16-bit Embedded Control Solutions
PIC24 Microcontrollers • dsPIC® Digital Signal Controllers

www.microchip.com/16bit
Microchip’s PIC24 Microcontrollers and dsPIC® Digital Signal Controllers

In today’s embedded world, meeting product specification and performance goals are among the top challenges. For a competitive advantage, it is also important to focus on solution cost and a fast time to market. To meet these objectives, Microchip’s 16-bit microcontroller and digital signal controller portfolio offers several product families including the PIC24F, PIC24H, PIC24E, dsPIC33F and dsPIC33E families.

PIC24F Family
The PIC24F is a cost-effective, low-power family of microcontrollers, featuring devices with eXtreme Low Power (XLP) technology, 16 MIPS performance and memory up to 1024 KB of Flash with rich set of Core Independent Peripherals (CIPs). Offering a step up in performance, memory and peripherals for applications that are pushing the envelope of 8-bit microcontroller capabilities, the PIC24F family is ideal for:
- Low-power applications
- Space-constrained applications
- Cost-sensitive applications

PIC24H and PIC24E Families
For more demanding applications, the PIC24H and PIC24E families offer up to 40 MIPS and 70 MIPS performance respectively, memory up to 512 KB of Flash and feature a robust peripheral set including fast and flexible PWMs, high-performance Analog-to-Digital Converter, op amp and CAN, which are optimized for real-time response. These families are ideally suited for:
- Automotive applications
- Functional safety applications
- Industrial applications

Simplifying 16-bit Microcontroller Designs
With focus on reducing the time to market and minimizing the development risks, Microchip offers a complete ecosystem around the PIC24 MCUs and dsPIC33 DSCs that simplifies the designs, including:

- MPLAB® X IDE and XC16 compilers
 - Single development platform across all 16-bit MCUs and DSCs
- MPLAB Code Configurator (MCC)
 - Free graphical programming environment
 - Generates easy-to-understand, production ready C code
- Microchip-tested software for quick time to market
 - USB, graphics, crypto, smart card, file I/O, Wi-Fi®, Class B safety stacks
 - Motor control and digital power software, models and tuning guides
 - DSP math library and digital filter design tools
- MPLAB Xpress cloud-based IDE
 - A quick start online development environment
 - Facilitates easy collaboration with capability to access project from anywhere
- Range of development boards
 - Cost-effective, rapid prototyping PIC24F-based Curiosity Development Boards
 - Ready-to-explore Starter Kits
 - Flexible and versatile Explorer 16/32 Development Board
 - Application-specific motor control and digital power development boards

All 16-bit families have the same instruction set, basic peripherals and common pin-outs and share the same development tool ecosystem enabling easy migration.
Flexible Integrated Peripherals

Microchip offers a rich set of high-performance peripherals that integrate seamlessly with customer applications and enable solutions with reduced costs and time. The 16-bit family offers key communication and control peripherals like SPI, UART, CAN, I²C, PWM and Timers, as well as specialized peripherals for USB, graphics, motor control and digital power. With integrated analog peripherals, you can include analog functions such as high-performance ADCs, DACs and op amps into your applications, providing simple-to-use interfaces that ease analog design. In addition, core independent peripherals such as CLC, PTG and crypto enable higher levels of integration and flexibility.

PIC24 and dsPIC33 Family Block Diagram
eXtreme Low Power (XLP) Solutions
Microchip's XLP devices bring together the design and process technologies needed to address today's low-power applications. With sleep currents down to 10 nA and industry-leading integration including USB, touch, crypto and LCD drivers, XLP products can help extend the life of your battery-powered application. www.microchip.com/XLP

Low-Power Core Independent Peripherals
Smartly interconnected CIPs function with near zero latency. By taking load off the CPU, low-power CIPs can perform extremely complex tasks, such as cryptography and event monitoring. This allows the CPU to be in low power mode to save energy or perform additional tasks, therefore eliminating the need to migrate to complex and expensive MCUs. Significant BOM cost savings can also be realized by replacing external discrete components with these integrated peripherals. www.microchip.com/16bitCIP

Secure Data
Embedded applications in the internet-connected world demand secure data and long battery life. PIC® MCUs ensure data integrity without sacrificing power consumption through an integrated hardware crypto engine, random number generator for unique key creation and secure key storage for applications such as IoT sensor nodes and access control systems. www.microchip.com/lowpowercrypto

Driving Displays and Touch
For applications that need compelling and intuitive user interfaces, our portfolio includes devices with integrated low-power segmented LCD drivers or colorful graphical display drivers with hardware acceleration. Additionally, Microchip offers a broad portfolio of touch solutions for resistive and projected capacitive applications that make it easy for you to integrate touch-sensing interfaces. These hardware peripherals are supported by free software libraries to quickly integrate the touch and display functions into your application with a single MCU. www.microchip.com/graphics www.microchip.com/LCD www.microchip.com/touch

Easy Connectivity
Whether you are considering adding wired or wireless connectivity to your application, Microchip supports a wide variety of communication protocols. It’s easy to couple the PIC24 or dsPIC33 devices with Microchip's certified Bluetooth®, Wi-Fi and LoRa® modules. Peripherals for CAN, LIN, SENT and USB are integrated onto our 16-bit devices with supporting free software libraries. www.microchip.com/connectivity

Advanced Motor Control
The dsPIC33 motor control families feature a high-performance core with specialized motor control peripherals. The devices are supported with free software libraries and motor control algorithms. Our flexible motor control development boards support a wide variety of motors and help reduce development time. www.microchip.com/motor

Efficiency for Digital Power and Lighting
The dsPIC33 “GS” DSC family is optimized for high performance on advanced algorithms for improved efficiency over widely varying load conditions. These devices feature dedicated peripherals such as fast ADCs and PWMs for digital power conversion and LED or HID lighting applications. www.microchip.com/power

System Level Integration
PIC24 MCUs and dsPIC33 DSCs operate up to 5V for increased noise immunity and robustness. Additionally, some devices are rated for operation up to 125°C or 150°C ambient temperature for the most extreme automotive and industrial applications, including AEC-Q100 Grade 0 qualification. For safety-critical applications, the products include memory integrity check and error correction, backup oscillators and fault detection. The certified Class B software stack helps to simplify regulatory compliance. www.microchip.com/hightemp www.microchip.com/16bitFunctionalSafety
eXtreme Low Power (XLP) Technology

Today’s connected applications must consume little power, and in extreme cases, last for over 20 years on a single battery. Microchip’s XLP technology offers the industry’s lowest Run and Sleep currents, ideal for a variety of applications including portable/wearable devices, remote controls, asset tracking, energy monitoring, security systems and IoT sensor nodes.

- Low sleep currents with flexible wake-up sources
- Sleep current down to 10 nA
- Brown-Out Reset (BOR) down to 45 nA
- Real-time clock down to 300 nA
- Battery-friendly features
- Enable battery lifetime greater than 20 years
- Low-power supervisors for safe operation (BOR, WDT)
- V_{BAT} battery back-up
- Automatic switch-over upon loss of V_{DD}
- Maintains Real-Time Clock/Calendar (RTCC) and two user registers
- Powered separately from 1.8–3.6V source (coin cell)
- Efficient instruction set; 90% single-cycle instruction
- Active mode current as low as 150 µA/MHz

XLP Battery Life Estimator

The XLP Battery Life Estimator is a free software utility to aid you in developing low-power applications. The tool estimates average current consumption and battery life. The utility allows you to select the target device, battery type, the application’s operating conditions and model the active and power-down times for your application. Learn more at www.microchip.com/BatteryLifeEstimator.

Application Notes

- AN1861: Bluetooth Smart Communication Using Microchip’s RN4020 Module and 16-bit PIC® MCU
- AN1556: Blood Pressure Meter Design Using Microchip’s PIC24F Microcontroller and Analog Devices
- AN1416: Low Power Design Guide: A Single Source for Low Power Consumption from the Viewpoint of the MCU
- AN1267: eXtreme Low Power (XLP) PIC Microcontrollers: An Introduction to Microchip’s Low-Power Devices

Development Tools

LCD Explorer XLP Development Board (DM240314)
This board showcases the PIC24FJ128GA310 family with segmented LCD driver. The board operates from two AAA batteries and includes circuitry for V_{BAT} battery back-up from a coin cell battery.

Explorer 16/32 Development Board (DM240001-2)
This board is a modular development system supporting PIC24F XLP microcontrollers, providing a perfect platform to prototype applications using several expansion possibilities through its wide ecosystem support.

PIC24F Curiosity Development Board (DM240004)
This is a cost-effective, fully integrated, feature-rich, rapid prototyping board, featuring a PIC24FJ128GA204 XLP MCU. The board serves as a perfect platform to harness the power of 16-bit low-power PIC24F MCUs.

PIC32MM Curiosity Development Board (DM320101)
This board features the new XLP PIC32MM “GPL” family (PIC32MM0064GPL036) of low-cost MCUs and is a simple and easy-to-use platform that facilitates quick evaluation, experimentation and application prototyping.

