How to Use the SAMA5D2 SPI Under Linux®

Introduction

This application note describes how to get started using the SAMA5D2 SPI under Linux.

Since the SPI dev interface was introduced into the kernel, it is easy to access the SPI device in user space via the device node “/dev/spidev”. Refer to the section Application for SPI dev application demo code.

SPI devices have a limited user space API, supporting basic half-duplex read() and write() access to SPI slave devices. Also available are ioctl() requests, full duplex transfers and device I/O configuration.

Reference Documents

<table>
<thead>
<tr>
<th>Title</th>
<th>Reference</th>
<th>Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAMA5D2 Series Datasheet</td>
<td>DS60001476</td>
<td>https://www.microchip.com/design-centers/32-bit-mpus</td>
</tr>
<tr>
<td>SAMA5D27 SOM1 Kit1 User Guide</td>
<td>DS50002667</td>
<td>https://www.microchip.com/DevelopmentTools/ProductDetails/PartNO/ATSAMA5D27-SOM1-EK1</td>
</tr>
</tbody>
</table>

Prerequisites

- **Hardware**
 - PC
 - SAMA5D27 SOM1 Evaluation Kit (Part Number: ATSAMA5D27-SOM1-EK1)
 - SDCard
- **Software**
 This demo runs on the AT91 Linux platform built by Buildroot. The first step is to set up the AT91 Buildroot development environment. Refer to the web site: http://www.at91.com/linux4sam/bin/view/Linux4SAM/BuildRoot
J9: Disable JLINK CDC must be kept open

J10: JLINK on-board serial-USB converter (CDC)
Power supply

BP1: Reset Button

J12: SD SD Card slot

J13: DBOOT Control CS of SOM1 QSPI

J17: USBA USB Device Interface
SAM-BA USB Device Connection
Power supply
Table of Contents

Introduction...1
Reference Documents..1
Prerequisites..1

1. Hardware Design..4
 1.1. Interface...4

2. Software Design..5
 2.1. Device Tree..5
 2.2. Kernel...6
 2.3. Rootfs...8
 2.4. Application..8

3. Hands-On..11

4. Tools and Utilities..12

5. Microchip Peripheral I/O Python® (MPIO)...14
 5.1. MPIO in Buildroot...14
 5.2. Examples..16

6. Revision History..17

The Microchip Website...18

Product Change Notification Service..18

Customer Support..18

Microchip Devices Code Protection Feature...18

Legal Notice...18

Trademarks...19

Quality Management System...19

Worldwide Sales and Service..20
1. Hardware Design

1.1 Interface

The mikroBUS1 connector is used for easy testing and monitoring. To control the mikroBUS1 SPI on Linux, FLEXCOM4 (SPI mode) is connected to the SPI bus of the mikroBUS1 interface on the SAMA5D27-SOM1-EK as described below:

FLEXCOM4 SPI
- FLEXCOM4_I04 → PD0 → NPCS1
- FLEXCOM4_I02 → PC30 → SPCK_mBUS1
- FLEXCOM4_I01 → PC29 → MISO_mBUS1
- FLEXCOM4_I00 → PC28 → MOSI_mBUS1

For more details about the pin multiplexing of the SAMA5D2, refer to the table “Pin Description (all packages)” in the SAMA5D2 data sheet.

FLEXCOM I/O Lines Description

<table>
<thead>
<tr>
<th>Name</th>
<th>USART/UART</th>
<th>Description</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLEXCOM_I00</td>
<td>TXD</td>
<td>MOSI</td>
<td>TWD</td>
</tr>
<tr>
<td>FLEXCOM_I01</td>
<td>RXD</td>
<td>MISO</td>
<td>TWCK</td>
</tr>
<tr>
<td>FLEXCOM_I02</td>
<td>SCK</td>
<td>SPCK</td>
<td>–</td>
</tr>
<tr>
<td>FLEXCOM_I03</td>
<td>CTS</td>
<td>NPCS0/NSS</td>
<td>–</td>
</tr>
<tr>
<td>FLEXCOM_I04</td>
<td>RTS</td>
<td>NPCS1</td>
<td>–</td>
</tr>
</tbody>
</table>
2. Software Design

The Microchip Linux platform was built using Buildroot with the following configuration:

\texttt{atmel_sama5d27_som1_ek_mmc_dev_defconfig}

The SPI bus driver works under this default configuration.

