Recommended Product Families for Utility Metering Designs

Device Type
- **8-bit PIC®Microcontrollers**
 - PIC16F648A
 - PIC16F722
 - PIC16F726
 - PIC16F727
 - PIC16F886
- **16-bit PIC® Microcontrollers**
 - PIC24FJ64GA004
 - PIC24HJ128GA010
- **16-bit dsPIC® Digital Signal Controller**
 - dsPIC30F3012
 - dsPIC33FJ64GP206
 - dsPIC33FJ128GP206
- **Energy Measurement ICs**
 - MCP3909
 - MCP3906A
 - MCP3905A
- **Interface (Infrared)**
 - MCP2122
 - MCP2120
- **Display**
 - AY0438
- **Op Amps**
 - MCP6141
 - MCP601
- **Programmable Gain Amplifiers**
 - MCP6528
- **ADCs**
 - MCP3304
 - MCP3208
 - MCP3008
- **Digital Potentiometers**
 - MCP4012
- **DACs**
 - MCP4821
- **Voltage Supervisors**
 - MCP131
 - MCP100
- **Temperature Sensors**
 - TCN75A
- **Serial EEPROMs**
 - Yes
 - Yes
- **Development Systems**
 - MPLAB® ICD 2 In-Circuit Debugger
 - PICkit™ 2 Flash Starter Kit

Model Numbers
- **Gas Meter**
 - PIC16F6887
 - PIC16F916
 - PIC16F917
 - PIC16F946
- **Water Meter**
 - PIC16F890
 - PIC18F6390
 - PIC18F6393
 - PIC18F6399
 - PIC18F8490
 - PIC18F8493
- **Energy Meter**
 - PIC16F946
 - PIC18F6393
 - PIC18F6399
 - PIC18F8490
 - PIC18F8493
 - PIC18F85J90
 - PIC18F85J93
- **Heat Meter**
 - PIC24FJ128GA010
 - PIC24FJ64GA004
 - PIC24FJ64GA004

This table represents a sampling of device solutions recommended for utility metering designs. Microchip’s broad portfolio of 8-, 16- and 32-bit microcontrollers, 16-bit digital signal controllers, analog and interface products, serial EEPROMs and related development systems contains hundreds of products that could potentially be used for utility metering designs, depending upon the application requirements.
Energy Measurement ICs
The MCP3905A, MCP3906A and MCP3909 are fully functional, stand-alone energy measurement ICs that output average active power. When these ICs are paired with a PIC microcontroller, engineers have a complete, highly accurate solution for energy measurement in residential and industrial power meter applications.

These devices each integrate two 16-bit delta-sigma analog-to-digital converters (ADCs), an internal voltage reference, a programmable gain amplifier (PGA), and all digital circuitry needed to calculate active power from voltage and current channels. The MCP3905A features a PGA with a maximum gain of 16 and a measurement error of 0.1% typical over a dynamic range of 500:1. For energy meters requiring higher accuracy, the MCP3906A has a PGA with a maximum gain of 32 and a measurement error of 0.1% typical over a dynamic range of 1000:1. For meters requiring additional calculations, the MCP3909 can be used by accessing the ADC data from the voltage and current channels and performing calculations on a PIC MCU. These solutions meet or exceed the requirements of the International Electrotechnical Commission IEC62053 energy-metering specifications.

Microcontrollers with LCD Drivers
Most metering designs require user interfaces that are low cost and easy to use. Microcontrollers with on-board liquid crystal display (LCD) modules combine the control and interface functions in a single device.

Microchip’s PIC18F85J90 and PIC16F917 series of 8-bit microcontrollers provide high-performance and cost-effective solutions for metering applications. Both families offer Flash program memory, low power consumption and integrated LCD control with a variety of features and package options.

8-/16-bit Microcontrollers and 16-bit Digital Signal Controllers
Engineers require a variety of controller options to select the optimum price and performance for their applications. Microchip offers hundreds of 8- and 16-bit microcontrollers and 16-bit digital signal controllers for metering designs with numerous choices of memory types and sizes, pin counts, peripherals and much more.

Complete Technical Resources for Metering Designs
Engineering resources are often limited, which makes access to existing application reference designs and technical documentation critical in reducing time to market.