Featured XLP Products

<table>
<thead>
<tr>
<th>Product</th>
<th>Flash (KB)</th>
<th>Pin Count</th>
<th>Sleep (nA)</th>
<th>WDT (nA)</th>
<th>SOSC/RTCC (nA)</th>
<th>Active (µA/MHz)</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIC24FJ64GB004</td>
<td>32–64</td>
<td>28/44</td>
<td>20</td>
<td>200</td>
<td>500</td>
<td>250</td>
<td>USB</td>
</tr>
<tr>
<td>PIC24FJ128GB204</td>
<td>64–128</td>
<td>28/44</td>
<td>18</td>
<td>240</td>
<td>300</td>
<td>178</td>
<td>Crypto, V_{BAT}</td>
</tr>
<tr>
<td>PIC24FJ128GA310</td>
<td>64–128</td>
<td>64/100</td>
<td>10</td>
<td>270</td>
<td>400</td>
<td>150</td>
<td>LCD, V_{BAT}</td>
</tr>
<tr>
<td>PIC24FJ128GC010</td>
<td>64–128</td>
<td>64/100</td>
<td>75</td>
<td>270</td>
<td>350</td>
<td>178</td>
<td>Adv. Analog, LCD, USB, V_{BAT}</td>
</tr>
<tr>
<td>PIC24FJ256GA705</td>
<td>64–256</td>
<td>28/44/48</td>
<td>190</td>
<td>220</td>
<td>400</td>
<td>190</td>
<td>High integration</td>
</tr>
<tr>
<td>PIC24FJ256BG412</td>
<td>64–256</td>
<td>64/100/121</td>
<td>70</td>
<td>100</td>
<td>175</td>
<td>155</td>
<td>LCD, USB, V_{BAT}, Crypto</td>
</tr>
<tr>
<td>PIC24FJ1024GB610</td>
<td>128–1024</td>
<td>64/100</td>
<td>190</td>
<td>220</td>
<td>300</td>
<td>190</td>
<td>Large memory, USB</td>
</tr>
<tr>
<td>PIC32MM0064GPL064</td>
<td>16–64</td>
<td>20/28/36/40</td>
<td>440</td>
<td>80</td>
<td>400</td>
<td>280</td>
<td>High performance</td>
</tr>
</tbody>
</table>
Core Independent Peripherals (CIPs)
Smartly interconnected CIPs function with near zero latency. By offloading the CPU, low-power CIPs can perform extremely complex tasks, such as cryptography and event monitoring. This allows the CPU to be in low power mode to save energy or perform additional tasks, therefore eliminating the need to migrate to complex and expensive MCUs. Significant BOM cost savings can also be realized by replacing external discrete components with these integrated peripherals.

PIC24FJ256GA705 Family
The PIC24F “GA7” family is our newest member of PIC24F family with XLP specifications and offers the lowest-cost 256 KB Flash memory 16-bit MCUs. These devices enable extremely cost-effective designs for Internet of Things (IoT), portable medical devices and industrial control applications by facilitating developers to cut power consumption, cost and space. The PIC24F “GA7” family features CIPs such as CLC, MCCP and DMA, which allow you to accomplish tasks in hardware while freeing up the CPU to do other tasks or to go to sleep. The new MCUs also feature a robust peripheral set including 12-bit, 200 ksps ADC and range of communication peripherals. For more information visit www.microchip.com/PIC24FJ256GA705.

Migrating to Low-Power 32-bit Families: PIC32MM
Some PIC24 customers are looking to migrate to low-power 32-bit platforms for various reasons including performance, library or toolchain support. Within the PIC MCU ecosystem, the PIC32MM family is our lowest-power and most cost-effective family of 32-bit PIC32 microcontrollers with XLP specifications. This new family bridges the gap between our popular PIC24F XLP and PIC32MX families.

For applications demanding long battery life and smaller form factors, the PIC32MM devices offer sleep modes down to 440 nA and packages as small as 4 × 4 mm. The PIC32MM is the first in the PIC32 portfolio to introduce Microchip’s unique Core Independent Peripherals. Designed to offload the CPU and lower power consumption, these peripherals include a 12-bit ADC, comparators, RTCC, WDT, Configurable Logic Cells, flexible PWMs and timer modules as well as Multiple Output Capture Compare PWMs (MCCPs). With low-power and small-form-factor packages, the PIC32MM is a good fit for various applications, including IoT sensor nodes, connected thermostats and other environmental monitoring devices. The flexible MCCP module helps enable low-cost BLDC motor control applications. The PIC32MM devices are supported by Microchip’s MPLAB Code Configurator (MCC), MPLAB Xpress Cloud-Based IDE and the PIC32MM Curiosity Development Board (DM320101) to help simplify designs. For more information, please visit www.microchip.com/PIC32MM.

Application Notes
• AN2133: Extending PIC MCU Capabilities Using CLC
• AN2152: Applications of the Peripheral Trigger Generator (PTG)
• TB3152: MCCP: Extending the Functionality for Low-Cost Motor Control Applications
• Migrating to the PIC32MM Microcontroller Family

16-bit PIC MCU Peripheral Integration Quick Reference Guide
Looking for a quick way to see which families support which peripherals? Download the 16-bit PIC MCU Peripheral Integration Quick Reference Guide. To download, please visit www.microchip.com/16bitquickreference.

Featured Products with CIPs

<table>
<thead>
<tr>
<th>Product</th>
<th>Core Flash (KB)</th>
<th>Pin Count</th>
<th>Core Independent Peripherals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Engine</td>
<td>LCD MCCP SCCP IC/ OC DMA RTCC CLC Comp. CRC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC24FJ128GB204</td>
<td>16-bit PIC24F 64–128 28/44</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>PIC24FJ256GB412</td>
<td>16-bit PIC24F 64–256 64/100/121</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>PIC24FJ256GA705</td>
<td>16-bit PIC24F 64–256 28/44/48</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>PIC24FJ1024GB610</td>
<td>16-bit PIC24F 128–1024 64/100</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>PIC32MM0064GPL036</td>
<td>32-bit PIC32MM 16–64 20/28/36/40</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Hardware Crypto Engine

For IoT applications, protecting embedded data and extending battery life are a necessity. Microchip’s PIC24F “GB2” and “GB4” families offer an integrated hardware crypto engine along with XLP performance. These devices also feature a True Random Number Generator (RNG) and secure key management for data protection. For connectivity, both families integrate USB and UART with ISO7816 support, facilitating smart card applications. The “GB4” family offers a direct drive LCD module with up to 512 segments.

Key Features

Cryptographic Engine
- AES engine with 128, 192 or 256-bit key
- DES/Triple DES (TDES) engine
- Encryption, decryption and authentication
- RNG for key generation/OTP memory for secure key storage
- Secure RAM for key storage with self destruction on external tamper detection
- Once written, keys cannot be read or overwritten
- CIP – offloads CPU to save power and headroom

eXtreme Low Power Technology
- 18 nA deep sleep, 155 µA/MHz Run
- Enables data integrity at low power
- Vbat allows the device to transition to a backup battery

Connection to USB or Wireless Protocols
- Integrated USB 2.0 device, host, OTG
- Easy connection to certified modules for Wi-Fi, zigbee®, Sub-GHz and Bluetooth Low Energy

Human Interface
- Direct drive segmented LCD with up to 512 segments
- mTouch® capacitive touch sensing capability

Low Profile and Small Footprint
- QFN and uQFN packages

You can add crypto functions in software to any PIC24/dsPIC33 device using the free software found in the Microchip Libraries for Applications (MLA) available at www.microchip.com/MLA.

Application Note
- AN1861: Bluetooth Smart Communication Using Microchip’s RN4020 Module and 16-bit PIC Microcontroller

Target Applications

Industrial
- Access control systems
- Security cameras
- POS terminals
- Smart card readers
- Heat/gas meters
- IoT sensor nodes

Computer
- PC peripherals
- Printers
- Portable accessories

Medical/Fitness
- Wearable fitness
- Handheld devices

Development Tools

PIC24 XLP Bluetooth LE IoT Demo
This demo showcases data security using the integrated crypto engine available on PIC24FJ128GB204 and communicating over Bluetooth LE to an Android™ tablet using the RN4020 to demonstrate basic command and control similar to a simple IoT sensor node. For further details visit: www.microchip.com/PIC24IoTdemo.

PIC24F Curiosity Development Board (DM240004)
This board is a cost-effective, fully integrated, feature-rich, rapid prototyping platform featuring the PIC24FJ128GA204 XLP MCU with an integrated crypto engine for data encryption/decryption and authentication.

Explorer 16/32 Development Board (DM240001-2)
Get the board and choose from a wide variety of PIMs such as:
- PIC24FJ128GB204 Plug-in Module (MA240036)
- PIC24FJ256GB410 Plug-in Module (MA240038)

Industrial
- Access control systems
- Security cameras
- POS terminals
- Smart card readers
- Heat/gas meters
- IoT sensor nodes

Computer
- PC peripherals
- Printers
- Portable accessories

Medical/Fitness
- Wearable fitness
- Handheld devices

Application Note
- AN1861: Bluetooth Smart Communication Using Microchip’s RN4020 Module and 16-bit PIC Microcontroller

Featured Products

<table>
<thead>
<tr>
<th>Product</th>
<th>Flash (KB)</th>
<th>Pins</th>
<th>Crypto Engine</th>
<th>Key Storage</th>
<th>RNG</th>
<th>Tamper Detection</th>
<th>Other Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIC24FJ128GB204</td>
<td>64–128</td>
<td>28–44</td>
<td>AES, DES, TDES</td>
<td>Secure OTP</td>
<td>TRNG</td>
<td>–</td>
<td>USB 2.0 OTG, UART with ISO7816, XLP</td>
</tr>
<tr>
<td>PIC24FJ256GB412</td>
<td>64–256</td>
<td>64–121</td>
<td>AES, DES, TDES</td>
<td>Secure OTP and RAM</td>
<td>TRNG</td>
<td>External physical tamper detect</td>
<td>USB 2.0 OTG, UART with ISO7816, LCD, Dual Partition Flash with Live Update, XLP</td>
</tr>
</tbody>
</table>

www.microchip.com/lowpowercrypto
Display and Touch

Many 16-bit designs incorporate modern user interfaces to increase the usability and functionality of end products. More sophisticated displays and touch interfaces create higher impact designs, yet they must be cost effective and easy to integrate. Microchip’s solutions allow for driving segmented or graphical displays with a single chip and offer integrated peripherals for touch buttons.