There are two methods to access the SPI bus driver:

- In kernel space:
 - Register your own SPI driver via \texttt{spi_register_driver()} interface, then access the SPI bus driver via \texttt{struct spi_device handle}.

- In user space:
 - Enable the SPIDEV kernel feature, then access the SPI bus driver via the device node \texttt{/dev/spidev}.

SPIDEV is a good choice because all application code runs in user space, making development easier.

In the default configuration, SPIDEV is not enabled. The steps to enable it are described in the following sections.

2.1 Device Tree

- \textbf{Action: need to change}
 - \textbf{Change 1:}
 - \textit{Add descriptions for spidev device under FLEXCOM4 device node in device tree file.}
 - \textbf{Location: buildroot-at91/output/build/linux-linux4sam_6.0/arch/arm/boot/dts}
 - \textbf{Sources:}
 - sama5d2.dtsi
 - at91-sama5d27_som1_ek.dts

Device tree for FLEXCOM4 in sama5d2.dtsi:

```c
flx4: flexcom@fc018000 {
    compatible = "atmel,sama5d2-flexcom"; // specify which driver will be used for this
    // FLEXCOM device
    reg = <0xfc018000 0x200>; // FLEXCOM4 base address is 0xfc018000, size is 0x200
    clocks = <flx4\_clk>; // definition for uart4 clock source
    #address-cells = <1>;
    #size-cells = <1>;
    ranges = <0x0 0xfc018000 0x800>;
    status = "disabled"; // default disabled, and will be replaced with "okay"
};
flx4\_clk: flx4\_clk {
    #clock-cells = <0>;
    reg = <23>; // PID for FLEXCOM4 is 23, this definition of offset will be used to enable
    // FLEXCOM4 clock in PMC
    atmel,clk-output-range = <0 83000000>; // FLEXCOM4 input clock, max frequency is 83MHz
};
```

Device tree for SPIDEV function in at91-sama5d27_som1_ek.dts:

```c
flx4: flexcom@fc018000 {
    atmel,flexcom-mode = <ATMEL_FLEXCOM_MODE_SPI>; // specify SPI mode for this flexcom
    status = "okay"; // enable this device
    uart6: serial@200 {
        ...
    };
    spi3: spi@400 {
        compatible = "atmel,at91rm9200-spi"; // specify which driver will be used for this
        // SPI device
        reg = <0x400 0x200>; // register offset address is 0x400, size is 0x200
    }
};
```

© 2019 Microchip Technology Inc.
interrupts = <23 IRQ_TYPE_LEVEL_HIGH 7>; // PID for FLEXCOM4 is 23, high level
 // triggered, priority is 7
 // used to configure FLEXCOM4 interrupt in AIC

clocks = <&flx4_clk>; // definition for FLEXCOM4 clock source
clock-names = "spi_clk";
pinctrl-names = "default";
pinctrl-0 = <&pinctrl_mikrobus_spi &pinctrl_mikrobus1_spi_cs &pinctrl_mikrobus2_spi_cs>;

atmel,fifo-size = <16>; // pin definition for FLEXCOM4 SPI function
status = "okay"; /* Conflict with uart6 and i2c3. */ // replace status property with
 // "okay", enable SPI device

spidev@1 { // This is change 1
 compatible = "spidev"; // specify which driver will be used for this device
 reg = <1>; // this definition will be used as CS number of SPIDEV
 spi-max-frequency = <1000000>; // specify clock frequency for this SPIDEV
 // Check buildroot-at91/output/build/linux-linux4sam_6.0/drivers/spi/spidev.c of_spi_parse_dt()
 // for more options
};

i2c3: i2c@600 {
 __
};

pinctrl_mikrobus1_spi_cs: mikrobus1_spi_cs {
 pinmux = <PIN_PD0__FLEXCOM4_IO4>; // the mux of PD0 will be switch to FLEXCOM4_IO4
 bias-disable;
};

pinctrl_mikrobus_spi: mikrobus_spi {
 pinmux = <PIN_PC28__FLEXCOM4_IO0>, // the mux of PC28 will be switch to FLEXCOM4_IO0
 <PIN_PC29__FLEXCOM4_IO1>, // the mux of PC29 will be switch to FLEXCOM4_IO1
 <PIN_PC30__FLEXCOM4_IO2>; // the mux of PC30 will be switch to FLEXCOM4_IO2
 bias-disable;
};

It is not recommended to use "spidev" as a device tree compatible name directly. It may work properly, but the
following warning will display:

`dmesg | grep spidev`

spidev spi1.1: buggy DT: spidev listed directly in DT
WARNING: CPU: 0 PID: 1 at drivers/spi/spidev.c:730 0xc045d630

Because "spidev" is part of the Linux implementation rather than a description of the hardware, it should never be
referenced in the device tree without a specific name.