Microchip’s Utility Meter Design Center at www.microchip.com/meter offers material that walks the reader through all of the building blocks and considerations in creating a utility metering design. The “Introduction to Utility Metering” tutorial supports those who are new to electronic design, offering an overview of the migration from mechanical meter designs to electronic-based solutions. The Design Center also features complete access to all of Microchip’s metering application notes, reference designs and other technical documentation to help engineers get their products to market more quickly and efficiently.

Development Systems
Low-cost and easy-to-learn development tools can save designers time, money and engineering resources. Microchip offers a number of development boards and evaluation kits that demonstrates the capabilities of its silicon solutions for utility metering applications.

MCP3909 3-Phase Energy Meter Reference Design
Part Number: MCPP3909RD-3PH1
This reference design is a fully functional 3-phase energy meter including PC software used for automated calibration. The reference design consists of two boards: the main metering board with the MCP3909 devices and PIC18F2520 that performs the power calculations, and the USB interface module which uses the PIC18F4550. The meter design contains serially accessible registers and is intended to be flexible and upgraded with a variety of PIC microcontrollers using the included firmware.

MCP3905RD-PM1 Energy Meter Reference Design Board
Part Number: MCP3905RD-PM1
This low-cost energy meter board acts as a stand-alone energy meter or as the analog-front-end design for LCD microcontroller-based meters. The MCP3905A design is specified with an energy measurement error of 0.1% typical across 1:500 dynamic range for high accuracy energy meter designs. The board is compliant with EMC requirements per energy metering standards IEC62053 and legacy IEC61036, IEC1046 and IEC687.

MCP3909/dsPIC33F Advanced 3-Phase Energy Meter Reference Design
Part Number: DM163030
The MCP3909/dsPIC33F Advanced 3-phase Energy Meter Reference Design is a fully functional energy meter reference design with many advanced features such as harmonic analysis, per phase distortion information, sag detection, four quadrant energy measurement, and active and reactive power calculation. It uses Microchip’s 16-bit MCU dsPIC33FJ64GP206. This reference design takes advantage of the dsPIC33F by performing all calculations in the DSP engine. All output quantities are calculated in the frequency domain yielding a large number of outputs for a variety of meter designs.
MCP3905RD-EV Energy Meter Evaluation Board
Part Number: MCP3905EV)
This evaluation board allows the user to test a variety of energy meter designs. On the input side, high voltage line and load AC-plug headers are included, along with mounting holes for shunts, current transformers and screw-type connections for wiring. On the output side, a large prototype area is included along with optical isolation and a standard PICtail™ header for experimenting with a variety of PIC microcontroller-based energy meter designs.

PICDEM™ LCD 2 Demonstration Board
Part Number: DM163030)
The PICDEM LCD 2 Board demonstrates the main features of the LCD Flash 28-, 40-, 64- and 80-pin PIC microcontrollers with power management functions. The board comes populated with the PIC18F85J90, and supports other PIC16 and PIC18 LCD devices via a plug-in module, (sold separately). The included 3V LCD glass has icons, bar graphs and digits simulating many common applications. Tutorial firmware and documentation are provided. The kit is a complete solution, ready for development right out of the box.

Visit the
Utility Metering Design Center
- Recommended Products
- Application Notes
- Reference Designs
- Technical Documentation
- Development Tools

www.microchip.com/meter

Application Notes & Tech Briefs

Metering
AN1013 Gas and Water Metering with the PIC16F91X Family
AN994 IEC Compliant Active-Energy Meter Design Using the MCP3905/6
AN939 Designing Energy Meters with the PIC16F873A
TB1092 Designing Heat Meters Using PIC16F9XX Microcontrollers

Communications
AN833 Microchip TCP/IP Stack Application Note
AN965 Microchip Stack for the ZigBee™ Protocol
AN979 Interfacing I2C™ Serial EEPROMs to PIC18 Devices