Segmented LCD Displays

The PIC24 “GA3”, “GC” and “GB4” families feature integrated segmented display drivers with up to 512 segments. Key advantages include:
- Direct drive of inexpensive, low-power displays
- Drive LCD while conserving power in low-power modes
- Integrated analog for sensor applications like temperature sensing in thermostats
- Integrated touch sensing function for buttons or sliders

Graphical Displays

The PIC24FJ256DA210 family features integrated graphics acceleration and a display controller to directly drive displays up to 4.3” WQVGA with 480 × 272 resolution.
- Dedicated graphics clock for a continuous, flicker-free display
- On-chip display controller provides direct interface to TFT, STN and OLED displays
- Easy to use graphics processing units for hardware acceleration allow for moving and copying rectangles, decompressing images and rendering text without CPU intervention
- Integrated color look-up table and 96 KB frame buffer support up to 8 bpp QVGA with internal memory

Touch Buttons: Keys and Sliders

PIC24 MCUs and dsPIC DSC products include touch sensing capability for implementing keys or sliders as an alternative to traditional push button switches using CVD or CTMU technology. This enables more modern and stylish designs, lower manufacturing costs and increased reliability.
- Longer battery life with eXtreme Low Power MCUs
- Sensing through metal, plastic or glass
- High noise immunity and low emissions
- Free mTouch sensing solutions software library is available as part of legacy MLA software

Development Tools

LCD Explorer XLP Development Board (DM240314)

The LCD Explorer XLP Development Board provides an ideal platform to evaluate a MCU with a × 8 Common LCD driver on a 38 segment × 8 common LCD display.

PIC24FJ256DA210 Development Kit (DV164039)

This kit bundles the PIC24FJ256DA210 Development Board, a 3.2” Truly 240 × 320 TFT Display Board (AC164127-4), three Graphics Display Prototype Boards (AC164139), the MPLAB ICD 3 Debugger (DV164035) and also includes a USB cable and accessories.

Software and Application Notes

Free Microchip Graphics Library

The Microchip Graphics Library is highly modular, easy to use and has an open documented interface for driver or controller support. It is available at www.microchip.com/MLA.
- Pre-made graphics objects, multiple fonts and languages
- User interface for mTouch sensing
- Buttons, charts, check boxes, scroll bars, list boxes, images and basic animation

Visual Graphics Display Designer (SW500190)

Visual Graphics Display Designer (VGDD) by VirtualFab is a powerful visual design tool that provides a quick and easy way of creating Graphical User Interface (GUI) screens. This development environment fully utilizes the Microchip graphics library in MLA as well as Microchip’s graphics development boards.

Application Notes

- AN1428: Segmented LCD Biasing & Contrast Control Methods
- AN1368: Developing Graphics Applications Using an MCU with Integrated Graphics Controllers
- AN1478: mTouch Sensing Solutions Acquisition Methods Capacitive Voltage Divider

www.microchip.com/graphics
Connectivity for PIC24 and dsPIC DSC Families

Connectivity
Whether the application demands wired or wireless connectivity, PIC24 MCUs and dsPIC33 DSCs support a wide variety of communication protocols. These 16-bit devices include a wide range of integrated wired communication peripherals such as CAN, LIN, SENT and USB. It is also easy to couple the devices with Microchip’s Bluetooth, Wi-Fi and LoRa modules for wireless connectivity.

Integrated Wired Communication

CAN
Numerous dsPIC DSCs and PIC24 MCUs include an integrated CAN peripheral which is ideal for applications requiring robust and high-speed communication supporting:
 • CAN 2.0B compliance
 • Vector CANbedded™ and osCAN™ development solutions

SENT
The dsPIC33EV family features SENT for point-to-point transmission of sensor values in automotive applications. Development tools to enable this connectivity in your designs include:
 • dsPIC33EV 5V CAN-LIN Starter Kit (DM330018) supporting CAN, LIN and SENT interfaces
 • CAN/LIN PICtail™ Plus Daughter Board (AC164130-2) for Explorer 16/32 Development Board

PMBus™
The PMBus protocol standard operates over an I2C physical later to enable easy digital management of power supplies. The latest dsPIC33 “GS” family supports the PMBus protocol along with many other dsPIC DSCs and PIC24 MCUs. A PMBus stack is available for free for use with dsPIC DSCs.

LIN
LIN support is integrated into products for low-cost, single-wire serial communication for automotive applications.

IrDA®
The IrDA standard is an inexpensive method for providing wireless point-to-point communication. Microchip’s free IrDA stack is available through Application Note AN1071 for 16-bit MCUs with integrated IrDA support.

USB
There are several PIC24 MCU and dsPIC DSC families with integrated USB which include support for device, host and On-The-Go (OTG) functionality. Development tools include:
 • dsPIC DSC USB Starter Kit (DM330012)
 • Explorer 16/32 Development Board (DM240001-3)
 • Several USB processor plug-in modules

Wireless Communication
Microchip offers a wide range of wireless modules for Wi-Fi, Bluetooth, Bluetooth Low Energy (BLE), LoRa and various personal area networks. These modules allow quick and seamless addition of wireless connectivity to the applications. The certified modules allow you to bypass costly, time-consuming RF design and regulatory certifications to get your designs to market faster. For wireless sensors and battery-operated applications, the PIC24F XLP MCUs are ideal companions to Microchip’s BLE and LoRa modules, creating low-power wireless networks. Together these devices make it easy to add internet connection to your applications.
 • AN1861: Bluetooth Smart Communication Using Microchip’s RN4020 and PIC24F XLP MCU

PIC24 MCUs and dsPIC33 DSCs support a range of wired and wireless communication protocols. Many of these communication libraries, such as USB and Wi-Fi, are integrated into the Microchip Libraries for Applications (MLA) and can be downloaded at www.microchip.com/MLA.
16-bit Motor Control Products
- High-performance dsPIC DSC core with DSP instructions for precise control
 - Variable speed with constant torque using PI controllers
 - Field oriented control (FOC) for greater efficiency
- 5V, 70 MIPS dsPIC DSC core for harsh environments
- High-performance on-chip op amps
- Integrated, high-speed ADC
- Algorithms and application notes for
 - BLDC, PMSM, ACIM
 - Sensorless control
 - Field-oriented control
 - Certified class B safety software
- Dual motor control with FOC control for each motor
- Multiple package options, ranging from 28 to 144 pins
- Scalable motor control tools with low- and high-voltage options
- Motor control PWM: up to 14 outputs
 - Up to seven duty cycle generators
 - Independent or complementary mode
 - Programmable dead time settings
 - Edge- or center-aligned PWMs
 - Manual output override control, up to 10 fault inputs
 - ADC samples triggered by PWM module
- Quadrature Encoder Interface (QEI) module
 - Up to two modules
 - Phase A, Phase B and index pulse input
- High current sink/source

Software and Application Notes

<table>
<thead>
<tr>
<th>Motor Type</th>
<th>Algorithm</th>
<th>App Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stepper Motor</td>
<td>Closed-Loop Microstepping</td>
<td>AN1307</td>
</tr>
<tr>
<td></td>
<td>Sensored</td>
<td>AN957</td>
</tr>
<tr>
<td></td>
<td>Sensored Sinusoidal</td>
<td>AN1017</td>
</tr>
<tr>
<td></td>
<td>Sensorless BEMF</td>
<td>AN901</td>
</tr>
<tr>
<td></td>
<td>Sensorless BEMF with Majority Detect</td>
<td>AN992</td>
</tr>
<tr>
<td>BLDC and PMSM</td>
<td>Sensorless Dual-Shunt FOC with SMO Estimator and Field Weakening</td>
<td>AN1078</td>
</tr>
<tr>
<td></td>
<td>Sensorless Dual-Shunt FOC with SMO and PFC</td>
<td>AN1208</td>
</tr>
<tr>
<td></td>
<td>Sensorless Dual-Shunt FOC with PLL Estimator and Field Weakening</td>
<td>AN1292</td>
</tr>
<tr>
<td></td>
<td>Sensorless Single-Shunt FOC with SMO Estimator and Field Weakening</td>
<td>AN1299</td>
</tr>
<tr>
<td>AC Induction Motor</td>
<td>Open-Loop V/F</td>
<td>AN984</td>
</tr>
<tr>
<td></td>
<td>Closed-Loop Vector Control</td>
<td>AN980</td>
</tr>
<tr>
<td></td>
<td>Sensorless Dual-Shunt FOC with PLL Estimator</td>
<td>AN1162</td>
</tr>
<tr>
<td></td>
<td>Sensorless Dual-Shunt FOC with PLL Estimator and Field Weakening</td>
<td>AN1206</td>
</tr>
<tr>
<td>Other</td>
<td>PFC</td>
<td>AN1106</td>
</tr>
<tr>
<td></td>
<td>Class B Safety Software (IEC 60730)</td>
<td>AN1229</td>
</tr>
<tr>
<td></td>
<td>Motor Control Sensor Feedback Circuits</td>
<td>AN894</td>
</tr>
<tr>
<td></td>
<td>MOSFET Driver Selection</td>
<td>AN898</td>
</tr>
<tr>
<td></td>
<td>Current Sensing Circuit Concepts and Fundamentals</td>
<td>AN1332</td>
</tr>
</tbody>
</table>

