

The input of the MCP1700 is connected to the source of the P-Channel PMOS pass transistor. As with all LDO circuits, a relatively low source impedance (10Ω) is needed to prevent the input impedance from causing the LDO to become unstable. The size and type of the required capacitor depend heavily on the input source type (battery, power supply) and the output current range of the application. For most applications (up to 100 mA), a 1 µF ceramic capacitor will be sufficient to ensure circuit stability. Larger values can be used to improve circuit AC performance.

5.2 Output

The maximum rated continuous output current for the MCP1700 is 250 mA ($V_R \geq 2.5V$). For applications where $V_R < 2.5V$, the maximum output current is 200 mA.

A minimum output capacitance of 1.0 µF is required for small signal stability in applications that have up to 250 mA output current capability. The capacitor type can be ceramic, tantalum or aluminum electrolytic. The ESR range on the output capacitor can range from 0Ω to 2.0Ω.

5.3 Output Rise time

When powering up the internal reference output, the typical output rise time of 500 µs is controlled to prevent overshoot of the output voltage.
6.0 APPLICATION CIRCUITS AND ISSUES

6.1 Typical Application

The MCP1700 is most commonly used as a voltage regulator. Its low quiescent current and low dropout voltage make it ideal for many battery-powered applications.

![Typical Application Circuit](image)

FIGURE 6-1: Typical Application Circuit.

6.1.1 APPLICATION INPUT CONDITIONS

Package Type = SOT-23

Input Voltage Range = 2.3V to 3.2V

\(V_{\text{IN}}\) maximum = 3.2V

\(V_{\text{OUT}}\) typical = 1.8V

\(I_{\text{OUT}}\) = 150 mA maximum

6.2 Power Calculations

6.2.1 POWER DISSIPATION

The internal power dissipation of the MCP1700 is a function of input voltage, output voltage and output current. The power dissipation resulting from the quiescent current draw is so low it is insignificant \((1.6 \mu A \times V_{\text{IN}})\). The following equation can be used to calculate the internal power dissipation of the LDO.

EQUATION 6-1:

\[
P_{\text{LDO}} = (V_{\text{IN(MAX)}} - V_{\text{OUT(MIN)}}) \times I_{\text{OUT(MAX)}}
\]

- \(P_{\text{LDO}}\) = Internal power dissipation of the LDO Pass device
- \(V_{\text{IN(MAX)}}\) = Maximum input voltage
- \(V_{\text{OUT(MIN)}}\) = Minimum output voltage of the LDO

The maximum continuous operating junction temperature specified for the MCP1700 is +125°C. To estimate the internal junction temperature of the MCP1700, the total internal power dissipation is multiplied by the thermal resistance from junction to ambient \((R_{\theta JA})\). The thermal resistance from junction to ambient for the SOT-23 pin package is estimated at 230°C/W.

EQUATION 6-2:

\[
T_{J(MAX)} = P_{\text{TOTAL}} \times R_{\theta JA} + T_{A(MAX)}
\]

- \(T_{J(MAX)}\) = Maximum continuous junction temperature
- \(P_{\text{TOTAL}}\) = Total power dissipation of the device
- \(R_{\theta JA}\) = Thermal resistance from junction to ambient
- \(T_{A(MAX)}\) = Maximum ambient temperature

The maximum power dissipation capability for a package can be calculated given the junction-to-ambient thermal resistance and the maximum ambient temperature for the application. The following equation can be used to determine the maximum internal power dissipation of the package.

EQUATION 6-3:

\[
P_{D(MAX)} = \frac{(T_{J(MAX)} - T_{A(MAX)})}{R_{\theta JA}}
\]

- \(P_{D(MAX)}\) = Maximum power dissipation of the device
- \(T_{J(MAX)}\) = Maximum continuous junction temperature
- \(T_{A(MAX)}\) = Maximum ambient temperature
- \(R_{\theta JA}\) = Thermal resistance from junction to ambient

EQUATION 6-4:

\[
T_{J(RISE)} = P_{D(MAX)} \times R_{\theta JA}
\]

- \(T_{J(RISE)}\) = Rise in the device’s junction temperature over the ambient temperature
- \(P_{\text{TOTAL}}\) = Maximum power dissipation of the device
- \(R_{\theta JA}\) = Thermal resistance from junction to ambient
6.3 Voltage Regulator

Internal power dissipation, junction temperature rise, junction temperature and maximum power dissipation are calculated in the following example. The power dissipation resulting from ground current is small enough to be neglected.

