INTRODUCTION

Most computer users are familiar with the numeric keypad section on a computer keyboard. The numeric keypad is generally used to enter long sequences of numbers, or while working with applications such as calculator, spreadsheet and accounting programs. However, most laptop manufacturers do not provide a numeric keypad section on their keyboard due to space constraint.

The Microchip USB keypad demo is an easy plug-and-play USB keypad which can be plugged into a computer or a USB host to make the numeric keypad available. The USB keypad is designed using the PIC16F1459 device, which is part of Microchip’s 8-bit USB-capable family, PIC16F14XX.

This application note describes the USB Keypad Reference Design. The PCB layout for the capacitive touch sensors arranged in a matrix is also provided.

Visit the Microchip web site for the following:

• For more information on Microchip’s capacitive sensing solutions, visit http://www.microchip.com/mTouch.
• For more information on Microchip’s USB solutions, visit http://www.microchip.com/USB.

DEMONSTRATION HIGHLIGHTS

All the USB keypad features are driven by a single device, PIC16F1459.

The following list describes the USB keypad features:

• Crystal-free USB operation
• 18 touch buttons using Microchip’s Capacitive Voltage Divider (CVD) technique
• LED backlight with proximity sensing ON and auto power OFF
• Audio feedback using piezo buzzer
• USB Human Interface Device (HID) interface
• Plug-and-play
• Low-cost light weight design

Figure 1 illustrates the USB keypad.

FIGURE 1: USB KEYPAD

Author: Shijas Mayan
Microchip Technology Inc.
RUNNING THE USB KEYPAD DEMO

With the preinstalled demo application, the PIC16F1459 USB keypad is designed to be used straight out of the box. Except for a single connection to a computer, no additional hardware or configuration is necessary. Connect the provided USB cable (A- to mini-B) to any available USB port on the PC or powered hub, and then connect to the USB keypad at the mini-B receptacle on the bottom side of the board. The PC USB connection provides communication and power to the USB keypad. The USB keypad is ready for operation once it is connected to the PC through the USB.

Initially, when the USB keypad is plugged into a USB host, the LED backlight is turned ON and the USB keypad is ready for operation. Touch any button on the keypad to send the corresponding character to the host. The buzzer beeps for every recognized key touch. The beep frequency is set to 1 kHz when Num Lock is ON and 2.5 kHz when Num Lock is OFF. Num Lock ON and OFF operations produce a slightly longer beep. To disable the buzzer beep, press and hold the Clear button for two seconds or until a longer beep is heard from the buzzer. Touch and hold the Clear button again to turn on the buzzer feedback.

The LED backlight is turned off automatically if no activity is detected on the keypad for more than seven seconds. When LED backlight is off, the keypad is inactive. At this time, the proximity sensors regularly scan for any object (for example, a finger or any other object which causes a change in capacitance) near the vicinity (2 cm to 3 cm) and turns on the LED backlight if any object is detected.

The USB keypad consumes around 250 mA when the LED backlight is ON. Therefore, ensure that the USB host is capable of delivering this current to the device. A USB host might reject the USB keypad configuration if it is unable to deliver the current requested by the keypad.
USB KEYPAD HARDWARE LAYOUT

The USB keypad hardware layout and its components are illustrated in Figure 2 and Figure 3.

FIGURE 2: USB KEYPAD PCB BOTTOM SIDE

- PIC16F1459 MCU (U1): SSOP package
- Six-pin (J2), right-angle In-Circuit Serial Programming™ (ICSP™) programmer/debug header package
- Mini-B USB connector (J1) for power and communication
- External drive buzzer (B1) for audio feedback
- IRLML6246: MOSFET (Q1)

FIGURE 3: USB KEYPAD PCB TOP SIDE

- Capacitive touch sensors (S1 to S18)
- Guard ring for shielding the touch sensors from parasitic capacitance
- IBC-2810UWC: LEDs for backlighting (D1 to D12)
USB KEYPAD BLOCK DIAGRAM

The USB keypad features are driven by an 8-bit PIC16F1459 device with integrated peripherals such as 14 KB Flash, 1 KB RAM, full-speed USB peripheral with Active Clock Tuning (ACT), 10-bit Analog-to-Digital Converter (ADC) with nine channels, two Pulse-Width Modulator (PWM) modules, Complementary Waveform Generator (CWG), and so on.