Featured Motor Control Products

<table>
<thead>
<tr>
<th>Product</th>
<th>Operating Voltage (V)</th>
<th>MIPS</th>
<th>Pins</th>
<th>Flash (KB)</th>
<th>RAM (KB)</th>
<th>DMA Ch.</th>
<th>Input Capture</th>
<th>Output Compare/Std. PWM</th>
<th>MC PWM</th>
<th>QEI</th>
<th>Internal Op Amps</th>
<th>ADC 10-bit, 1.1 MSPS</th>
<th>UART</th>
</tr>
</thead>
<tbody>
<tr>
<td>dsPIC33EP512GM710</td>
<td>3.3</td>
<td>70</td>
<td>100/121</td>
<td>128–512</td>
<td>16–48</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>12 ch</td>
<td>2</td>
<td>4</td>
<td>2/49 ch</td>
<td>4</td>
</tr>
<tr>
<td>dsPIC33EP512GM906</td>
<td>3.3</td>
<td>70</td>
<td>64</td>
<td>128–512</td>
<td>16–48</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>12 ch</td>
<td>2</td>
<td>4</td>
<td>2/30 ch</td>
<td>4</td>
</tr>
<tr>
<td>dsPIC33EP512GM604</td>
<td>3.3</td>
<td>70</td>
<td>44</td>
<td>128–512</td>
<td>16–48</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>12 ch</td>
<td>2</td>
<td>4</td>
<td>2/18 ch</td>
<td>4</td>
</tr>
<tr>
<td>dsPIC33EP512MC506</td>
<td>3.3</td>
<td>70</td>
<td>64</td>
<td>32–512</td>
<td>4–48</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>6 ch</td>
<td>1</td>
<td>3</td>
<td>1/16 ch</td>
<td>2</td>
</tr>
<tr>
<td>dsPIC33EP512MC504</td>
<td>3.3</td>
<td>70</td>
<td>44</td>
<td>32–512</td>
<td>4–48</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>6 ch</td>
<td>1</td>
<td>3</td>
<td>1/9 ch</td>
<td>2</td>
</tr>
<tr>
<td>dsPIC33EP512MC502</td>
<td>3.3</td>
<td>70</td>
<td>28</td>
<td>32–512</td>
<td>4–48</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>6 ch</td>
<td>1</td>
<td>3</td>
<td>1/6 ch</td>
<td>2</td>
</tr>
<tr>
<td>dsPIC33EV256MC106</td>
<td>5</td>
<td>70</td>
<td>64</td>
<td>32–256</td>
<td>4–16</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>6 ch</td>
<td>0</td>
<td>4</td>
<td>1/36 ch</td>
<td>2</td>
</tr>
<tr>
<td>dsPIC33EV256MC104</td>
<td>5</td>
<td>70</td>
<td>44</td>
<td>32–256</td>
<td>4–16</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>6 ch</td>
<td>0</td>
<td>4</td>
<td>1/24 ch</td>
<td>2</td>
</tr>
<tr>
<td>dsPIC33EV256MC102</td>
<td>5</td>
<td>70</td>
<td>28</td>
<td>32–256</td>
<td>4–16</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>6 ch</td>
<td>0</td>
<td>3</td>
<td>1/11 ch</td>
<td>2</td>
</tr>
</tbody>
</table>
Motor Control Development Solutions

Software Library
Motor Control Library for dsPIC33F/dsPIC33E
This library contains function blocks that are optimized for the dsPIC33F and dsPIC33E DSC families. All functions in this Motor Control Library have input(s) and output(s), but do not access any of the DSC peripherals. The library functions are designed to be used within an application framework for realizing an efficient and flexible way of implementing a motor control application.

motorBench™ Development Suite
The motorBench Development Suite is an advanced GUI-based software development tool for motor control capable of performing accurate measurement of critical motor parameters and automatic tuning of feedback control gains for dsPIC33EP DSCs. For information, visit www.microchip.com/motorBench.

Motors
You can provide your own motor or purchase one of the motors used in our Application Notes which are guaranteed to run right out of the box:
- AC300020: 24V BLDC Motor
- AC300022: 24V BLDC Motor with Shaft Encoder
- AC300023: 220V, AC Induction Motor

Hardware Development Boards

Motor Control Starter Kit (MCSK) (DM330015)
This starter kit with mTouch sensing is a complete, integrated development platform based on the dsPIC33FJ16MC102. It includes a USB interfaced debugger/programmer, a complete drive circuit, an on-board BLDC motor, a user-configurable switch and an mTouch sensing slider with LED indicators for speed control.

dsPICDEM™ MCLV-2 Development Board (DM330021-2)
This board provides a cost-effective method of evaluating and developing sensed or sensorless BLDC motor and PMSM control applications. It supports Microchip’s 100-pin PIM with dsPIC33E or dsPIC33F DSCs and internal, on-chip op amps found on certain dsPIC DSCs or the external op amps found on the MCLV-2 board. A dsPIC33EP256MC506 Internal Op Amp PIM (MA330031) is included. The board is capable of controlling motors rated up to 48V and 15A, with multiple communication channels.

dsPICDEM MCHV-2 Development System (DM330023-2)
This high-voltage development system is targeted to control BLDC motors, PMSM and AC Induction Motors (ACIM) in sensor or sensorless operation. The rated continuous output current from the inverter is 6.5 A (RMS), allowing up to approximately 2 kVA output when running from a 208V to 230V single-phase input voltage.

Low-Voltage Motor Control Development Bundle (DV330100)
This bundle provides a cost-effective method of evaluating and developing dual/single motor control to drive BLDC motors or PMSMs concurrently or one of each. The dsPIC DSC Signal Board supports both 3.3V and 5V operated devices for various applications and frequently used human interface features along with the communication ports. The Motor Control 10–24V Driver Board (Dual/Single) supports currents up to 10A.

Simulink Tools
- Motor Control Library Blockset
 - Simulation blocks and code generation for motor control algorithms.
- 16-bit Device Blocks for Simulink
 - Code generation blocks for dsPIC33 peripherals
- PMSM Simulink Motor Model
 - Used to simulate PMSMs in Simulink

Development with Simulink®
Microchip offers a rapid prototyping solution that allows compiling and flashing a Simulink model of a motor control system into a dsPIC DSC with a single push of a button. The Simulink blocksets and models are supported by Microchip’s devices and development boards for a complete hardware and software motor control solution. Together this will make prototyping your next motor control design easier. Follow these steps to simplify your motor control development:
1. Have MPLAB X IDE and Simulink tools on your computer
2. Build your Simulink model using Microchip’s Simulink tools
3. Generate code using the Simulink embedded code generator and MATLAB plug-in for MPLAB X IDE
4. Compile the MPLAB X IDE project and load code onto target motor control development board
5. Connect your board to your motor
6. Run your code to spin the motor

For further information, visit www.microchip.com/simplified.
16-bit Digital Power and Lighting Products

- Streamlined interoperation between PWM, ADC and CPU
- High-performance core with DSP instructions
 - High-speed control loop execution for demanding power conversion applications
 - Fast and predictable interrupts
- High-resolution PWMs for digital power
 - 1 ns for duty cycle, phase shift, period and dead time
 - Flexibility to control numerous power topologies
- Live update features
 - Update all of the firmware in an operating power supply while maintaining continuous regulation
- Very fast ADCs optimized for digital power applications
- Complete reference designs and algorithms including:
 - AC/DC converter meeting platinum specification
 - LLC resonant DC/DC converter
 - Quarter brick DC/DC converter
 - Solar micro inverter
 - Interleaved power factor correction
 - Offline UPS
- Broad range of package sizes and types
 - 18–100 pins, as small as 4 x 4 mm
 - Robust packages to ease IPC-9592B qualification

Software and Application Notes

<table>
<thead>
<tr>
<th>Application Solution</th>
<th>AN #</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Factor Correction in Power Conversion Applications Using the dsPIC® DSC</td>
<td>AN1106</td>
<td>This application note focuses primarily on the study, design and implementation of Power Factor Correction (PFC) using a Digital Signal Controller (DSC).</td>
</tr>
<tr>
<td>Switch Mode Power Supply (SMPS) Topologies (Part I)</td>
<td>AN1114</td>
<td>This application note explains the basics of different types of SMPS topologies and their applications. The pros and cons of different SMPS topologies are also explained to guide the user to select an appropriate topology for a given application, while providing useful information regarding selection of components for a given SMPS design.</td>
</tr>
<tr>
<td>Switch Mode Power Supply (SMPS) Topologies (Part II)</td>
<td>AN1207</td>
<td>This application note is the second of a two-part series on Switch Mode Power Supply (SMPS) topologies. This series expands on the previous material in Part I, and presents the basic tools needed to design a power converter.</td>
</tr>
<tr>
<td>Offline UPS Reference Design</td>
<td>AN1279</td>
<td>The application note describes the design of an Offline Uninterruptible Power Supply (UPS) using a Switch Mode Power Supply (SMPS) dsPIC Digital Signal Controller (DSC).</td>
</tr>
<tr>
<td>Digital Power Interleaved PFC Reference Design</td>
<td>AN1278</td>
<td>The application note describes the design of a Digital Power Interleaved PFC (IPFC) using a Switch Mode Power Supply (SMPS) dsPIC Digital Signal Controller (DSC).</td>
</tr>
<tr>
<td>Quarter Brick DC-DC Reference Design</td>
<td>AN1335</td>
<td>This application note describes the design of Quarter Brick DC-DC Reference Design using Switch Mode Power Supply (SMPS) dsPIC Digital Signal Controller (DSC).</td>
</tr>
<tr>
<td>DC-DC LLC Resonant Converter Reference Design</td>
<td>AN1336</td>
<td>This application note describes the design of DC-DC LLC Resonant Converter Reference Design using Switch Mode Power Supply (SMPS) dsPIC Digital Signal Controller (DSC).</td>
</tr>
<tr>
<td>Grid Connected Solar Microinverter</td>
<td>AN1338</td>
<td>This application note describes the design of Grid Connected Solar Microinverter Reference Design using Switch Mode Power Supply (SMPS) dsPIC Digital Signal Controller (DSC).</td>
</tr>
<tr>
<td>Platinum-rated AC/DC Reference Design Using the dsPIC DSC</td>
<td>AN1421</td>
<td>This application note presents a fully digital-controlled 720W AC-to-DC (AC/DC) power supply, which meets all CSCI Platinum Specifications, as well as provides a variety of additional, application-specific features and functions.</td>
</tr>
</tbody>
</table>