Display
AN234 Hardware Techniques for PIC® Microcontrollers
AN529 Multiplexing LED Drive and 4x4 Keypad Sampling
AN557 Four Channel Digital Voltmeter with Display and Keyboard
AN563 Using PIC16C5X Microcontrollers as LCD Drivers
AN587 Interfacing PIC® Microcontrollers to an LCD Module
AN658 LCD Fundamentals Using PIC16C92X Microcontrollers
TB029 Complementary LED Drive
TB062 High Power IR LED Driver Using the PIC16C781/782

Miscellaneous
AN606 Low-Power Design Using PIC® Microcontrollers
AN851 A Flash Bootloader for PIC16 and PIC18 Devices
TB008 Tranformerless Power Supply Temperature Sensing
AN828 Measuring Temperature with the PIC16F84A Watchdog Timer
AN871 Solving Thermal Measurement Problems Using the TC72 and TC77 Digital Silicon Temperature Sensors
AN913 Interfacing the TC77 Thermal Sensor to a PIC® Microcontroller
AN981 Interfacing a MCP9700 Analog Temperature Sensor to a PIC® Microcontroller
ADN011 Flexible Integrated Temp Sensors Lower System Costs

Timekeeping
AN582 Low-Power Real-Time Clock
AN590 A Clock Design Using the PIC16C54 for LED Displays and Switch Inputs
AN615 Clock Design Using Low Power/Cost Techniques
AN649 Yet Another Clock Featuring the PIC16C924
TB028 Technique to Calculate Day of Week

Security
AN583 Implementation of the Data Encryption Standard Using PIC17C42
AN821 Advanced Encryption Standard Using the PIC16XXX
AN953 Data Encryption Routines for PIC18 Microcontrollers
Product Specifications

Energy Measurement ICs (IEC Compliant)

<table>
<thead>
<tr>
<th>Device</th>
<th>Measurement Error (typ.)</th>
<th>Dynamic Range</th>
<th>Output Type</th>
<th>PGA Gain</th>
<th>Supply Current (max)</th>
<th>Supply Voltage Range (V)</th>
<th>Temperature Range (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCP3905A</td>
<td>0.1%</td>
<td>500:1</td>
<td>Active power pulse output</td>
<td>1,2,8,16</td>
<td>4 mA</td>
<td>4.5 to 5.5</td>
<td>-40 to +85</td>
</tr>
<tr>
<td>MCP3906A</td>
<td>0.1%</td>
<td>1000:1</td>
<td>Active power pulse output</td>
<td>1,8,16,32</td>
<td>4 mA</td>
<td>4.5 to 5.5</td>
<td>-40 to +85</td>
</tr>
<tr>
<td>MCP3909</td>
<td>0.1%</td>
<td>1000:1</td>
<td>SPI interface with simultaneous active power pulse output</td>
<td>1,2,8,16</td>
<td>4 mA</td>
<td>4.5 to 5.5</td>
<td>-40 to +85</td>
</tr>
</tbody>
</table>