Figure 4 illustrates the USB keypad block diagram.

FIGURE 4: USB KEYPAD BLOCK DIAGRAM

9 CVD sensors are arranged in a 5 x 4 matrix for a maximum of 20 touch buttons on the keypad. This keypad has 18 touch buttons. The columns sensors are also used for proximity sensing.

The Active Clock Tuning module continuously adjusts the 16 MHz internal oscillator on every SCIF signal from the USB host. This eliminates the need for a high-speed, high-accuracy external crystal which is otherwise required for USB full speed operation.

PWM2 generates square waves to drive the piezo buzzer. The CWG (Complementary Waveform Generator) module is used to route the signal to another pin.

12 LEDs provide backlighting for the front panel from both sides.

USB Mini B Connector
+5V
Data (−)
Data (+)
Capacitive Touch Buttons

The Capacitive Voltage Divider (CVD) technique is used for implementing 18 touch buttons and the proximity sensor. The CVD technique has been developed to require only an ADC and minimal digital processing overhead. For more information on the CVD technique, refer to “mTouch™ Sensing Solution Acquisition Methods Capacitive Voltage Divider” (AN1478), or visit the Microchip web site at: http://www.microchip.com/mtouch.

All of the nine ADC channels available on the PIC16F1459 device are configured as CVD sensors. To allow a larger number of touch buttons, nine CVD sensors are arranged in a 5 x 4 matrix (see Figure 5). The 5 x 4 matrix allows a maximum of 20 touch buttons. However, the USB keypad implements 18 touch buttons.

Each touch button includes a pair of row and column. The rows and columns in a touch button are separated by a distance of 1.5 mm. Most of the touch buttons on the USB keypad have an overall size of 12 mm x 12 mm. There are two touch buttons with a size of 12 mm x 31 mm.

Figure 6 illustrates the dimensions for an individual button. The CVD firmware finds out if any touch button is pressed by scanning all of the nine sensors at a periodic interval, and by checking if any combination of row and column is pressed.

FIGURE 5: MATRIX KEYPAD DESIGN

FIGURE 6: TOUCH BUTTON DIMENSIONS

All of the four column sensors are also used for proximity sensing. The CVD firmware scans these four column sensors separately to find out if any change in the capacitance is detected due to the presence of an object (human interference).

Each touch button is surrounded by a guard ring to shield the buttons from parasitic capacitance, thus increasing the sensitivity of the button. The guard ring is driven by an I/O. The guard ring has a width of 1 mm, and is placed at a distance of 3 mm from the touch buttons.
Full-Speed USB with Active Clock Tuning

The USB keypad is a full-speed USB device which enumerates as HID keyboard to a USB host. The USB HID driver is built in most operating systems such as Windows, Linux, Mac, and so on. The device drivers are installed automatically on these operating systems as the user plugs in the keypad to the USB connector on the host.

The PIC16F1459 device contains a full-speed (12 Mb/s) and low-speed (1.5 Mb/s) compatible USB Serial Interface Engine (SIE) that allows fast communication between any USB host and the MCU. The SIE can be interfaced directly to the USB by utilizing the internal transceiver.

USB standards specify that Full Speed USB clock tolerance should be within +/- 0.25%. Most USB systems achieve this requirement by using an external crystal. However, the PIC16F1459 device consists of the Active Clock Tuning (ACT) feature, which eliminates the need for a high-speed, high accuracy external crystal in a full-speed USB system. The ACT continuously adjusts the 16 MHz internal oscillator using an available external reference, to achieve ± 0.20% accuracy. In a full-speed USB system, the Start-of-Frame (SOF) signal received every millisecond from a USB host can be used as the external reference. The ACT feature helps save BOM and assembly costs on the external crystal and also saves some board space.