Featured Digital Power Products

<table>
<thead>
<tr>
<th>Product</th>
<th>Pins</th>
<th>Flash (KB)</th>
<th>RAM (Bytes)</th>
<th>IC/OC</th>
<th>PS PWM</th>
<th>ADC</th>
<th>Analog Amps</th>
<th>Analog Compare</th>
<th>UART/PC/SPI</th>
<th>CAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>dsPIC33EP128GS808</td>
<td>80</td>
<td>128</td>
<td>8</td>
<td>4/4</td>
<td>16</td>
<td>22 x 12-bit, 5 S/H</td>
<td>2</td>
<td>4</td>
<td>2/2/3</td>
<td>2</td>
</tr>
<tr>
<td>dsPIC33FJ64GS610</td>
<td>100</td>
<td>64</td>
<td>9 K</td>
<td>4/4</td>
<td>18</td>
<td>24 x 10-bit, 6 S/H</td>
<td>0</td>
<td>4</td>
<td>2/2/2</td>
<td>1</td>
</tr>
<tr>
<td>dsPIC33EP64GS506</td>
<td>64</td>
<td>64</td>
<td>8 K</td>
<td>4/4</td>
<td>10</td>
<td>22 x 12-bit, 5 S/H</td>
<td>2</td>
<td>4</td>
<td>2/2/2</td>
<td>0</td>
</tr>
<tr>
<td>dsPIC33FJ16GS504</td>
<td>44</td>
<td>16</td>
<td>2 K</td>
<td>4/4</td>
<td>8</td>
<td>12 x 10-bit, 6 S/H</td>
<td>0</td>
<td>4</td>
<td>1/1/1</td>
<td>0</td>
</tr>
<tr>
<td>dsPIC33EP32GS504</td>
<td>44</td>
<td>32</td>
<td>4 K</td>
<td>4/4</td>
<td>10</td>
<td>19 x 12-bit, 5 S/H</td>
<td>2</td>
<td>4</td>
<td>2/2/2</td>
<td>0</td>
</tr>
<tr>
<td>dsPIC33FJ09GS302</td>
<td>28/36</td>
<td>9</td>
<td>1 K</td>
<td>1/1</td>
<td>6</td>
<td>8 x 10-bit, 3 S/H</td>
<td>0</td>
<td>2</td>
<td>1/1/1</td>
<td>0</td>
</tr>
<tr>
<td>dsPIC33EP64GS502</td>
<td>28</td>
<td>64</td>
<td>8 K</td>
<td>4/4</td>
<td>10</td>
<td>12 x 12-bit, 5 S/H</td>
<td>2</td>
<td>4</td>
<td>2/2/2</td>
<td>0</td>
</tr>
<tr>
<td>dsPIC33EP32GS202</td>
<td>28</td>
<td>16</td>
<td>2 K</td>
<td>4/4</td>
<td>8</td>
<td>12 x 12-bit, 3 S/H</td>
<td>2</td>
<td>2</td>
<td>1/1/1</td>
<td>0</td>
</tr>
<tr>
<td>dsPIC33FJ06GS501</td>
<td>18/20</td>
<td>6</td>
<td>256</td>
<td>0/0</td>
<td>4</td>
<td>6 x 10-bit, 2 S/H</td>
<td>0</td>
<td>2</td>
<td>0/1/0</td>
<td>0</td>
</tr>
</tbody>
</table>
Reference Designs

Platinum Rated 720W AC/DC Reference Design
This reference design demonstrates the flexibility of dsPIC DSCs in Switch Mode Power Supplies. This reference design has a peak efficiency of 94.1% and achieves the ENERGY STAR® CSCI Platinum Level. It features a 2-phase interleaved power factor correction boost converter followed by a 2-phase interleaved two-switch forward converter with synchronous rectification.

Quarter Brick DC/DC Converter Reference Design
This reference design provides an easy method to evaluate the performance and features of SMPS DSCs in high-density quarter brick DC-DC converters.

DC/DC LLC Resonant Converter Reference Design
This reference design operates over a wide input voltage range (350–420V DC) with a nominal input of 400V, providing a 12V DC output while maintaining high-voltage isolation between the primary and secondary. This reference design is implemented using a single dsPIC33F “GS” digital power DSC that provides full digital control of the power conversion and system management functions.

Digital Power Interleaved PFC Reference Design
This reference design provides an easy method to evaluate the power and features of the SMPS dsPIC DSCs for IPFC applications. It features a universal input voltage range and produces a single high-voltage DC output up to 350W with low Total Harmonic Distortion (THD) of the input current.

Digital Pure Sine Wave Uninterruptible Power Supply (UPS) Reference Design
This reference design demonstrates how digital power techniques applied to UPS applications enable easy modifications through software and allow for the use of smaller magnetics, higher efficiency and reduction in audible and electrical noise via a purer sine-wave output, USB communication and reduce cost.

Grid Connected Solar Micro Inverter Reference Design
This reference design demonstrates maximum power point tracking for PV panel voltages between 20–45V DC and has a maximum output power of 215 W. High efficiency is achieved by implementing a novel interleaved active-clamp flyback topology with Zero Voltage Switching (ZVS).

Development Boards

MPLAB Starter Kit for Digital Power (DM330017-2)
This kit uses the dsPIC33EP64GS502 DSC to implement a buck converter and a boost converter. Each can drive its on-board MOSFET controlled resistive load or an external load. The board has an LCD for showing voltage, current, temperature and fault conditions, and an integrated programmer/debugger.

Tools and Libraries

Digital Compensator Design Tool (DCDT)
Use this free MPLAB X IDE plug-in to calculate optimum compensator coefficients for maximum performance, with support for five common compensator types. Use this plug-in to analyze system response as well as stability.

SMPS Compensator Library
This library includes optimized functions for the dsPIC33 family of DSCs implementing common compensator algorithms such as 2P2Z, 3P3Z and PID to realize an efficient way of implementing the control of an SMPS application.

The above tools can be downloaded from www.microchip.com/dsPIC33EP-GS.
Easing System Level Integration

Robust 3V Operation
With operating voltages as low as 1.8V and up to 3.6V, PIC24 MCUs and dsPIC33 DSCs ensure robust operation such as:

- POR/BOR/Watchdog Timer (WDT)
- Support for temperatures up to 150°C
- AEC-Q100 Grade 0 qualification for automotive applications

Enhanced Robustness with 5V Operation
Microchip’s PIC24 MCU and dsPIC33 DSC portfolios include families that operate up to 5V for increased noise immunity and robustness. Devices with 5V operation provide more dynamic range for signals and improved sensitivity. The 5V devices include additional features to ensure robust operation such as:

- Backup system oscillator
- Windowed watchdog timer (WWDT)
- PWM with fault detection
- Support for temperatures up to 150°C
- AEC-Q100 Grade 0 qualification for automotive applications

Safety Critical Applications and Class B Certification
PIC24 MCUs and dsPIC33 DSCs include integrated safety features to ease implementation of IEC 60730 compliance for Class B safety.

The CRC provides a memory integrity check and devices also include memory error correction. In addition, dsPIC33 devices with Error-Correcting Code (ECC) include 2-bit error detection and single-bit error correction for enhanced reliability, completely transparent and real-time implementation.

The memory also has read/write protection capability to protect sections of memory from code flow changes or interrupt vectors. You can establish zones that have different permissions, and you can define secure areas that should not be entered without the proper permissions.

Products include a backup system oscillator for system redundancy as well as clock-fail detection. A windowed watchdog timer will detect and reset the MCU in event of code execution error, with a dedicated clock source independent of the system clock. A Dead-Man Timer (DMT), clocked from the main system clock, is useful for detecting and recovering software malfunctions. The PWMs include fault detection features and the CPU includes trap instructions and illegal opcode detection.

The UL and VDE certified Class B software stack helps to simplify IEC 60730 regulatory compliance. This library routines integrate into the MCU application to test and verify the critical functionalities without affecting the end application. For more information, visit www.microchip.com/16bitfunctionalsafety.