To avoid this warning, a compatible name other than "spidev" should be selected, for example:

`spidev@1 {
 compatible = "atmel,at91rm9200-spidev";
 reg = <1>;
 spi-max-frequency = <1000000>;
};`

Then edit the SPIDEV driver file buildroot-at91/output/build/linux-linux4sam_6.0/drivers/spi/spidev.c.

Add the new compatible name to the compatible table of the SPIDEV driver:

```c
static const struct of_device_id spidev_dt_ids[] = {
    { .compatible = "rohm,dh2228fiv" },
    { .compatible = "lineartechnology,ltc2488" },
    { .compatible = "ge,achc" },
    { .compatible = "semtech,sx1301" },
    { .compatible = "atmel,at91rm9200-spidev" },
};
```

2.2 Kernel

- Action: need to change
- Location: buildroot-at91/output/build/linux-linux4sam_6.0/
Defconfig: sama5_defconfig

- drivers/spi/spi.c
- drivers/spi/spi-atmel.c
- drivers/spi/spidev.c

Add the kernel configuration for the SPIDEV function:

```
user@at91:/buildroot-at91$ make linux-menuconfig
```

Device Drivers > SPI support > Atmel SPI Controller

This is the driver for the Atmel SPI controller.

In the default configuration, this item is selected.

Device Drivers > SPI support > User mode SPI device driver support

This is the driver for SPIDEV. Select it to enable the SPIDEV function.
2.3 Rootfs

- **Action:** no need to change
- **Location:** buildroot-at91/output/images/rootfs.tar

There is no definition for the SPI bus number in the device tree files, and the bus number of the SPI controller is allocated automatically when registering.

For example, the first registered SPI controller is assigned the bus number 0, the second is assigned the bus number 1 and so on.

The device node below is used to access the SPI bus driver. The first 1 indicates bus number 1, the second 1 indicates the CS number:

- `/dev/spidev1.1`

2.4 Application

This section provides a C language demo to access the SPI bus driver via the device node "/dev/spidev1.1".

How to Compile

```
user@at91:~$ buildroot-at91/output/host/bin/arm-buildroot-linux-uclibcgneabihf-gcc spi_dev.c -o spi_test
```

Source Code

```c
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <linux/spi/spidev.h>

#define DEV_SPI "/dev/spidev1.1"

int main(int argc, char *argv[])
{
    int fd;
```
```c
int ret;
unsigned int mode, speed;
char tx_buf[1];
char rx_buf[1];
struct spi_ioc_transfer xfer[2] = {0};

// open device node
fd = open(DEV_SPI, O_RDWR);
if (fd < 0) {
    printf("ERROR open %s ret=%d\n", DEV_SPI, fd);
    return -1;
}

// set spi mode
mode = SPI_MODE_0;
if (ioctl(fd, SPI_IOC_WR_MODE32, &mode) < 0) {
    printf("ERROR ioctl() set mode\n");
    return -1;
}
if (ioctl(fd, SPI_IOC_RD_MODE32, &ret) < 0) {
    printf("ERROR ioctl() get mode\n");
    return -1;
} else
    printf("mode set to %d\n", (unsigned int)ret);

// set spi speed
speed = 1*1000*1000;
if (ioctl(fd, SPI_IOC_WR_MAX_SPEED_HZ, &speed) < 0) {
    printf("ERROR ioctl() set speed\n");
    return -1;
}
if (ioctl(fd, SPI_IOC_RD_MAX_SPEED_HZ, &ret) < 0) {
    printf("ERROR ioctl() get speed\n");
    return -1;
} else
    printf("speed set to %d\n", ret);

// transfer data
tax_buf[0] = 0xa5;
xfer[0].tx_buf = (unsigned long)tx_buf;
xfer[0].len = 1;
xfer[1].rx_buf = (unsigned long)rx_buf;
xfer[1].len = 1;
do {
    if (ioctl(fd, SPI_IOC_MESSAGE(2), xfer) < 0)
        perror("SPI_IOC_MESSAGE");
    usleep(100*1000);
} while (1);

// close device node
close(fd);
return 0;
```