LED Backlight

Backlighting of the USB keypad is done using 12 side-firing LEDs soldered on the top layer of the PCB. Six LEDs each are soldered on both the left and right sides of the PCB. The LEDs are arranged on the PCB in a way to ensure proper lighting of the touch buttons.

LEDs are driven using the PWM peripheral on the PIC16F1459 through a MOSFET IRLML 6246. LEDs are turned ON when the proximity sensors detect an object (for example, a finger or any other object which causes a change in capacitance) near to it (or there is a change in sensor capacitance). LEDs are turned OFF automatically after 5-7 seconds.

In order to spread the LED backlight throughout the panel properly, LEDs are physically placed close to the slot provided on the front panel. Proper LED soldering pads (see Figure 7) on the PCB are used.

Buzzer

An external drive buzzer is provided to generate an audio tone whenever a key is pressed. The audio feedback helps the user to realize that a button is pressed. The buzzer is connected to the PIC16F1459 through the PWM2 peripheral. The PWM2 peripheral generates rectangular waves to drive the buzzer. The tone frequency is changed by varying the PWM period. The buzzer volume can be adjusted by varying the PWM duty cycle.

The dedicated PWM2 pin PIC16F1459 MCU is also an ADC channel (AN8). AN8 channel is used as a capacitive sensor and hence is not available for connecting the buzzer. Therefore, the output of the PWM2 to RC4 pin is rerouted internally using the Complimentary Waveform Generator (CWG) peripheral.

Figure 7 illustrates the LED solder pad dimensions on the PCB.
Front Panel

The front panel is fixed on top of the USB keypad PCB. The graphics for the USB keypad is printed on the front panel which also has slots for holding the LEDs. The front panel guides the LED backlight and helps to illuminate the buttons. The front panel is self adhesive and can be pasted on the keypad PCB. The front panel is manufactured by Lumvatech, LLC.

Figure 8 illustrates the dimension details of the front panel. The LED slots are placed such that the backlight is spread equally throughout the panel.

FIGURE 8: LED PLACEMENT ON PCB (LED PLACEMENT IMAGE)
FIRMWARE

The two major components of USB keypad firmware are: USB device stack and mTouch™ CVD library. Both of these components are taken from the Microchip Libraries for Application (MLA) without any modifications.

Figure 9 illustrates the high-level software architecture.

The USB keypad application scans all the mTouch proximity sensors and buttons at a regular interval set by a timer. The USB keypad is activated only when the proximity sensor detects a change in capacitance value due to an object (for example, a finger) in the near vicinity. The USB keypad application polls every button at a regular interval, and sends the specific character of the button to the USB host. See Figure A-1 for the application flowchart.

Folder Structure

Figure 10 illustrates the USB keypad firmware folder structure. The application folder contains the MPLAB® X project, application source files, USB stack configuration files, hardware profile files, and so on.

The Microchip core stack files folder contains the USB device stack and mTouch CVD framework files. These files are copied without any modifications from the MLA. If a new version of the USB device stack or mTouch CVD framework is available, the contents inside the Microchip core stack files folder can be replaced with the new files copied from the MLA.
Demo Configuration

Some of the features of the demo can be changed by modifying the macro defined in the Keypad_Configuration.h file.

Example 1 provides the configuration details of the USB keypad.