Robust Package Options for IPC-9592B
Some dsPIC33 “GS” devices are available with robust package options to help with operation in extremely noisy environments. These packages make it easier to achieve IPC-9592B qualification. Options include a 28-pin μQFN (4 x 4 mm) or 28-pin μQFN (6 x 6 mm). These package options are designed to withstand temperature cycling as defined in IPC-9592B with over 700 cycles of −40°C/+125°C on thick high-layer count PCBs.

<table>
<thead>
<tr>
<th>Temperature Ranges</th>
<th>Range</th>
<th>Part Number Suffix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>−40 to 85°C</td>
<td>-I</td>
</tr>
<tr>
<td>Extended</td>
<td>−40 to 125°C</td>
<td>-E</td>
</tr>
<tr>
<td>High</td>
<td>−40 to 150°C</td>
<td>-H</td>
</tr>
</tbody>
</table>
Development and Evaluation Tools

A variety of hardware development boards are available for the PIC24 and dsPIC33 products, enabling you to shorten your design cycle and quickly develop prototypes. These boards are designed to allow easy connectivity to an MPLAB ICD 3 In-Circuit Debugger, MPLAB REAL ICE In-Circuit Emulator or MPLAB PM3 device programmer. Several boards also include integrated debugger and programmers. When combined with the MPLAB X IDE and the MPLAB XC16 Compiler, these development boards and starter kits allow you to quickly gain knowledge and experience using Microchip’s 16-bit MCU and dsPIC DSC products.

<table>
<thead>
<tr>
<th>Photo</th>
<th>Tool</th>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Explorer 16/32 Development Board</td>
<td>DM240001-2 (stand-alone board) DM240001-3 (board with PIMs and cables)</td>
<td>The new Explorer 16/32 Development Board is a modular development system supporting PIC24, dsPIC33 and PIC32 devices. The board comes with several new features including an integrated programmer/debugger, on-board USB communication and USB-to-serial communication bridge. The board’s wide ecosystem includes mikroBUS™, Pmod and PICtail™ Plus interfaces that support Click™ boards, Pmod boards and PICtail Plus daughter cards. Full documentation is available at www.microchip.com/Explorer1632.</td>
</tr>
<tr>
<td></td>
<td>PIC24F Curiosity Development Board</td>
<td>DM240004</td>
<td>The PIC24F Curiosity Development Board is a cost-effective, fully integrated, feature-rich, rapid prototyping platform featuring the PIC24FJ128GA204 XLP MCU. The board serves as the perfect platform to harness the power of 16-bit PIC24 MCUs.</td>
</tr>
<tr>
<td></td>
<td>PIC32MM Curiosity Development Board</td>
<td>DM320101</td>
<td>The PIC32MM Curiosity Development Board features the XLP PIC32MM “GPL” family (PIC32MM0064GPL036) of low-cost MCUs. This board is a simple and easy-to-use platform that facilitates quick evaluation, experimentation and prototyping. The board also includes an integrated programmer/debugger and offers seamless integration with MPLAB® X IDE and MPLAB Code Configurator for easy set up and development.</td>
</tr>
<tr>
<td></td>
<td>Intelligent Analog PIC24 Starter Kit</td>
<td>DM240015</td>
<td>This starter kit features the PIC24FJ128GC010 family with advanced integrated analog peripherals. The board includes an analog header, allowing clean signals to be accessed for easy prototyping. The board also includes sensors for light, touch and temperature as well as USB, potentiometer, microphone and headphone interface. Comprehensive demos are included as well as integrated programmer and debugger.</td>
</tr>
<tr>
<td></td>
<td>LCD Explorer XLP Development Board</td>
<td>DM240314</td>
<td>This development board supports 100-pin PIC® MCUs with eight common segmented LCD drivers. It ships with the PIC24FJ128GA310 and other families can be evaluated with different processor PIMs. In addition to the display, the board includes a PICtail Plus connector for daughter cards. It can be powered from USB, battery or 9V power supply, and includes VBAT battery back-up.</td>
</tr>
<tr>
<td></td>
<td>dsPIC33EV 5V CAN-LIN Starter Kit</td>
<td>DM330018</td>
<td>This USB-powered starter kit features the dsPIC33EV256GM106 with connections for CAN, LIN and SENT, as well as integrated programmer and debugger.</td>
</tr>
<tr>
<td></td>
<td>dsPIC33E USB Starter Kit</td>
<td>DM330012</td>
<td>This starter kit includes integrated programmer and debugger and expansion capability with the Multimedia Expansion Board or I/O Expansion Board. It comes with preloaded demonstration software to allow you to explore the features of the dsPIC33E DSC family including USB communication.</td>
</tr>
<tr>
<td></td>
<td>Motor Control Starter Kit</td>
<td>DM330015</td>
<td>This board includes a small 3-phase BLDC motor driven by dsPIC33FJ16MC102 motor control device and integrated programmer and debugger, powered by 9V power supply. This is a low-cost way to evaluate the motor control features on the dsPIC33 family and comes with full source code based on Application Note AN1160: Sensorless BLDC Control with Back-EMF Filtering Using a Majority Function.</td>
</tr>
<tr>
<td></td>
<td>Digital Power Starter Kit</td>
<td>DM330017-2</td>
<td>This board includes the dsPIC33EP64GS502 digital power conversion device to implement a DC/DC synchronous buck converter power stage and boost converter power stage. Each power stage includes a MOSFET controlled 5 W resistive load. The board includes a display for voltage, current, temperature and fault conditions and integrated programmer and debugger, all powered by 9V power supply.</td>
</tr>
<tr>
<td></td>
<td>Graphics PIC24FJ256DA210 Development Board</td>
<td>DM240312</td>
<td>This graphics development board is for developing colorful graphics displays with the PIC24FJ256DA210 family. The board includes touch pads, USB and a PICtail Plus connector for daughter cards. Match this board with your desired display size; it easily connects to the 3.2" Truly TFT Display (AC164127-4) or 4.3" Powertip TFT Display (AC164127-6) or Display Prototype Board (AC164139).</td>
</tr>
</tbody>
</table>
Software Libraries and Tools

Software libraries, code examples and application notes are available to support the PIC24 MCUs and dsPIC33 DSCs. The table below includes some of the most popular software libraries and tools that help you jump start your application development.