8-bit PIC® Microcontrollers

<table>
<thead>
<tr>
<th>Device</th>
<th>Flash Program Memory Bytes</th>
<th>Data RAM Bytes</th>
<th>EEPROM Data Memory Bytes</th>
<th>I/O</th>
<th>Analog (Resolution)</th>
<th>Comparators</th>
<th>I2C™/SPI/Serial USART</th>
<th>CCP/PWM</th>
<th>LCD Segments</th>
<th>Timers 8-bit/16-bit</th>
<th>Pins</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIC16F648A</td>
<td>7168</td>
<td>256</td>
<td>256</td>
<td>16</td>
<td>–</td>
<td>2</td>
<td>AUSART</td>
<td>1</td>
<td>–</td>
<td>2/1</td>
<td>18/20/28</td>
</tr>
<tr>
<td>PIC16F690</td>
<td>8192</td>
<td>256</td>
<td>256</td>
<td>18</td>
<td>12 (12-bit)</td>
<td>2</td>
<td>I2C/SPI/EUSART/AUSART</td>
<td>2</td>
<td>–</td>
<td>2/1</td>
<td>20</td>
</tr>
<tr>
<td>PIC16F722</td>
<td>3584</td>
<td>128</td>
<td>–</td>
<td>25</td>
<td>11 (8-bit)</td>
<td>2</td>
<td>AUSART</td>
<td>2</td>
<td>–</td>
<td>2/1</td>
<td>28</td>
</tr>
<tr>
<td>PIC16F726</td>
<td>14336</td>
<td>368</td>
<td>–</td>
<td>25</td>
<td>11 (8-bit)</td>
<td>2</td>
<td>AUSART</td>
<td>2</td>
<td>–</td>
<td>2/1</td>
<td>28</td>
</tr>
<tr>
<td>PIC16F727</td>
<td>14336</td>
<td>368</td>
<td>–</td>
<td>36</td>
<td>14 (8-bit)</td>
<td>2</td>
<td>AUSART</td>
<td>2</td>
<td>–</td>
<td>2/1</td>
<td>40/44</td>
</tr>
<tr>
<td>PIC16F886</td>
<td>14336</td>
<td>368</td>
<td>256</td>
<td>25</td>
<td>12 (12-bit)</td>
<td>2</td>
<td>I2C/SPI/EUSART/AUSART</td>
<td>2</td>
<td>–</td>
<td>2/1</td>
<td>28</td>
</tr>
<tr>
<td>PIC16F887</td>
<td>14336</td>
<td>368</td>
<td>256</td>
<td>36</td>
<td>14 (10-bit)</td>
<td>2</td>
<td>I2C/SPI/EUSART/AUSART</td>
<td>2</td>
<td>–</td>
<td>2/1</td>
<td>40/44</td>
</tr>
<tr>
<td>PIC16F916</td>
<td>14336</td>
<td>352</td>
<td>256</td>
<td>25</td>
<td>5 (12-bit)</td>
<td>2</td>
<td>I2C/SPI/EUSART/AUSART</td>
<td>2</td>
<td>4x15 (60)</td>
<td>2/1</td>
<td>28</td>
</tr>
<tr>
<td>PIC16F917</td>
<td>14336</td>
<td>352</td>
<td>256</td>
<td>36</td>
<td>8 (12-bit)</td>
<td>2</td>
<td>I2C/SPI/EUSART/AUSART</td>
<td>2</td>
<td>4x24 (96)</td>
<td>2/1</td>
<td>40/44</td>
</tr>
<tr>
<td>PIC16F946</td>
<td>14336</td>
<td>336</td>
<td>256</td>
<td>53</td>
<td>8 (12-bit)</td>
<td>2</td>
<td>I2C/SPI/EUSART</td>
<td>2</td>
<td>4x42 (168)</td>
<td>2/1</td>
<td>64</td>
</tr>
<tr>
<td>PIC16F6390</td>
<td>8192</td>
<td>768</td>
<td>–</td>
<td>50</td>
<td>12 (10-bit)</td>
<td>2</td>
<td>I2C/SPI/EUSART/AUSART</td>
<td>2</td>
<td>128</td>
<td>1/3</td>
<td>64</td>
</tr>
<tr>
<td>PIC16F6393</td>
<td>8192</td>
<td>768</td>
<td>–</td>
<td>50</td>
<td>12 (12-bit)</td>
<td>2</td>
<td>I2C/SPI/EUSART/AUSART</td>
<td>2</td>
<td>128</td>
<td>1/3</td>
<td>64</td>
</tr>
<tr>
<td>PIC16F6490</td>
<td>16384</td>
<td>768</td>
<td>–</td>
<td>50</td>
<td>12 (10-bit)</td>
<td>2</td>
<td>I2C/SPI/EUSART/AUSART</td>
<td>2</td>
<td>192</td>
<td>1/3</td>
<td>64</td>
</tr>
<tr>
<td>PIC16F6493</td>
<td>16384</td>
<td>768</td>
<td>–</td>
<td>50</td>
<td>12 (12-bit)</td>
<td>2</td>
<td>I2C/SPI/EUSART/AUSART</td>
<td>2</td>
<td>192</td>
<td>1/3</td>
<td>64</td>
</tr>
<tr>
<td>PIC16F65J90</td>
<td>32768</td>
<td>2048</td>
<td>–</td>
<td>51</td>
<td>12 (12-bit)</td>
<td>2</td>
<td>I2C/SPI/EUSART/AUSART</td>
<td>2</td>
<td>4x33 (132)</td>
<td>1/3</td>
<td>64</td>
</tr>
<tr>
<td>PIC16F8390</td>
<td>8192</td>
<td>768</td>
<td>–</td>
<td>66</td>
<td>12 (10-bit)</td>
<td>2</td>
<td>I2C/SPI/EUSART/AUSART</td>
<td>2</td>
<td>128</td>
<td>1/3</td>
<td>80</td>
</tr>
<tr>
<td>PIC16F8393</td>
<td>8192</td>
<td>768</td>
<td>–</td>
<td>66</td>
<td>12 (12-bit)</td>
<td>2</td>
<td>I2C/SPI/EUSART/AUSART</td>
<td>2</td>
<td>128</td>
<td>1/3</td>
<td>80</td>
</tr>
<tr>
<td>PIC16F8490</td>
<td>16384</td>
<td>768</td>
<td>–</td>
<td>66</td>
<td>12 (10-bit)</td>
<td>2</td>
<td>I2C/SPI/EUSART/AUSART</td>
<td>2</td>
<td>192</td>
<td>1/3</td>
<td>80</td>
</tr>
<tr>
<td>PIC16F8493</td>
<td>16384</td>
<td>768</td>
<td>–</td>
<td>66</td>
<td>12 (12-bit)</td>
<td>2</td>
<td>I2C/SPI/EUSART/AUSART</td>
<td>2</td>
<td>192</td>
<td>1/3</td>
<td>80</td>
</tr>
<tr>
<td>PIC16F85J90</td>
<td>32768</td>
<td>2048</td>
<td>–</td>
<td>67</td>
<td>12 (12-bit)</td>
<td>2</td>
<td>I2C/SPI/EUSART/AUSART</td>
<td>2</td>
<td>4x48 (192)</td>
<td>1/3</td>
<td>80</td>
</tr>
</tbody>
</table>