6.3.1 POWER DISSIPATION EXAMPLE

Package
Package Type = SOT-23
Input Voltage
\(V_{\text{IN}} = 2.3\ \text{V to 3.2V} \)

LDO Output Voltages and Currents
\(V_{\text{OUT}} = 1.8\ \text{V} \)
\(I_{\text{OUT}} = 150\ \text{mA} \)

Maximum Ambient Temperature
\(T_{\text{A(MAX)}} = +40^\circ\text{C} \)

Internal Power Dissipation
Internal Power dissipation is the product of the LDO output current times the voltage across the LDO (\(V_{\text{IN}} \) to \(V_{\text{OUT}} \)).

\[
P_{\text{LDO(MAX)}} = (V_{\text{IN(MAX)}} - V_{\text{OUT(MIN)}}) \times I_{\text{OUT(MAX)}}
\]

\[
P_{\text{LDO}} = (3.2V - (0.97 \times 1.8V)) \times 150\ \text{mA}
\]

\[
P_{\text{LDO}} = 218.1\ \text{milli-Watts}
\]

Device Junction Temperature Rise

The internal junction temperature rise is a function of internal power dissipation and the thermal resistance from junction to ambient for the application. The thermal resistance from junction to ambient (\(R_{\theta JA} \)) is derived from an EIA/JEDEC® standard for measuring thermal resistance for small surface mount packages. The EIA/JEDEC specification is JESD51-7, “High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages”. The standard describes the test method and board specifications for measuring the thermal resistance from junction to ambient. The actual thermal resistance for a particular application can vary depending on many factors, such as copper area and thickness. Refer to AN792, “A Method to Determine How Much Power a SOT-23 Can Dissipate in an Application” (DS00792), for more information regarding this subject.

\[
T_{J} = T_{J(RISE)} + T_{A}
\]

\[
T_{J} = \text{Junction Temperature}
\]

\[
T_{J(RISE)} = \text{Rise in the device's junction temperature over the ambient temperature}
\]

\[
T_{A} = \text{Ambient temperature}
\]

\[
T_{J(RISE)} = P_{\text{TOTAL}} \times R_{\theta JA}
\]

\[
T_{J(RISE)} = 218.1\ \text{milli-Watts} \times 230.0^\circ\text{C/Watt}
\]

\[
T_{J(RISE)} = 50.2^\circ\text{C}
\]

Junction Temperature Estimate

To estimate the internal junction temperature, the calculated temperature rise is added to the ambient or offset temperature. For this example, the worst-case junction temperature is estimated below.

\[
T_{J} = T_{J(RISE)} + T_{A(MAX)}
\]

\[
T_{J} = 90.2^\circ\text{C}
\]

Maximum Package Power Dissipation at +40°C Ambient Temperature

2x2 DFN-6 (91°C/Watt = \(R_{\theta JA} \))
\(P_{D(MAX)} = (125^\circ\text{C} - 40^\circ\text{C}) / 91^\circ\text{C/W} \)
\(P_{D(MAX)} = 934\ \text{milli-Watts} \)

SOT-23 (230.0°C/Watt = \(R_{\theta JA} \))
\(P_{D(MAX)} = (125^\circ\text{C} - 40^\circ\text{C}) / 230^\circ\text{C/W} \)
\(P_{D(MAX)} = 369.6\ \text{milli-Watts} \)

SOT-89 (52°C/Watt = \(R_{\theta JA} \))
\(P_{D(MAX)} = (125^\circ\text{C} - 40^\circ\text{C}) / 52^\circ\text{C/W} \)
\(P_{D(MAX)} = 1.635\ \text{Watts} \)

