TC1413/TC1413N
3A High-Speed MOSFET Drivers

Features

- Latch-Up Protected: Withstands 500 mA Reverse Current
- Input Withstands Negative Inputs Up to 5V
- Electrostatic Discharge (ESD) Protected: 2.0 kV (HBM) and 400V (MM)
- High Peak Output Current: 3A
- Wide Input Supply Voltage Operating Range: -4.5V to 16V
- High Capacitive Load Drive Capability:
 - 1800 pF in 20 ns
- Short Delay Time: 35 ns typical
- Matched Delay Times
- Low Supply Current
 - With Logic ‘1’ Input: 500 µA
 - With Logic ‘0’ Input: 100 µA
- Low Output Impedance: 2.7Ω
- Available in Space-Saving 8-pin MSOP Package
- Pinout - same as TC1410/TC1411/TC1412

Applications

- Switch Mode Power Supplies
- Line Drivers
- Pulse Transformer Drive
- Relay Driver

General Description

The TC1413/TC1413N are 3A CMOS buffers/drivers. They do not latch up under any conditions within their power and voltage ratings. They are not subject to damage when up to 5V of noise spiking of either polarity occurs on the ground pin. They can accept, without damage or logic upset, up to 500 mA of current of either polarity being forced back into their output. All terminals are fully protected against electrostatic discharge (ESD) up to 2.0 kV (HBM) and 400V (MM).

As MOSFET drivers, the TC1413/TC1413N can easily charge a 1800 pF gate capacitance in 20 ns with matched rise and fall times. To ensure the MOSFET’s intended state will not be affected even by large transients, low enough impedance in both the ‘On’ and ‘Off’ states are provided. The leading and trailing edge propagation delay times are also matched to allow driving short-duration inputs with greater accuracy.

Package Type

<table>
<thead>
<tr>
<th>8-Pin MSOP/PDIP/SOIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDD 1 ●</td>
</tr>
<tr>
<td>IN 2</td>
</tr>
<tr>
<td>TC1413</td>
</tr>
<tr>
<td>NC 3</td>
</tr>
<tr>
<td>GND 4</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>6,7</td>
</tr>
<tr>
<td>Inverting</td>
</tr>
<tr>
<td>VDD 5 ●</td>
</tr>
<tr>
<td>OUT 6</td>
</tr>
<tr>
<td>OUT 7</td>
</tr>
<tr>
<td>NC 12</td>
</tr>
<tr>
<td>GND 13</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>6,7</td>
</tr>
<tr>
<td>Non-Inverting</td>
</tr>
</tbody>
</table>

NC = No Internal Connection

Note: For proper operation, duplicate pins must be connected together.
Functional Block Diagram

Input = 10 pF

Effective Input C = 10 pF

4.7V

GND

300 mV

TC1413

Inverting Outputs

Non-Inverting Outputs

TC1413N

VDD

Output
1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings†

Supply Voltage ...+20V
Input VoltageVDD + 0.3V to GND – 5.0V
Power Dissipation (TA ≤ 70°C)
 MSOP ..340 mW
 PDIP .. 730 mW
 SOIC.. 470 mW
Storage Temperature Range.............. -65°C to +150°C
Maximum Junction Temperature...................... +150ºC

† Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logic '1', High Input Voltage</td>
<td>V_H</td>
<td>2.0</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>0V ≤ V_IN ≤ V_DD, TA = +25°C</td>
</tr>
<tr>
<td>Logic '0', Low Input Voltage</td>
<td>V_L</td>
<td>—</td>
<td>—</td>
<td>0.8</td>
<td>V</td>
<td>-40°C ≤ TA ≤ +85°C</td>
</tr>
<tr>
<td>Input Current</td>
<td>I_IN</td>
<td>-1.0</td>
<td>—</td>
<td>1.0</td>
<td>µA</td>
<td>-40°C ≤ TA ≤ +85°C</td>
</tr>
<tr>
<td>Output</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Output Voltage</td>
<td>V_OH</td>
<td>V_DD – 0.025</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>DC Test</td>
</tr>
<tr>
<td>Low Output Voltage</td>
<td>V_OH</td>
<td>—</td>
<td>—</td>
<td>0.025</td>
<td>V</td>
<td>V_DD = 16V, I_O = 10 mA, TA = +25°C</td>
</tr>
<tr>
<td>Output Resistance</td>
<td>R_O</td>
<td>—</td>
<td>2.7</td>
<td>4.0</td>
<td>Ω</td>
<td>0°C ≤ TA ≤ +70°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>3.3</td>
<td>5.0</td>
<td></td>
<td>-40°C ≤ TA ≤ +85°C</td>
</tr>
<tr>
<td>Peak Output Current</td>
<td>I_PK</td>
<td>—</td>
<td>3.0</td>
<td>—</td>
<td>A</td>
<td>V_DD = 16V</td>
</tr>
<tr>
<td>Latch-Up Protection Withstand</td>
<td>I_REV</td>
<td>—</td>
<td>0.5</td>
<td>—</td>
<td>A</td>
<td>Duty cycle ≤ 2%, t ≤ 300 µs, V_DD = 16V</td>
</tr>
<tr>
<td>Reverse Current</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Switching Time (Note 1)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rise Time</td>
<td>t_r</td>
<td>20</td>
<td>28</td>
<td>—</td>
<td>ns</td>
<td>T_A = +25°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22</td>
<td>33</td>
<td>—</td>
<td></td>
<td>0°C ≤ T_A ≤ +70°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>33</td>
<td>—</td>
<td></td>
<td>-40°C ≤ T_A ≤ +85°C, Figure 4-1</td>
</tr>
<tr>
<td>Fall Time</td>
<td>t_f</td>
<td>20</td>
<td>28</td>
<td>—</td>
<td>ns</td>
<td>T_A = +25°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22</td>
<td>33</td>
<td>—</td>
<td></td>
<td>0°C ≤ T_A ≤ +70°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>33</td>
<td>—</td>
<td></td>
<td>-40°C ≤ T_A ≤ +85°C, Figure 4-1</td>
</tr>
<tr>
<td>Delay Time</td>
<td>t_d1</td>
<td>35</td>
<td>45</td>
<td>—</td>
<td>ns</td>
<td>T_A = +25°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40</td>
<td>50</td>
<td>—</td>
<td></td>
<td>0°C ≤ T_A ≤ +70°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40</td>
<td>50</td>
<td>—</td>
<td></td>
<td>-40°C ≤ T_A ≤ +85°C, Figure 4-1</td>
</tr>
<tr>
<td>Delay Time</td>
<td>t_d2</td>
<td>35</td>
<td>45</td>
<td>—</td>
<td>ns</td>
<td>T_A = +25°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40</td>
<td>50</td>
<td>—</td>
<td></td>
<td>0°C ≤ T_A ≤ +70°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40</td>
<td>50</td>
<td>—</td>
<td></td>
<td>-40°C ≤ T_A ≤ +85°C, Figure 4-1</td>
</tr>
</tbody>
</table>

Power Supply

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply</td>
<td>I_S</td>
<td>0.5</td>
<td>1.0</td>
<td>—</td>
<td>mA</td>
<td>V_IN = 3V, V_DD = 16V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.1</td>
<td>0.15</td>
<td>—</td>
<td></td>
<td>V_IN = 0V</td>
</tr>
</tbody>
</table>

Note 1: Switching times ensured by design.
TEMPERATURE CHARACTERISTICS

Electrical Specifications: Unless otherwise noted, all parameters apply with $4.5V \leq V_{DD} \leq 18V$.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Ranges</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specified Temperature Range (C)</td>
<td>T_A</td>
<td>0</td>
<td>—</td>
<td>+70</td>
<td>ºC</td>
<td></td>
</tr>
<tr>
<td>Specified Temperature Range (E)</td>
<td>T_A</td>
<td>-40</td>
<td>—</td>
<td>+85</td>
<td>ºC</td>
<td></td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_J</td>
<td>—</td>
<td>—</td>
<td>+150</td>
<td>ºC</td>
<td></td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>T_A</td>
<td>-65</td>
<td>—</td>
<td>+150</td>
<td>ºC</td>
<td></td>
</tr>
<tr>
<td>Package Thermal Resistances</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance, 8L-MSOP</td>
<td>θ_{JA}</td>
<td>—</td>
<td>211</td>
<td>—</td>
<td>ºC/W</td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance, 8L-PDIP</td>
<td>θ_{JA}</td>
<td>—</td>
<td>89.3</td>
<td>—</td>
<td>ºC/W</td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance, 8L-SOIC</td>
<td>θ_{JA}</td>
<td>—</td>
<td>149.5</td>
<td>—</td>
<td>ºC/W</td>
<td></td>
</tr>
</tbody>
</table>
2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

Note: Unless otherwise indicated, over operating temperature range with \(4.5V \leq V_{DD} \leq 16V\).