EXAMPLE 1: USB KEYPAD CONFIGURATION DETAILS

```c
//The KEYPAD_TIMEOUT macro defines how long the Keypad should active after // the last user activity.
#define KEYPAD_TIMEOUT 7000 //milli Seconds
#define LED_BACKLIGHT_ENABLE //Define to enable LED backlight
#define BUZZER_ENABLE // define to enable buzzer
#define ENABLE_BUZZER_ON_OFF_USING_CLEAR_BUTTON // define to enable/disable buzzer using 'Clear' Button
```

FIGURE 11: MEMORY USAGE

<table>
<thead>
<tr>
<th>RAM Usage</th>
<th>388 Bytes of 1024 Bytes</th>
<th>38%</th>
</tr>
</thead>
<tbody>
<tr>
<td>mTouch Framework</td>
<td>274 Bytes</td>
<td></td>
</tr>
<tr>
<td>USB stack</td>
<td>76 Bytes</td>
<td></td>
</tr>
<tr>
<td>Application</td>
<td>38 Bytes</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Program Memory Usage</th>
<th>6383 Words of 8192 Words</th>
<th>78%</th>
</tr>
</thead>
<tbody>
<tr>
<td>mTouch Framework</td>
<td>3000 Words</td>
<td></td>
</tr>
<tr>
<td>USB Stack</td>
<td>1800 Words</td>
<td></td>
</tr>
<tr>
<td>Application</td>
<td>1563 Words</td>
<td></td>
</tr>
</tbody>
</table>

Debugging the Code

In the PIC16F1459 device, the ICSPCLK and ICSPDAT (ICSP™ and debug pins) pins are multiplexed with ADC input AN4 and AN5. The USB keypad uses AN4 and AN5 as CVD sensors. Hence, it is not possible to run the code in Debug mode because the debug pins are used as CVD sensors. In order to debug the code, R32 and R33 0Ω resistors (see Figure 2) should be opened by desoldering.

Observing CVD Sensor Values on PC

The CVD values for each sensor on the keypad (including the proximity sensors) can be watched on a PC terminal program (for example, HyperTerminal). Follow the below steps for observing the CVD values:

1. Open the USB keypad firmware project on MPLAB X.
2. In the mComm_config.h file, uncomment the following line:
   ```c
   #define MCOMM_ENABLED
   ```
3. In the usb_config.h file, select the USB polling method as shown below:
   ```c
   #define USB_POLLING
   //define USB_INTERRUPT
   ```
4. Using MPLAB X, build and program the firmware on to the board.
5. Connect the test point TP2 (RB6 of the PIC16F1459) to the RX pin of the PC through a USB to serial converter.
6. Open a HyperTerminal or any other similar application, with a baud rate setting of 38400 bps.
7. Plug the USB keypad to the PC USB port. The HyperTerminal displays the CVD values for each CVD sensor.
CONCLUSION
The USB keypad implements 18 touch buttons, proximity sensing, full-speed USB without crystal, LED backlighting using PWM, and external drive buzzer using PWM. All of the features are driven by a single PIC16F1459 MCU which result in low bill of materials (BOM) cost. The USB keypad demo also showcases many features that are common/useful to many other applications with USB and capacitive touch sensors.

REFERENCES
The following resources can be downloaded from the Microchip web site:
- “mTouch™ Sensing Solution Acquisition Methods Capacitive Voltage Divider” (AN1478)
- USB keypad demo, documentation and C source code can be modified as per user specific application requirements:
 www.microchip.com/USBKeypad
- Touch Sense Solutions:
 www.microchip.com/mTouch
- USB Solutions:
 www.microchip.com/USB
- Microchip MLA:
 www.microchip.com/MLA
APPENDIX A: APPLICATION FLOWCHART

Figure A-1 illustrates the USB keypad application flowchart. The keypad.c file contains the main application.

FIGURE A-1: APPLICATION FLOW CHART
Figure B-1 illustrates the USB keypad schematic.

FIGURE B-1: SCHEMATIC

[Diagram of the USB keypad schematic]
APPENDIX C: USB KEYPAD: BILL OF MATERIALS

Table 1 provides the Bill of Materials (BOM) for USB keypad.