TO-92 (131.9°C/Watt = \(R_{\theta JA} \))
\(P_{D(MAX)} = (125^\circ\text{C} - 40^\circ\text{C}) / 131.9^\circ\text{C/W} \)
\(P_{D(MAX)} = 644\ \text{milli-Watts} \)
6.4 Voltage Reference

The MCP1700 can be used not only as a regulator, but also as a low quiescent current voltage reference. In many microcontroller applications, the initial accuracy of the reference can be calibrated using production test equipment or by using a ratio measurement. When the initial accuracy is calibrated, the thermal stability and line regulation tolerance are the only errors introduced by the MCP1700 LDO. The low cost, low quiescent current and small ceramic output capacitor are all advantages when using the MCP1700 as a voltage reference.

![Ratio Metric Reference](image)

FIGURE 6-2: Using the MCP1700 as a voltage reference.

6.5 Pulsed Load Applications

For some applications, there are pulsed load current events that may exceed the specified 250 mA maximum specification of the MCP1700. The internal current limit of the MCP1700 will prevent high peak load demands from causing non-recoverable damage. The 250 mA rating is a maximum average continuous rating. As long as the average current does not exceed 250 mA, pulsed higher load currents can be applied to the MCP1700. The typical current limit for the MCP1700 is 550 mA (TA + 25°C).
7.0 PACKAGING INFORMATION

7.1 Package Marking Information

- **3-Pin SOT-23**
 - CKNN

- **3-Pin SOT-89**
 - CUYYWW
 - NNN

- **3-Pin TO-92**
 - XXXXX
 - XXXXX
 - YWWNNN

- **6-Lead DFN (2x2x0.9 mm)**
 - XXX
 - NNN
 - PIN 1

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCP1700T-1202E/MAY</td>
<td>ABB</td>
</tr>
<tr>
<td>MCP1700T-1802E/MAY</td>
<td>ABC</td>
</tr>
<tr>
<td>MCP1700T-2502E/MAY</td>
<td>ABD</td>
</tr>
<tr>
<td>MCP1700T-2802E/MAY</td>
<td>ABF</td>
</tr>
<tr>
<td>MCP1700T-3002E/MAY</td>
<td>ABE</td>
</tr>
<tr>
<td>MCP1700T-3302E/MAY</td>
<td>AAZ</td>
</tr>
<tr>
<td>MCP1700T-5002E/MAY</td>
<td>ABA</td>
</tr>
</tbody>
</table>

Legend:
- **XX..X** Customer-specific information
- **Y** Year code (last digit of calendar year)
- **YY** Year code (last 2 digits of calendar year)
- **WW** Week code (week of January 1 is week '01')
- **NNN** Alphanumeric traceability code
- *(e3)* Pb-free JEDEC® designator for Matte Tin (Sn)
- **Note:** In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.

Standard

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Voltage *</th>
</tr>
</thead>
<tbody>
<tr>
<td>CK</td>
<td>1.2</td>
</tr>
<tr>
<td>CM</td>
<td>1.8</td>
</tr>
<tr>
<td>CP</td>
<td>2.5</td>
</tr>
<tr>
<td>CQ</td>
<td>2.8</td>
</tr>
<tr>
<td>CR</td>
<td>3.0</td>
</tr>
<tr>
<td>CS</td>
<td>3.3</td>
</tr>
<tr>
<td>CU</td>
<td>5.0</td>
</tr>
</tbody>
</table>

Example

1700
1202E
TO*(e3)
322256

* Custom output voltages available upon request.
Contact your local Microchip sales office for more information.
3-Lead Plastic Small Outline Transistor (TT) [SOT-23]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Limits</td>
<td>MIN</td>
</tr>
<tr>
<td>Number of Pins</td>
<td>N</td>
</tr>
<tr>
<td>Lead Pitch</td>
<td>e</td>
</tr>
<tr>
<td>Outside Lead Pitch</td>
<td>e1</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>A2</td>
</tr>
<tr>
<td>Standoff</td>
<td>A1</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>E1</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
</tr>
<tr>
<td>Foot Length</td>
<td>L</td>
</tr>
<tr>
<td>Foot Angle</td>
<td>φ</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
</tr>
<tr>
<td>Lead Width</td>
<td>b</td>
</tr>
</tbody>
</table>