16-bit PIC® Microcontrollers

<table>
<thead>
<tr>
<th>Device</th>
<th>Flash Program Memory Bytes</th>
<th>Data RAM Bytes</th>
<th>EEPROM Data Memory Bytes</th>
<th>I/O</th>
<th>Analog (Resolution)</th>
<th>Comparators</th>
<th>I2C™/SPI/Serial USART</th>
<th>CCP/PWM</th>
<th>LCD Segments</th>
<th>Timers 16-bit/32-bit</th>
<th>Pins</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIC24FJ64GA004</td>
<td>64K</td>
<td>8192</td>
<td>–</td>
<td>35</td>
<td>10 (10-bit)</td>
<td>2</td>
<td>2xI2C, 2xSPI, 2xUART</td>
<td>5</td>
<td>–</td>
<td>5/4</td>
<td>44</td>
</tr>
<tr>
<td>PIC24FJ128GA010</td>
<td>128K</td>
<td>8192</td>
<td>–</td>
<td>86</td>
<td>16 (10-bit)</td>
<td>2</td>
<td>2xI2C, 2xSPI, 2xUART</td>
<td>5</td>
<td>–</td>
<td>5/100</td>
<td>100</td>
</tr>
</tbody>
</table>

dsPIC® Digital Signal Controllers (DSC)

<table>
<thead>
<tr>
<th>Device</th>
<th>Flash Program Memory Bytes</th>
<th>Data RAM Bytes</th>
<th>EEPROM Data Memory Bytes</th>
<th>I/O</th>
<th>Analog (Resolution)</th>
<th>Comparators</th>
<th>I2C™/SPI/Serial USART</th>
<th>CCP/PWM</th>
<th>LCD Segments</th>
<th>Timers 16-bit/32-bit</th>
<th>Pins</th>
</tr>
</thead>
<tbody>
<tr>
<td>dsPIC30F3012</td>
<td>24K</td>
<td>2048</td>
<td>1024</td>
<td>12</td>
<td>8 (12-bit @ 200 ksp)</td>
<td>–</td>
<td>I2C/SP/UIUART</td>
<td>2</td>
<td>–</td>
<td>9/4</td>
<td>18/44</td>
</tr>
<tr>
<td>dsPIC33FJ64GP206</td>
<td>64K</td>
<td>8192</td>
<td>–</td>
<td>53</td>
<td>16 (10-bit @ 1.1 Msp)</td>
<td>–</td>
<td>PC, 2xSPI, 2UART</td>
<td>8</td>
<td>–</td>
<td>5/64</td>
<td>64</td>
</tr>
<tr>
<td>dsPIC33FJ128GP206</td>
<td>128K</td>
<td>8192</td>
<td>–</td>
<td>53</td>
<td>16 (10-bit @ 1.1 Msp)</td>
<td>–</td>
<td>PC, 2xSPI, 2UART</td>
<td>8</td>
<td>–</td>
<td>5/64</td>
<td>64</td>
</tr>
</tbody>
</table>
Support