<table>
<thead>
<tr>
<th>Software</th>
<th>Description</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>16-bit CPU Self-Test Library</td>
<td>The 16-bit CPU Self-Test Library allows you to verify during run-time, that all CPU core features are functioning correctly.</td>
<td>www.microchip.com/libraries</td>
</tr>
<tr>
<td>Bootloaders</td>
<td>Several application notes and code examples exist to help with your bootloader applications.</td>
<td>www.microchip.com/ezbl</td>
</tr>
<tr>
<td></td>
<td>• Easy Bootloader for PIC24 and dsPIC33 (EZBL) software library and example projects for UART and I²C</td>
<td>AN1094 AN1157 CE417</td>
</tr>
<tr>
<td></td>
<td>• AN1094 describes UART-based bootloader with command line interface for dsPIC30F, dsPIC33F and PIC24FJ and PIC24H</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• AN1157 describes PIC24F family and includes a GUI for quick programming</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• CE417 code example for dsPIC33EP with aux Flash</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• USB bootloader included in the MLA USB stack</td>
<td></td>
</tr>
<tr>
<td>Class B Safety Software Library</td>
<td>Microchip has developed a library of low-level software routines that simplify meeting IEC 60730 requirements for Class B safety. Includes CPU register test, program counter test, variable memory test, Flash memory test and clock test. Certified by VBE.</td>
<td>www.microchip.com/16bitfunctionalsafety AN1778</td>
</tr>
<tr>
<td>Code Examples</td>
<td>Hundreds of code examples to help you set-up peripherals and functions, sorted by product family:</td>
<td>www.microchip.com/codeexamples</td>
</tr>
<tr>
<td></td>
<td>• PIC24E and dsPIC33E code examples = CE4XX</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• PIC24F code examples = CE5XX</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• PIC24H code examples = CE6XX</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• dsPIC33F code examples = CE7XX</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• dsPIC30 code examples = CE0XX</td>
<td></td>
</tr>
<tr>
<td>Data EEPROM Emulation</td>
<td>For devices that do not have on-chip EEPROM, this algorithm increases endurance when emulating EEPROM with an on-chip Flash memory.</td>
<td>AN1095</td>
</tr>
<tr>
<td>Digital Filter Design</td>
<td>The Digital Filter Design Tool makes designing and analyzing FIR and IIR filters easy. When the user enters frequency specifications, the tool automatically generates the filter code and coefficients. Graphical output windows provide the desired filter's characteristics.</td>
<td>www.microchip.com/ SW300001</td>
</tr>
<tr>
<td>Digital Power</td>
<td>Several software libraries and tools are available for digital power applications.</td>
<td>www.microchip.com/dcdt</td>
</tr>
<tr>
<td></td>
<td>• Includes Digital Power Compensator Libraries, optimized for dsPIC33 “GS” devices</td>
<td>www.microchip.com/power</td>
</tr>
<tr>
<td></td>
<td>• Digital Compensation Design Tool (DCDT) helps calculate compensator coefficients for maximum performance</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• PMBus™ stack implements the PMBus protocol over I²C communication interface</td>
<td></td>
</tr>
<tr>
<td>Code Examples</td>
<td>Hundreds of code examples to help you set-up peripherals and functions, sorted by product family:</td>
<td>www.microchip.com/codeexamples</td>
</tr>
<tr>
<td>Code Examples</td>
<td>Code Examples</td>
<td></td>
</tr>
<tr>
<td>Code Examples</td>
<td>Hundreds of code examples to help you set-up peripherals and functions, sorted by product family:</td>
<td>www.microchip.com/codeexamples</td>
</tr>
<tr>
<td>Code Examples</td>
<td>• PIC24E and dsPIC33E code examples = CE4XX</td>
<td></td>
</tr>
<tr>
<td>Code Examples</td>
<td>• PIC24F code examples = CE5XX</td>
<td></td>
</tr>
<tr>
<td>Code Examples</td>
<td>• PIC24H code examples = CE6XX</td>
<td></td>
</tr>
<tr>
<td>Code Examples</td>
<td>• dsPIC33F code examples = CE7XX</td>
<td></td>
</tr>
<tr>
<td>Code Examples</td>
<td>• dsPIC30 code examples = CE0XX</td>
<td></td>
</tr>
<tr>
<td>Embedded Code Source</td>
<td>Embedded Code Source is a collection of code, tools and utilities from Microchip and third party developers to help speed your design.</td>
<td>www.embeddedcodesource.com</td>
</tr>
<tr>
<td>Fixed Point Math Library for PIC24 MCUs and dsPIC® DSCs</td>
<td>This software library provides a set of speed-optimized functions for the most common digital signal processing applications. The I/O math library includes over 65 general-purpose functions composed of 28 functions support Q15 math and 37 functions supporting Q16 math.</td>
<td>www.microchip.com/libraries</td>
</tr>
<tr>
<td>Floating Point Math Library for PIC24 MCUs and dsPIC DSCs</td>
<td>The IEEE-754-Compliant Floating Point Math Library is the compiled version of the math library that is distributed with the XC16 Compiler. It contains advanced single- and double-precision floating-point arithmetic and trigonometric functions from the standard C header file "math.h".</td>
<td>www.microchip.com/libraries</td>
</tr>
<tr>
<td>Motor Control</td>
<td>This library includes the Motor Control Library for 3-phase control as well as MATLAB Simulink® Blockset and motor models, tuning guides, application notes and code examples.</td>
<td>www.microchip.com/motor</td>
</tr>
<tr>
<td>motorBench™ Development Suite</td>
<td>This tool identifies the electrical and mechanical parameters of a motor and then automatically tunes the current and speed control loops. Version 1.0 works with:</td>
<td>www.microchip.com/motorBench</td>
</tr>
<tr>
<td></td>
<td>• Low-voltage development board (MCLV-2; DM330021-2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Permanent magnet synchronous motor (AC300022)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lookout for future releases supporting additional development boards and motors.</td>
<td></td>
</tr>
<tr>
<td>Microchip Libraries for Applications (MLA)</td>
<td>MLA includes source code, drivers, demos, documentation and utilities. All PIC24 MCUs and dsPIC33 DSCs are supported.</td>
<td>www.microchip.com/mla</td>
</tr>
<tr>
<td></td>
<td>• USB – including device, host and OTG support</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Graphics – including pre-made graphics objects, fonts, languages, images and display drivers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• File I/O Memory Disk Drive – shares portable memory devices between embedded system and PC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Crypto Software – including AES, DES, 3DES, MD5, SHA-1, SHA-2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Smart Card</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• MII/MI™ Wireless Networking Protocol</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• TCP/IP for Wi-Fi®</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Legacy versions of MLA are archived and also include support for TCP/IP with Ethernet, touch or accessory framework for Android™.</td>
<td></td>
</tr>
</tbody>
</table>
| XLP Battery Life Estimator | This library estimates average current consumption and battery life. The utility allows users to select the target device, battery type, the application's operating conditions (such as voltage and temperature) and model the active and power-down times for their applications. | www.microchip.com/xlp}
Microchip’s Development Ecosystem

MPLAB X IDE

Universal and Integrated Tool Set

MPLAB X IDE is a single, universal graphical user interface for Microchip and third-party software and hardware development tools. It is the industry’s only IDE to support an entire portfolio of 8-bit, 16-bit and 32-bit PIC MCUs, dsPIC DSCs and memory devices.

Powerful Yet User-Friendly Interface

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code-completion, context menus and a task navigator, MPLAB X IDE is flexible and friendly enough for new users.

Open-Source Platform

Based on the NetBeans™ Platform, MPLAB X IDE supports a host of free software components and plug-ins from the NetBeans community for high-performance application development customized to your needs.

Cross-Platform

You can run your favorite toolset and develop your next embedded application on Windows®, Linux® or Mac OS® X.

MPLAB Xpress: Cloud-Based IDE

MPLAB Xpress Cloud-Based IDE is a free online development environment that contains the most popular features of our award-winning MPLAB X IDE. This simplified and distilled application is a faithful reproduction of our desktop-based program, which allows you to easily transition between the two environments. MPLAB Xpress is a perfect starting point for new users of PIC MCUs—no downloads, no machine configuration and no waiting to get started on your system development.

To learn further and start using the IDE in your designs, visit www.microchip.com/Xpress.

- MPLAB Code Configurator: GUI-based code generation
- Library of Microchip-validated code examples to get you started
- Integrated MPLAB XC 16 Compiler
- MPLAB Xpress Community to share code, ideas, and knowledge
- Support for PICkit™ 3
- Supporting all PIC24F and dsPIC33EP devices

MPLAB Code Configurator (MCC)

The MPLAB Code Configurator is a free graphical programming environment that generates seamless, easy-to-understand C code that is inserted into your project. Using an intuitive interface it enables and configures a rich set of peripherals and functions. It is integrated into MPLAB X IDE to provide a powerful and easy-to-use development platform. MCC supports 8-, 16- and 32-bit PIC MCUs, including PIC24 and dsPIC33 families. New products are supported in every release. MCC offers a simple graphical representation of the selected microcontroller allowing designers to quickly configure the peripherals and pins. MCC generates function and peripheral drivers in seamless easy-to-understand C code for flexibility and portability. MCC supports independent library, device and module development. Devices, off-chip peripherals and libraries can now be independently developed and added to MCC at any point of time during product design cycle based on the need and facilitates easy upgradability. For more information, please visit www.microchip.com/mcc.

MPLAB XC16 Compiler for PIC24 MCUs and dsPIC DSCs

The MPLAB XC16 Compiler includes a complete ANSI C standard library, including string manipulation, dynamic memory allocation, data conversion, timekeeping and math libraries with a a powerful code optimizer. Other 16-bit MCU compilers generate as much as 165% larger code for the same application. The assembler comes with the MPLAB XC Compiler and may be used with the compiler or as an assembler. It is a full-featured macro assembler. User-defined macros, conditional assembly and a variety of assembler directives make the assembler a powerful code generation tool.
<table>
<thead>
<tr>
<th>Features</th>
<th>PIC24 Families</th>
<th>dsPIC® DSC Families</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Low cost, lowest power, general purpose</td>
<td>High performance, general purpose and motor control</td>
</tr>
<tr>
<td>Performance, Pins and Memory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIPS</td>
<td>16 MIPS</td>
<td>40 MIPS</td>
</tr>
<tr>
<td>Pins</td>
<td>14–121</td>
<td>18–100</td>
</tr>
<tr>
<td>Flash Memory (KB)</td>
<td>4–1024</td>
<td>12–256</td>
</tr>
<tr>
<td>SRAM (KB)</td>
<td>0.5–96</td>
<td>1–16</td>
</tr>
<tr>
<td>DMA</td>
<td>ü ü ü ü ü ü</td>
<td></td>
</tr>
<tr>
<td>Integrated Analog</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADC</td>
<td>10-bit @ 500 kbps</td>
<td>10-bit @ 1100 kbps</td>
</tr>
<tr>
<td>DAC</td>
<td>ü ü ü ü ü ü</td>
<td></td>
</tr>
<tr>
<td>Comparators</td>
<td>ü ü ü ü ü ü</td>
<td></td>
</tr>
<tr>
<td>Op Amps and PGAs</td>
<td>ü ü ü ü ü ü</td>
<td></td>
</tr>
<tr>
<td>Wired Communications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UART with LIN and IrDA®</td>
<td>ü ü ü ü ü ü</td>
<td></td>
</tr>
<tr>
<td>SPI</td>
<td>ü ü ü ü ü ü</td>
<td></td>
</tr>
<tr>
<td>I²C</td>
<td>ü ü ü ü ü ü</td>
<td></td>
</tr>
<tr>
<td>USB - Device, Host, OTG</td>
<td>ü ü ü ü ü ü</td>
<td></td>
</tr>
<tr>
<td>CAN</td>
<td>– – ü ü ü ü</td>
<td></td>
</tr>
<tr>
<td>SENT</td>
<td>– – ü ü ü ü</td>
<td></td>
</tr>
<tr>
<td>Parallel Master Port (PMP)</td>
<td>ü ü ü ü ü ü</td>
<td></td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-bit and 32-bit Timers</td>
<td>ü ü ü ü ü ü</td>
<td></td>
</tr>
<tr>
<td>RTCC - Clock, Calendar, Alarm</td>
<td>ü ü ü ü ü ü</td>
<td></td>
</tr>
<tr>
<td>Waveform Control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Capture</td>
<td>ü ü ü ü ü ü</td>
<td></td>
</tr>
<tr>
<td>Output Compare</td>
<td>ü ü ü ü ü ü</td>
<td></td>
</tr>
<tr>
<td>16-bit PWM</td>
<td>ü ü ü ü ü ü</td>
<td></td>
</tr>
<tr>
<td>Multiple-Output Capture Compare PWM (MCCP) and Single-Outputs CCP (SCCP)</td>
<td>ü ü ü ü ü ü</td>
<td></td>
</tr>
<tr>
<td>Motor Control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor Control PWM with Flexible Modes</td>
<td>ü ü ü ü ü ü</td>
<td></td>
</tr>
<tr>
<td>ADC Triggered by PWM Modules</td>
<td>ü ü ü ü ü ü</td>
<td></td>
</tr>
<tr>
<td>Quadrature Encoder Interface (QEI)</td>
<td>– – ü ü ü ü</td>
<td></td>
</tr>
<tr>
<td>Digital Power</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADCs with Multi-Million sps</td>
<td>– – – – – –</td>
<td></td>
</tr>
<tr>
<td>Power Conversion PWM with 1 ns Resolution</td>
<td>– – – – – –</td>
<td></td>
</tr>
<tr>
<td>Comparators with 25 ns speed</td>
<td>– – – – – –</td>
<td></td>
</tr>
<tr>
<td>Safety and Monitoring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOR, LVD, POR, WDT</td>
<td>ü ü ü ü ü ü</td>
<td></td>
</tr>
<tr>
<td>Windowed WDT</td>
<td>– – ü ü ü ü</td>
<td></td>
</tr>
<tr>
<td>Deadman Timer (DMT)</td>
<td>– – – – – –</td>
<td></td>
</tr>
<tr>
<td>CRC - Flash, RAM and SFR</td>
<td>ü ü ü ü ü ü</td>
<td></td>
</tr>
<tr>
<td>Class B Features</td>
<td>ü ü ü ü ü ü</td>
<td></td>
</tr>
<tr>
<td>User Interface</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Segmented LCD Driver</td>
<td>ü – – – – –</td>
<td></td>
</tr>
<tr>
<td>Graphical Display Driver</td>
<td>ü – – – – –</td>
<td></td>
</tr>
<tr>
<td>Charge Time Measurement Unit (CTMU)</td>
<td>ü – ü ü ü ü</td>
<td></td>
</tr>
<tr>
<td>Secure Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crypto Engine with AES-256</td>
<td>ü – – – – –</td>
<td></td>
</tr>
<tr>
<td>Random Number Generator (RNG)</td>
<td>ü – – – – –</td>
<td></td>
</tr>
<tr>
<td>Secure Key Storage</td>
<td>ü – – – – –</td>
<td></td>
</tr>
<tr>
<td>System Flexibility</td>
<td></td>
<td></td>
</tr>
<tr>
<td>eXtreme Low Power (XLP)</td>
<td>ü – – – – –</td>
<td></td>
</tr>
<tr>
<td>VxX</td>
<td>ü – – – – –</td>
<td></td>
</tr>
<tr>
<td>Configurable Logic Cells (CLC)</td>
<td>ü – – – – –</td>
<td></td>
</tr>
<tr>
<td>Peripheral Trigger Generator (PTG)</td>
<td>– – – – – –</td>
<td></td>
</tr>
<tr>
<td>Unique Device ID</td>
<td>– – – – – –</td>
<td></td>
</tr>
<tr>
<td>Peripheral Pin Select (PPS)</td>
<td>ü ü ü ü ü ü</td>
<td></td>
</tr>
</tbody>
</table>