Notes:
1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.
2. Dimensioning and tolerancing per ASME Y14.5M.
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-104B
3-Lead Plastic Small Outline Transistor (TT) [SOT-23]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Limits</td>
<td>MIN</td>
</tr>
<tr>
<td>Contact Pitch</td>
<td>E</td>
</tr>
<tr>
<td>Contact Pad Spacing</td>
<td>C</td>
</tr>
<tr>
<td>Contact Pad Width (X3)</td>
<td>X</td>
</tr>
<tr>
<td>Contact Pad Length (X3)</td>
<td>Y</td>
</tr>
<tr>
<td>Distance Between Pads</td>
<td>G</td>
</tr>
<tr>
<td>Overall Width</td>
<td>Z</td>
</tr>
</tbody>
</table>

Notes:
1. Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2104A
3-Lead Plastic Small Outline Transistor (MB) - [SOT-89]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com-packaging

Microchip Technology Drawing C04-029C Sheet 1 of 2
3-Lead Plastic Small Outline Transistor (MB) - [SOT-89]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Limits</td>
<td>MIN</td>
</tr>
<tr>
<td>Number of Leads</td>
<td>N</td>
</tr>
<tr>
<td>Pitch</td>
<td>e</td>
</tr>
<tr>
<td>Outside Lead Pitch</td>
<td>e1</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
</tr>
<tr>
<td>Overall Width</td>
<td>H</td>
</tr>
<tr>
<td>Molded Package Width at Base</td>
<td>E</td>
</tr>
<tr>
<td>Molded Package Width at Top</td>
<td>E1</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
</tr>
<tr>
<td>Tab Length (Option A)</td>
<td>D1A</td>
</tr>
<tr>
<td>Tab Length (Option B)</td>
<td>D1B</td>
</tr>
<tr>
<td>Tab Length (Option C)</td>
<td>D1C</td>
</tr>
<tr>
<td>Foot Length</td>
<td>L</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
</tr>
<tr>
<td>Lead 2 Width</td>
<td>b</td>
</tr>
<tr>
<td>Leads 1 & 3 Width</td>
<td>b1</td>
</tr>
</tbody>
</table>

Notes:

1. Dimensions D and E do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.127mm per side.
2. Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
3-Lead Plastic Small Outline Transistor (MB) - [SOT-89]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Limits</td>
<td>MIN</td>
</tr>
<tr>
<td>C</td>
<td>1.50 (BSC)</td>
</tr>
<tr>
<td>X (3 PLACES)</td>
<td>0.900</td>
</tr>
<tr>
<td>X1</td>
<td>1.733</td>
</tr>
<tr>
<td>X2 (2 PLACES)</td>
<td>0.416</td>
</tr>
<tr>
<td>G (2 PLACES)</td>
<td>0.600</td>
</tr>
<tr>
<td>Y (2 PLACES)</td>
<td>1.300</td>
</tr>
<tr>
<td>Y1</td>
<td>3.125</td>
</tr>
<tr>
<td>Y2</td>
<td>1.475</td>
</tr>
<tr>
<td>Y3</td>
<td>0.825</td>
</tr>
<tr>
<td>Y4</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Notes:
1. Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
3-Lead Plastic Transistor Outline (TO) [TO-92]

Notes:

1. Dimensions A and E do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .005" per side.
2. Dimensioning and tolerancing per ASME Y14.5M.

 BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-101B
6-Lead Plastic Dual Flat, No Lead Package (MA[Y]) - 2x2x0.9mm Body [DFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging
6-Lead Plastic Dual Flat, No Lead Package (MA[Y]) - 2x2x0.9mm Body [DFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

![Diagram of a 6-Lead Plastic Dual Flat, No Lead Package](attachment:image.png)

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Units</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Pins</td>
<td>N</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pitch</td>
<td>e</td>
<td>0.65 BSC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
<td>0.80</td>
<td>0.85</td>
<td>0.90</td>
</tr>
<tr>
<td>Standoff</td>
<td>A1</td>
<td>0.00</td>
<td>0.02</td>
<td>0.05</td>
</tr>
<tr>
<td>Contact Thickness</td>
<td>A3</td>
<td>0.20 REF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
<td>2.00 BSC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exposed Pad Length</td>
<td>D2</td>
<td>1.50</td>
<td>1.60</td>
<td>1.70</td>
</tr>
<tr>
<td>Exposed Pad Width</td>
<td>E2</td>
<td>0.90</td>
<td>1.00</td>
<td>1.10</td>
</tr>
<tr>
<td>Contact Width</td>
<td>b</td>
<td>0.25</td>
<td>0.30</td>
<td>0.35</td>
</tr>
<tr>
<td>Contact Length</td>
<td>L</td>
<td>0.20</td>
<td>0.25</td>
<td>0.30</td>
</tr>
<tr>
<td>Contact-to-Exposed Pad</td>
<td>K</td>
<td>0.20</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Notes:
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Package may have one or more exposed tie bars at ends.
3. Package is saw singulated.
4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.
APPENDIX A: REVISION HISTORY

Revision D (September 2016)
The following is the list of modifications:
• Updated DC Characteristics.
• Updated Product Identification System.
• Minor typographical changes.

Revision C (October 2013)
The following is the list of modifications:
• Added new package to the family (2x2 DFN-6) and related information throughout the document.
• Updated thermal package resistance information in Temperature Specifications.
• Updated Section 3.0 “Pin Descriptions”.
• Added package markings and drawings for the 2x2 DFN-6 package.
• Added information related to the 2.8V option throughout the document.
• Updated Product Identification System.
• Minor typographical changes.

Revision B (February 2007)
• Updated Packaging Information.
• Corrected Product Identification System.
• Changed X5R to X7R in Notes to DC Characteristics, Temperature Specifications, and Section 2.0 “Typical Performance Curves”.

Revision A (November 2005)
• Original release of this document.
MCP1700

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>X-</th>
<th>XXX</th>
<th>X</th>
<th>X</th>
<th>/XX</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCP1700</td>
<td>Tape & Reel</td>
<td>Voltage Output</td>
<td>Tolerance</td>
<td>Temp. Range</td>
<td>Package</td>
</tr>
</tbody>
</table>

Device: MCP1700: Low Quiescent Current LDO

Tape and Reel: T: Tape and Reel only applies to SOT-23 and SOT-89 devices

Standard Output Voltage: *

- 120 = 1.2V
- 180 = 1.8V
- 250 = 2.5V
- 280 = 2.8V
- 300 = 3.0V
- 330 = 3.3V
- 500 = 5.0V

* Custom output voltages available upon request. Contact your local Microchip sales office for more information.

Tolerance: 2 = 2% (Standard)

Temperature Range: E = -40°C to +125°C (Extended)

Package: MAY = Plastic Small Outline Transistor (DFN), 6-lead
MB = Plastic Small Outline Transistor (SOT-89), 3-lead
TO = Plastic Small Outline Transistor (TO-92), 3-lead
TT = Plastic Small Outline Transistor (SOT-23), 3-lead

Examples:

2x2 DFN-6 Package:

- a) MCP1700T-1202E/MAY: 1.2V VOut
- b) MCP1700T-1802E/MAY: 1.8V VOut
- c) MCP1700T-2502E/MAY: 2.5V VOut
- d) MCP1700T-2802E/MAY: 2.8V VOut
- e) MCP1700T-3002E/MAY: 3.0V VOut
- f) MCP1700T-3302E/MAY: 3.3V VOut
- g) MCP1700T-5002E/MAY: 5.0V VOut

SOT-89 Package:

