ZL40250 – ZL40253 Recommended Power Supply Decoupling and Layout Practices

Introduction

This document details the recommended power supply decoupling and layout practices for the ZL40250 – ZL40253 series of smart buffer integrated circuits (ICs).

Power Supply Decoupling and Layout Practices

The following common design practices are recommended for improving device power supply noise rejection.

- Allocate one low-ESR 0.1 µF to 1 µF decoupling capacitor for the power pins as shown in Figure 1. Example recommended capacitor types are ceramic X5R and X7R. Each capacitor should be located as close as possible to its respective device power pin. Each capacitor should be connected directly to the power pin and should not share vias to power or ground planes with other decoupling capacitors.

- Allocate one low-ESR 10 µF bulk capacitor for each device power domain. The power domains consist of the device’s power supplies, which may range from 1.5 V to 3.3 V, as well any optional power islands used with the device’s supplies. Example recommended capacitor types are ceramic X5R and X7R. Tantalum capacitors can also be used. These capacitors filter low frequency noise (up to several hundred kHz) that originates from switching power supplies. If a ferrite bead is used to connect a power island to a main board power plane, the associated bulk capacitor should be located close to the ferrite bead. Bulk decoupling capacitors can be shared with nearby devices powered by common power domains to reduce component count.

- Connect the device’s exposed ground pad (E-PAD) directly to the board’s ground plane through a 9x9 array of vias spaced evenly across the pad.

- Power islands can be optionally used on the device’s supplies to provide improved power rail noise rejection. A power island is a local copper area, separated from the main power plane by a series passive component such as a ferrite bead or low ohm resistor. When a ferrite bead is used, it should have a resistance of several hundred Ohms at 100 MHz. Additionally, it should have a current rating at least double the maximum current required by the associated device power pins to avoid core saturation and degraded performance. Finally, the combination of the ferrite bead inductance and supply decoupling capacitance should be chosen to avoid creating a resonant frequency which could cause gain peaking of a board noise source such as a switching power supply. For both the ferrite bead and low ohm resistor options, the voltage drop across this component must be taken into account in the board’s power supply design to ensure the device’s power rail specifications are met.

- Each of the ZL40250 – ZL40253 output clock banks has an independent power pin for signal format flexibility: VDDOA, VDDOB, VDDOC, VDDOD, VDDOE, and VDDOF. Output clock supplies of the same voltage can share a power island to reduce component count.

Figure 1 shows the application of these guidelines in an example configuration where power islands are used.
Figure 1 Example ZL40250 – ZL40253 Power Supply Decoupling Scheme Using Power Islands