Another SPIDEV application is provided in Buildroot:

```
user@at91:/buildroot-at91$ make menuconfig
with code located here: buildroot-at91/output/build/spidev_test-v4.10/spidev_test.c
```
3. **Hands-On**

Copy the spi_test application to the target and execute it, then the SPI waveform is monitored on the mikroBUS1 SPI bus.

```bash
# chmod +x spi_test
# ./spi_test
```

Legend

- Yellow line: NPCS1
- Green line: SPCK_mBUS1
- Blue line: MOSI_mBUS1
- Red line: MISO_mBUS1

![Waveform Image]
4. Tools and Utilities

Spi-tools is a tool for SPI bus testing included in Buildroot.

With the default Buildroot configuration, this tool is selected.

```
user@at91:/buildroot-at91$ make menuconfig
```

Target packages > Hardware handling > spi-tools

There are two commands in spi-tools:

```
# spi-config -h
usage: spi-config options...
   options:
   -d --device=<dev> use the given spi-dev character device.
   -q --query print the current configuration.
   -m --mode=[0-3] use the selected spi mode:
      0: low iddle level, sample on leading edge,
      1: low iddle level, sample on trailing edge,
      2: high iddle level, sample on leading edge,
      3: high iddle level, sample on trailing edge.
   -l --lsb={0,1} LSB first (1) or MSB first (0).
   -b --bits={7...} bits per word.
   -s --speed=<int> set the speed in Hz.
   -h --help this screen.
   -v --version display the version number.

# spi-config -d /dev/spidev1.1 -q
/dev/spidev1.1: mode=0, lsb=0, bits=8, speed=1000000
```

```
# spi-pipe -h
usage: spi-pipe options...
   options:
   -d --device=<dev> use the given spi-dev character device.
   -b --blocksize=<int> transfer block size in byte.
   -n --number=<int> number of blocks to transfer (-1 = infinite).
   -h --help this screen.
   -v --version display the version number.

# spi-pipe -d /dev/spidev1.1 -b 6 -n 1
111111
```

Input six ‘1’ and press the Enter key. The waves are captured from an oscilloscope accordingly.
Legend

- Yellow line: NPCS1
- Green line: SPCK_mBUS1
- Blue line: MOSI_mBUS1
- Red line: MISO_mBUS1
5. Microchip Peripheral I/O Python® (MPIO)

The Microchip Peripheral I/O (MPIO) Python package provides easy access to various hardware peripherals found on Microchip MPU processors and evaluation boards running Linux. The API is clean, consistent, flexible, documented, and well tested. It makes navigating and exercising even the most complex hardware peripherals a trivial task.

For more information, see https://github.com/linux4sam/mpio. Code examples showing how to work with the MPIO interface modules are provided in the folder mpio/examples.

5.1 MPIO in Buildroot

In order to benefit from MPIO in your Buildroot configuration, follow the steps below:

1. Enable Python

 user@at91:/~buildroot-at91$ make menuconfig

 Select “python” to enable python support:

 • Target packages > Interpreter languages and scripting > [*] python

 Then enter “python module format to install” and select “.py sources and .pyc compiled”.

 • Target packages > Interpreter languages and scripting > python > python module format to install > .py sources and .pyc compiled

 ![Configuration Menu]

 Some additional python modules must be selected. Enter “core python modules” and select “curses module”, “readline” and “hashlib module”.

 • Target packages > Interpreter languages and scripting > core python modules > [*] curses module

 • Target packages > Interpreter languages and scripting > core python modules > [*] readline
2. Enable the MPIO Module
Enter “External options” and select “python-mpio”.