www.microchip.com/16bit
16-bit Packages

For more information about chipscale packaging options, please visit www.microchip.com/packaging.

Microchip Quick Web Links

16-bit MCUs and DSCs Home Page
www.microchip.com/16bit
16-bit PIC MCU Peripheral Integration
[Quick Reference Guide](http://www.microchip.com/16bitquickreference)
16-bit Core Independent Peripherals
www.microchip.com/16bitCIP
Microchip Advanced Parts Selector
www.microchip.com/maps
Application Notes
www.microchip.com/applicationnotes
16-bit Functional Safety
Connectivity
www.microchip.com/connectivity
Datasheet Finder Tool
www.microchip.com/datasheets
Digital Power
www.microchip.com/power
eXtreme Low Power
www.microchip.com/xlp
Graphics
www.microchip.com/graphics
Hardware Crypto Engine
www.microchip.com/lowpowercrypto
High Temperature
www.microchip.com/hightemp
Motor Control
www.microchip.com/motor
MPLAB Code Configurator
www.microchip.com/mcc
Segmented Displays
www.microchip.com/LCD
Software Libraries
www.microchip.com/libraries
Support
Microchip is committed to supporting its customers in developing products faster and more efficiently. We maintain a worldwide network of field applications engineers and technical support ready to provide product and system assistance. For more information, please visit www.microchip.com:

- Technical Support: www.microchip.com/support
- Evaluation samples of any Microchip device: www.microchip.com/sample
- Knowledge base and peer help: www.microchip.com/forums
- Sales and Global Distribution: www.microchip.com/sales

Training
If additional training interests you, Microchip offers several resources including in-depth technical training and reference material, self-paced tutorials and significant online resources.

- Overview of Technical Training Resources: www.microchip.com/training
- MASTERS Conferences: www.microchip.com/masters
- Developer Help Website: www.microchip.com/developerhelp
- Technical Training Centers: www.microchip.com/seminars

Sales Office Listing

AMERICAS
Atlanta, GA
Tel: 678-957-9614

Austin, TX
Tel: 512-257-3370

Boston, MA
Tel: 774-760-0087

Chandler, AZ (HQ)
Tel: 480-792-7200

Chicago, IL
Tel: 630-285-0071

Dallas, TX
Tel: 972-818-7423

Detroit, MI
Tel: 317-536-2380

El Segundo, CA
Tel: 310-285-0071

New York, NY
Tel: 919-844-7510

Raleigh, NC
Tel: 919-844-7510

San Jose, CA
Tel: 408-735-9110

San Diego, CA
Tel: 619-462-9523

San Francisco, CA
Tel: 415-462-9523

Los Angeles, CA
Tel: 317-293-6200

Sacramento, CA
Tel: 916-921-5800

Phoenix, AZ
Tel: 480-792-7200

Tucson, AZ
Tel: 86-29-8833-7252

Philadelphia, PA
Tel: 215-792-7200

Texas, TX
Tel: 512-257-3370

Toronto, ON
Tel: 49-8031-354-560

Montreal, QC
Tel: 514-381-6700

Multinational
Tel: 800-647-5288

EUROPE
Austria - Wels
Tel: 43-7242-2244-39

Denmark - Copenhagen
Tel: 45-4450-2828

Finland - Espoo
Tel: 358-9-4520-820

France - Paris
Tel: 33-1-69-53-63-20

France - Saint Cloud
Tel: 33-1-30-60-70-00

Germany - Garching
Tel: 49-9331-9700

Germany - Haan
Tel: 49-2129-3766-400

Germany - Heilbronn
Tel: 49-7131-67-3636

Germany - Karlsruhe
Tel: 49-721-62537-0

Germany - Munich
Tel: 49-89-627-144-0

Germany - Rosenheim
Tel: 49-8301-354-560

Ireland - Dublin
Tel: 358-9-4520-820

Italy - Milan
Tel: 39-0331-742611

Italy - Padova
Tel: 39-049-7625286

Netherlands - Drunen
Tel: 31-416-690399

Norway - Trondheim
Tel: 41-7289-7561

Poland - Warsaw
Tel: 48-822-3325737

Romania - Bucharest
Tel: 40-21-407-87-50

Spain - Madrid
Tel: 34-91-708-08-90

Sweden - Gothenberg
Tel: 46-31-704-60-40

UK - Wokingham
Tel: 44-118-921-5800

EUROPE
Israel - Ra’anana
Tel: 972-9-744-7705

ASIA/PACIFIC
Australia - Sydney
Tel: 61-2-9868-6733

China - Beijing
Tel: 86-10-8569-7000

China - Chengdu
Tel: 86-28-8665-5511

China - Chongqing
Tel: 86-23-8980-9588

China - Dongguan
Tel: 86-769-8702-9880

China - Guangzhou
Tel: 86-20-8755-8029

China - Hangzhou
Tel: 86-571-8792-8115

China - Hong Kong SAR
Tel: 852-2943-5100

China - Nanjing
Tel: 86-25-8473-2460

China - Qingdao
Tel: 86-532-8502-7355

China - Shanghai
Tel: 86-21-3326-8000

China - Shenzhen
Tel: 86-755-8864-2200

China - Shenyang
Tel: 86-24-2334-2829

China - Shenzhen
Tel: 86-755-8864-2200

China - Wuhan
Tel: 86-27-5980-5300

China - Xiamen
Tel: 86-592-238138

China - Xian
Tel: 86-29-8833-7252

China - Zhuhai
Tel: 86-756-321-0040

India - Bangalore
Tel: 91-80-3090-4444

India - New Delhi
Tel: 91-11-4160-8631

India - Pune
Tel: 91-20-3019-1500

Japan - Osaka
Tel: 81-6-6152-7160

Japan - Tokyo
Tel: 81-3-6880-3770

Korea - Daegu
Tel: 82-53-744-4301

Korea - Seoul
Tel: 82-2-554-7200

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857

Malaysia - Penang
Tel: 60-4-227-8870

Philippines - Manila
Tel: 63-2-634-9065

Singapore
Tel: 65-6334-8870

Taiwan - Hsin Chu
Tel: 886-3-577-8366

Taiwan - Kaohsiung
Tel: 886-7-213-7830

Taiwan - Taipei
Tel: 866-2-2508-8600

Thailand - Bangkok
Tel: 66-2-694-1351

10/28/16

www.microchip.com