FIGURE 2-1: Quiescent Supply Current vs. Supply Voltage.

FIGURE 2-2: Input Threshold vs. Supply Voltage.

FIGURE 2-3: High State Output Resistance vs. Supply Voltage.

FIGURE 2-4: Quiescent Supply Current vs. Temperature.

FIGURE 2-5: Input Threshold vs. Temperature.

FIGURE 2-6: Low State Output Resistance vs. Supply Voltage.
Note: Unless otherwise indicated, over operating temperature range with $4.5\text{V} \leq V_{\text{DD}} \leq 16\text{V}$.

FIGURE 2-7: Rise Time vs. Supply Voltage.

FIGURE 2-8: Propagation Delay vs. Supply Voltage.

FIGURE 2-9: Rise and Fall Times vs. Capacitive Load.

FIGURE 2-10: Fall Time vs. Supply Voltage.

FIGURE 2-11: Propagation Delay vs. Supply Voltage.

FIGURE 2-12: Propagation Delays vs. Capacitive Load.
3.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 3-1.

TABLE 3-1: PIN FUNCTION TABLE

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>TC1413 MSOP, PDIP, SOIC</th>
<th>TC1413N MSOP, PDIP, SOIC</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(V_{DD})</td>
<td>(V_{DD})</td>
<td>Supply input, 4.5V to 16V</td>
</tr>
<tr>
<td>2</td>
<td>IN</td>
<td>IN</td>
<td>Control input</td>
</tr>
<tr>
<td>3</td>
<td>NC</td>
<td>NC</td>
<td>No connection</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>6</td>
<td>OUT</td>
<td>OUT</td>
<td>CMOS push-pull output, common to pin 7</td>
</tr>
<tr>
<td>7</td>
<td>OUT</td>
<td>OUT</td>
<td>CMOS push-pull output, common to pin 6</td>
</tr>
<tr>
<td>8</td>
<td>(V_{DD})</td>
<td>(V_{DD})</td>
<td>Supply input, 4.5V to 16V</td>
</tr>
</tbody>
</table>

3.1 Supply Input (\(V_{DD} \))

The \(V_{DD} \) input is the bias supply for the MOSFET driver and is rated for 4.5V to 16V with respect to the ground pin. The \(V_{DD} \) input should be bypassed to ground with a local ceramic capacitor. The value of the capacitor is chosen based on the capacitive load that is being driven. A value of 1.0 \(\mu \)F is suggested.

3.2 Control Input (IN)

The MOSFET driver input is a high-impedance, TTL/CMOS-compatible input. The input has 300 mV of hysteresis between the high and low thresholds which prevents output glitching even when the rise and fall time of the input signal is very slow.

3.3 CMOS Push-Pull Output (OUT, OUT)

The MOSFET driver output is a low-impedance, CMOS push-pull style output, capable of driving a capacitive load with 3A peak currents.

3.4 Ground (GND)

The ground pins are the return path for the bias current and for the high peak currents that discharge the load capacitor. The ground pins should be tied into a ground plane or have very short traces to the bias supply source return.

3.5 No Connect (NC)

No internal connection.
4.0 APPLICATION INFORMATION

FIGURE 4-1: Switching Time Test Circuit.

- **Inverting Driver**
 - Input: +5V
 - Output: 0V
 - $V_{DD} = 16V$
 - $t_{RISE} = t_{FALL} \leq 10\,\text{ns}$

- **Non-Inverting Driver**
 - Input: 0V
 - Output: 0V
 - $C_L = 1800\,\mu\text{F}$
 - t_{D1}, t_{D2}, t_{F}, t_{R}

Input: 100 kHz, square wave, $t_{RISE} = t_{FALL} \leq 10\,\text{ns}$
5.0 PACKAGING INFORMATION

5.1 Package Marking Information

Legend:
- XX...X: Customer-specific information
- Y: Year code (last digit of calendar year)
- YY: Year code (last 2 digits of calendar year)
- WW: Week code (week of January 1 is week '01')
- NNN: Alphanumeric traceability code
- RoHS Compliant JEDEC® designator for Matte Tin (Sn)

OR

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.
TC1413/TC1413N

8-Lead SOIC (3.90 mm)

8-Lead MSOP (3x3 mm)

Example

TC1413C
OAe31318
256

TC1413
COA1318
256

1413E
318256
8-Lead Plastic Dual In-Line (PA) - 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging
TC1413/TC1413N

8-Lead Plastic Dual In-Line (PA) - 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