Microchip is committed to supporting its customers in developing products faster and more efficiently. We maintain a worldwide network of field applications engineers and technical support ready to provide product and system assistance. In addition, the following service areas are available at www.microchip.com:

- **Support** link provides a way to get questions answered fast: http://support.microchip.com
- **Sample** link offers free evaluation samples of any Microchip device: http://sample.microchip.com
- **Training** link offers webinars, registration for local seminars/workshops and information on annual MASTERS events held throughout the world: www.microchip.com/training
- **Forum** link provides access to knowledge base and peer help: http://forum.microchip.com

Purchase

microchipDIRECT is a web-based purchasing site that gives you 24-hour-a-day access to all Microchip devices and tools, including pricing, ordering, inventory and support. You can buy the products you need on an easily opened Microchip line of credit.

Sales Office Listing

AMERICAS

Atlanta
Tel: 678-957-9614

Boston
Tel: 774-760-0087

Chicago
Tel: 630-285-0071

Cleveland
Tel: 216-447-0464

Dallas
Tel: 972-818-7423

Detroit
Tel: 248-538-2250

Kokomo
Tel: 765-864-8360

Los Angeles
Tel: 949-462-9523

Santa Clara
Tel: 408-961-6444

Toronto
Mississauga, Ontario
Tel: 905-673-0699

EUROPE

Austria - Wels
Tel: 43-7242-2244-39

Denmark - Copenhagen
Tel: 45-4450-2828

France - Paris
Tel: 33-1-69-53-63-20

Germany - Munich
Tel: 49-89-627-144-0

Italy - Milan
Tel: 39-0331-742611

Netherlands - Drunen
Tel: 31-416-690399

Spain - Madrid
Tel: 34-91-708-08-90

UK - Wokingham
Tel: 44-118-921-5869

ASIA/PACIFIC

Australia - Sydney
Tel: 61-2-9868-6733

China - Beijing
Tel: 86-10-8528-2100

China - Chengdu
Tel: 86-28-8665-5511

China - Hong Kong SAR
Tel: 852-2401-1200

China - Nanjing
Tel: 86-25-8473-2460

China - Shanghai
Tel: 86-21-5407-5533

China - Shenzhen
Tel: 86-755-8203-2660

China - Wuhan
Tel: 86-27-5980-5300

China - Xiamen
Tel: 86-592-2388138

China - Xian
Tel: 86-29-8833-7252

China - Zhuhai
Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore
Tel: 91-80-4182-8400

India - New Delhi
Tel: 91-11-4160-8631

India - Pune
Tel: 91-20-2566-1512

Japan - Yokohama
Tel: 81-45-471-6166

Korea - Daegu
Tel: 82-53-744-4301

Korea - Seoul
Tel: 82-2-554-7200

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857

Malaysia - Penang
Tel: 60-4-227-8870

Philippines - Manila
Tel: 63-2-634-9065

Singapore
Tel: 65-6334-8870

Taiwan - Hsin Chu
Tel: 886-3-572-9526

Taiwan - Kaohsiung
Tel: 886-7-536-4818

Taiwan - Taipei
Tel: 886-2-2500-6610

Thailand - Bangkok
Tel: 66-2-694-1351

The Microchip name and logo, the Microchip logo, MPLAB, PIC and PICmicro are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. MiWi, PICDEM, PICDEM.net, PICtail and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. All other trademarks mentioned herein are property of their respective companies.

© 2008, Microchip Technology Incorporated, All Rights Reserved. Printed in the U.S.A. 2/08