<table>
<thead>
<tr>
<th>Device Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1</td>
<td>PIC16F1459: SSOP package</td>
</tr>
<tr>
<td>D1-D12</td>
<td>IBC-2810UWC: Side firing LED</td>
</tr>
<tr>
<td>R1, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15, R16, R17</td>
<td>Resistor: 100Ω, 1/10W, 1% 0603 SMD</td>
</tr>
<tr>
<td>R2, R31</td>
<td>Resistor: 1.00 kΩ, 1/10W, 1% 0603 SMD</td>
</tr>
<tr>
<td>R3, R19</td>
<td>Resistor: 10.0 kΩ, 1/10W, 1% 0603 SMD</td>
</tr>
<tr>
<td>R18</td>
<td>Resistor: 22.0 kΩ, 1/10W, 1% 0603 SMD</td>
</tr>
<tr>
<td>R20, R21, R22, R23, R24, R25, R26, R27, R28</td>
<td>Resistor: 4.70 kΩ, 1/10W, 1% 0603 SMD</td>
</tr>
<tr>
<td>R29</td>
<td>Resistor: 100 kΩ, 1/10W, 1% 0603 SMD</td>
</tr>
<tr>
<td>R30</td>
<td>Resistor: 1.00 MΩ, 1/10W, 1% 0603 SMD</td>
</tr>
<tr>
<td>R32, R33</td>
<td>Resistor: 0Ω, 1/10W, Jumper, 0603 SMD</td>
</tr>
<tr>
<td>C1</td>
<td>Capacitor Ceramic: 1 μF 50V 10% X5R 0603</td>
</tr>
<tr>
<td>C2</td>
<td>Capacitor Ceramic: 0.47 μF 16V 10% X7R 0805</td>
</tr>
<tr>
<td>C3, C4</td>
<td>Capacitor Ceramic: 0.1 μF 25V 10% X7R 0603</td>
</tr>
<tr>
<td>C5</td>
<td>Capacitor Ceramic: 10000 pF 25V 10% X7R 0603</td>
</tr>
<tr>
<td>C6</td>
<td>Capacitor Ceramic: 1000 pF 16V 10% X7R 0603</td>
</tr>
<tr>
<td>L1</td>
<td>Ferrite Bead: 33Ω 0603</td>
</tr>
<tr>
<td>Q1</td>
<td>IRLML6246 MOSFET: N channel 20V 4.1A SOT-23</td>
</tr>
<tr>
<td>J1</td>
<td>Connector Receptacle: Mini-B USB 2.0, 5 positions</td>
</tr>
<tr>
<td>J2</td>
<td>Connector Header: 100 RT/A SMD, 6 positions</td>
</tr>
<tr>
<td>D13</td>
<td>Diode Standard Receptacle: 1A, 300V and SMA</td>
</tr>
<tr>
<td>B1</td>
<td>Piezo Buzzer: 25VP-P SMD PKLC51212E4001-R1</td>
</tr>
<tr>
<td>Bump on</td>
<td>Bumpon X – Tall Taper SQ.81X.30BK</td>
</tr>
</tbody>
</table>
Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks
The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELoo, KEELoo logo, MPLAB, PIC, PICmicro, PICSTART, PIC® C2® logo, rPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, Hi-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, Hi-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MFP, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICKit, PICtail, REAL ICE, rLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestiC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.
ISBN: 9781620773598

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV
ISO/TS 16949

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, Keeloq® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
Worldwide Sales and Service

AMERICAS

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support: http://www.microchip.com/support
Web Address: www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260

Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445

Toronto
Mississauga, Ontario, Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431

Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8596-7000
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500

China - Hangzhou
Tel: 86-571-2819-3187
Fax: 86-571-2819-3189

China - Hong Kong SAR
Tel: 852-2943-5100
Fax: 852-2401-3431

China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8864-2200
Fax: 86-755-8203-1760

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130

China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513

Japan - Osaka
Tel: 81-6-6152-7160
Fax: 81-6-6152-9310

Japan - Tokyo
Tel: 81-3-6880-3770
Fax: 81-3-6880-3771

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-8850

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955

Taiwan - Kaohsiung
Tel: 886-7-213-7828
Fax: 886-7-330-9305

Taiwan - Taipei
Tel: 886-2-2508-8600
Fax: 886-2-2508-0102

Thailand - Bangalore
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

11/29/12