<table>
<thead>
<tr>
<th>Units</th>
<th>Dimension Limits</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Pins</td>
<td>N</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pitch</td>
<td>e</td>
<td>.100 BSC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Top to Seating Plane</td>
<td>A</td>
<td></td>
<td>-</td>
<td>.210</td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>A2</td>
<td>.115</td>
<td>.130</td>
<td>.195</td>
</tr>
<tr>
<td>Base to Seating Plane</td>
<td>A1</td>
<td>.015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shoulder to Shoulder Width</td>
<td>E</td>
<td>.290</td>
<td>.310</td>
<td>.325</td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>E1</td>
<td>.240</td>
<td>.250</td>
<td>.280</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
<td>.348</td>
<td>.365</td>
<td>.400</td>
</tr>
<tr>
<td>Tip to Seating Plane</td>
<td>L</td>
<td>.115</td>
<td>.130</td>
<td>.150</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
<td>.008</td>
<td>.010</td>
<td>.015</td>
</tr>
<tr>
<td>Upper Lead Width</td>
<td>b1</td>
<td>.040</td>
<td>.060</td>
<td>.070</td>
</tr>
<tr>
<td>Lower Lead Width</td>
<td>b</td>
<td>.014</td>
<td>.018</td>
<td>.022</td>
</tr>
<tr>
<td>Overall Row Spacing</td>
<td>eB</td>
<td>-</td>
<td>-</td>
<td>.430</td>
</tr>
</tbody>
</table>

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. § Significant Characteristic
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010” per side.
4. Dimensioning and tolerancing per ASME Y14.5M

Microchip Technology Drawing No. C04-018D Sheet 2 of 2
TC1413/TC1413N

8-Lead Plastic Small Outline (OA) - Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing No. C04-057C Sheet 1 of 2
TC1413/TC1413N

8-Lead Plastic Small Outline (OA) - Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Limits</td>
<td>MIN</td>
</tr>
<tr>
<td>Number of Pins</td>
<td>N</td>
</tr>
<tr>
<td>Pitch</td>
<td>e</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>A2</td>
</tr>
<tr>
<td>Standoff</td>
<td>$</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>E1</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
</tr>
<tr>
<td>Chamfer (Optional)</td>
<td>h</td>
</tr>
<tr>
<td>Foot Length</td>
<td>L</td>
</tr>
<tr>
<td>Footprint</td>
<td>L1</td>
</tr>
<tr>
<td>Foot Angle</td>
<td>$</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
</tr>
<tr>
<td>Lead Width</td>
<td>b</td>
</tr>
<tr>
<td>Mold Draft Angle Top</td>
<td>α</td>
</tr>
<tr>
<td>Mold Draft Angle Bottom</td>
<td>β</td>
</tr>
</tbody>
</table>

Notes:
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. $§$ Significant Characteristic
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15mm per side.
4. Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing No. C04-057C Sheet 2 of 2
8-Lead Plastic Small Outline (OA) – Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Recommended Land Pattern

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimension</td>
<td>MIN</td>
</tr>
<tr>
<td>Contact Pitch</td>
<td>E</td>
</tr>
<tr>
<td>Contact Pad Spacing</td>
<td>C</td>
</tr>
<tr>
<td>Contact Pad Width (X8)</td>
<td>X1</td>
</tr>
<tr>
<td>Contact Pad Length (X8)</td>
<td>Y1</td>
</tr>
</tbody>
</table>

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2057A
8-Lead Plastic Micro Small Outline Package (UA) [MSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-111C Sheet 1 of 2
8-Lead Plastic Micro Small Outline Package (UA) [MSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

###Dimensions

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Limits</td>
<td>MIN</td>
</tr>
<tr>
<td>Number of Pins</td>
<td>N</td>
</tr>
<tr>
<td>Pitch</td>
<td>e</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>A2</td>
</tr>
<tr>
<td>Standoff</td>
<td>A1</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>E1</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
</tr>
<tr>
<td>Foot Length</td>
<td>L</td>
</tr>
<tr>
<td>Footprint</td>
<td>L1</td>
</tr>
<tr>
<td>Foot Angle</td>
<td>φ</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
</tr>
<tr>
<td>Lead Width</td>
<td>b</td>
</tr>
</tbody>
</table>