- a) MCP1700T-1202E/MB: 1.2V VOut
- b) MCP1700T-1802E/MB: 1.8V VOut
- c) MCP1700T-2502E/MB: 2.5V VOut
- d) MCP1700T-2802E/MB: 2.8V VOut
- e) MCP1700T-3002E/MB: 3.0V VOut
- f) MCP1700T-3302E/MB: 3.3V VOut
- g) MCP1700T-5002E/MB: 5.0V VOut

TO-92 Package:

- a) MCP1700-1202E/TO: 1.2V VOut
- b) MCP1700-1802E/TO: 1.8V VOut
- c) MCP1700-2502E/TO: 2.5V VOut
- d) MCP1700-2802E/TO: 2.8V VOut
- e) MCP1700-3002E/TO: 3.0V VOut
- f) MCP1700-3302E/TO: 3.3V VOut
- g) MCP1700-5002E/TO: 5.0V VOut

SOT-23 Package:

- a) MCP1700T-1202E/TT: 1.2V VOut
- b) MCP1700T-1802E/TT: 1.8V VOut
- c) MCP1700T-2502E/TT: 2.5V VOut
- d) MCP1700T-2802E/TT: 2.8V VOut
- e) MCP1700T-3002E/TT: 3.0V VOut
- f) MCP1700T-3302E/TT: 3.3V VOut
- g) MCP1700T-5002E/TT: 5.0V VOut
Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks
The Microchip name and logo, the Microchip logo, AnyRate, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, KeeLoq logo, Kleer, LANcheck, LINK MD, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC32 logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and Uni/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, Ethersynch, Hyper Speed Control, HyperLight Load, Intellimos, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2005-2016, Microchip Technology Incorporated. Printed in the U.S.A. All Rights Reserved.

ISBN: 978-1-5224-0928-1

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KeeLoq® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV
== ISO/TS 16949 ==
Worldwide Sales and Service

AMERICAS

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/support
Web Address:
www.microchip.com

Atlanta
Duluth, GA
Tel: 770-957-9614
Fax: 770-957-1455

Austin, TX
Tel: 512-257-3370

Boston
Westborough, MA
Tel: 508-387-3370
Fax: 508-387-3701

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Novi, MI
Tel: 734-933-8000
Fax: 734-933-8001

Houston, TX
Tel: 281-894-5983

Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

New York, NY
Tel: 631-435-6000

San Jose, CA
Tel: 408-735-9110

Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

ASIA/PACIFIC

Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon

Hong Kong
Tel: 852-2943-5100
Fax: 852-2401-3431

Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Chongqing
Tel: 86-23-8960-9588
Fax: 86-23-8960-9500

China - Dongguan
Tel: 86-769-8702-9880

China - Guangzhou
Tel: 86-20-8755-8029

China - Hangzhou
Tel: 86-571-8792-8115
Fax: 86-571-8792-8116

China - Hong Kong SAR
Tel: 852-2943-5100
Fax: 852-2401-3431

China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2933

China - Shenzhen
Tel: 86-755-8864-2200
Fax: 86-755-8203-1760

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130

China - Zhubai
Tel: 86-756-3210040
Fax: 86-756-3210049

India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123

India - New Delhi
Tel: 91-11-4160-6831
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-3019-1500

Japan - Osaka
Tel: 81-6-6152-7160
Fax: 81-6-6152-9310

Japan - Tokyo
Tel: 81-3-6880-3770
Fax: 81-3-6880-3771

Korea - Daegu
Tel: 82-52-744-4301
Fax: 82-52-744-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955

Taiwan - Kaohsiung
Tel: 886-7-213-7828

Taiwan - Taipei
Tel: 886-2-2508-8600
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Dusseldorf
Tel: 49-2129-3766400

Germany - Karlsruhe
Tel: 49-721-625370

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Italy - Venice
Tel: 39-049-7625286

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Poland - Warsaw
Tel: 48-22-3325737

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

Sweden - Stockholm
Tel: 46-8-5090-4654

UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

06/23/16