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15mm per side.
3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-111C Sheet 2 of 2
8-Lead Plastic Micro Small Outline Package (UA) [MSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dimension Limits</td>
</tr>
<tr>
<td>Contact Pitch</td>
<td>E</td>
</tr>
<tr>
<td>Contact Pad Spacing</td>
<td>C</td>
</tr>
<tr>
<td>Overall Width</td>
<td>Z</td>
</tr>
<tr>
<td>Contact Pad Width (X8)</td>
<td>X1</td>
</tr>
<tr>
<td>Contact Pad Length (X8)</td>
<td>Y1</td>
</tr>
<tr>
<td>Distance Between Pads</td>
<td>G1</td>
</tr>
<tr>
<td>Distance Between Pads</td>
<td>GX</td>
</tr>
</tbody>
</table>

Notes:
1. Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2111A
APPENDIX A: REVISION HISTORY

Revision E (February 2015)
The following is the list of modifications:
• Updated the values for electrostatic discharge in the Features and General Description columns.
• Updated the Pin Description table in Section 3.0, Pin Descriptions.
• Updated package marking information and drawings in Section 5.0, Packaging Information.
• Minor grammatical and spelling corrections.

Revision D (December 2012)
• Added a note to each package outline drawing.

Revision C (March 2003)
• Undocumented changes.

Revision B (May 2001)
• Undocumented changes.

Revision A (March 2001)
• Original Release of this Document.
PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>X</th>
<th>/XX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature Range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Package</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Device:
TC1413: 3A Single MOSFET Driver, Inverting
TC1413N: 3A Single MOSFET Driver, Non-Inverting

Temperature Range:
C = 0°C to +70°C
E = -40°C to +85°C

Package:
OA = Plastic SOIC, (150 mil Body), 8-lead
OA713 = Plastic SOIC, (150 mil Body), 8-lead (Tape and Reel)
UA = Plastic Micro Small Outline (MSOP), 8-lead *
UA713 = Plastic Micro Small Outline (MSOP), 8-lead * (Tape and Reel)
PA = Plastic DIP (300 mil Body), 8-lead
* MSOP package is only available in E-Temp.

Examples:

a) TC1413COA: 3A Single MOSFET driver, SOIC package, 0°C to +70°C.
b) TC1413CPA: 3A Single MOSFET driver, PDIP package, 0°C to +70°C.
c) TC1413EUA713: Tape and Reel, 3A Single MOSFET driver, MSOP package, -40°C to +85°C.

a) TC1413NCPA: 3A Single MOSFET driver, PDIP package, 0°C to +70°C.
b) TC1413NEPA: 3A Single MOSFET driver, PDIP package, -40°C to +85°C.
c) TC1413NEUA: 3A Single MOSFET driver, MSOP package, -40°C to +85°C.
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Trademark

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, flexPWR, JukeBox, KEELOG, KEELOG logo, Kleer, LANCheck, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC® logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

The Embedded Control Solutions Company and mTouch are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet, KleerNet logo, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2001-2015, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV

ISO/TS 16949

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KielLoc® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
Worldwide Sales and Service

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support: http://www.microchip.com/support
Web Address: www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Austin, TX
Tel: 512-257-3370

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Novi, MI
Tel: 877-467-0073
Fax: 877-467-0075

Houston, TX
Tel: 281-894-5983
Indianapolis

Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

New York, NY
Tel: 631-435-6000

San Jose, CA
Tel: 408-735-9110

Canada - Toronto
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon

Hong Kong
Tel: 852-2943-5100
Fax: 852-2401-3431

Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Chongqing
Tel: 86-23-8960-9588
Fax: 86-23-8960-9500

China - Dongguan
Tel: 86-769-8702-9880
Fax: 86-769-8702-9880

China - Hangzhou
Tel: 86-571-8792-8115
Fax: 86-571-8792-8116

China - Hong Kong SAR
Tel: 852-2943-5100
Fax: 852-2401-3431

China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8864-2200
Fax: 86-755-8203-1760

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4444

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-3019-1500
Fax: 91-20-3019-1500

Japan - Osaka
Tel: 81-6-6152-7160
Fax: 81-6-6152-9310

Japan - Tokyo
Tel: 81-3-6880-3770
Fax: 81-3-6880-3771

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-554-7200

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9857

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955

Taiwan - Kaohsiung
Tel: 886-7-213-7828

Taiwan - Taipei
Tel: 886-2-2508-8600
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

ASIA/PACIFIC
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130

China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Dusseldorf
Tel: 49-2129-3766400

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Germany - Pforzheim
Tel: 49-7231-424750

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Italy - Venice
Tel: 39-049-7625286

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Poland - Warsaw
Tel: 48-22-3325737

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

Sweden - Stockholm
Tel: 46-8-5090-4654

UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

01/27/15