3. Finish the Buildroot Configuration and Build
Enter “Filesystem images” and set the exact size of rootfs to 120MB.

- **Filesystem images > (120M) exact size**
After saving, the following new settings are added to the configuration file of Buildroot:

```
BR2_PACKAGE_PYTHON=y
BR2_PACKAGE_PYTHON_PY_PYC=y
BR2_PACKAGE_PYTHON_CURSES=y
BR2_PACKAGE_PYTHON_READLINE=y
BR2_PACKAGE_PYTHON_HASHLIB=y
BR2_PACKAGE_PYTHON_SETUPTOOLS=y
BR2_PACKAGE_PYTHON_MPIO=y
BR2_TARGET_ROOTFS_EXT2_SIZE="120M"
```

Then re-configure and build Buildroot:

```
user@at91:~/buildroot-at91$ make atmel_sama5d27_som1mmc_dev_defconfig
user@at91:~/buildroot-at91$ make
```

5.2 Examples

After building successfully, burn your SD card with buildroot-at91/output/images/sdcard.img.

Execute the python codes on the target board, for example:

```
# ./adc2.py DEVICE
# ./gpio1.py PIN
# ./pwm_led.py DEVICE CHANNEL
```

Note: The python example code can be found in https://github.com/linux4sam/mpio/examples
6. Revision History

6.1 Rev. A - 09/2019

First issue.
The Microchip Website

Microchip provides online support via our website at http://www.microchip.com/. This website is used to make files and information easily available to customers. Some of the content available includes:

- **Product Support** – Data sheets and errata, application notes and sample programs, design resources, user’s guides and hardware support documents, latest software releases and archived software
- **General Technical Support** – Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip design partner program member listing
- **Business of Microchip** – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service

Microchip’s product change notification service helps keep customers current on Microchip products. Subscribers will receive email notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, go to http://www.microchip.com/pcn and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Embedded Solutions Engineer (ESE)
- Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: http://www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Legal Notice

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with
your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER
EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend,
indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such
use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless
otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime,
BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox,
KeeLoq, Kleer, LANcheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST,
MOST logo, MPLAB, OptoLyzer, PackTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer,
QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon,
TempTracker, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control,
HyperLight Load, IntellIMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus,
ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimePictra, TimeProvider,
Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BlueSky, BodyCom,
CodeGuard, CryptoAuthentication, CryptoAutomotive, Crypto Companion, CryptoController, dsPICDEM,
dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP,
INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF,
MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM,
PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad
I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense,
ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A.
and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of
Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip
Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.
© 2019, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.
ISBN: 978-1-5224-5047-4

AMBA, Arm, Arm7, ArmTDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart,
DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb,
TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered
trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

Quality Management System

For information regarding Microchip’s Quality Management Systems, please visit http://www.microchip.com/quality.
Worldwide Sales and Service

<table>
<thead>
<tr>
<th>AMERICAS</th>
<th>ASIA/PACIFIC</th>
<th>ASIA/PACIFIC</th>
<th>EUROPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corporate Office</td>
<td>Australia - Sydney</td>
<td>India - Bangalore</td>
<td>Austria - Wels</td>
</tr>
<tr>
<td>2355 West Chandler Blvd.</td>
<td>61-2-9868-6733</td>
<td>91-80-3090-4444</td>
<td>43-7242-2244-39</td>
</tr>
<tr>
<td>Chandler, AZ 85224-6199</td>
<td>Tel: 86-10-8569-7000</td>
<td>Tel: 91-11-4160-8631</td>
<td>Fax: 43-7242-2244-393</td>
</tr>
<tr>
<td>Tel: 480-792-7200</td>
<td>Tel: 86-28-8665-5511</td>
<td>Tel: 91-20-4121-0141</td>
<td>Denmark - Copenahgen</td>
</tr>
<tr>
<td>Fax: 480-792-7277</td>
<td>Tel: 86-23-8980-9588</td>
<td>Japan - Osaka</td>
<td>45-4450-2828</td>
</tr>
<tr>
<td>Technical Support:</td>
<td>China - Chongqing</td>
<td>81-6-6152-7160</td>
<td>Fax: 45-4485-2829</td>
</tr>
<tr>
<td>http://www.microchip.com/support</td>
<td>Tel: 86-769-8702-9880</td>
<td>Tel: 81-3-6880-3770</td>
<td>Finland - Espoo</td>
</tr>
<tr>
<td>Web Address:</td>
<td>China - Dongguan</td>
<td>Korea - Daegu</td>
<td>358-9-4520-820</td>
</tr>
<tr>
<td>http://www.microchip.com</td>
<td>Tel: 86-20-8755-8029</td>
<td>Korea - Seoul</td>
<td>France - Paris</td>
</tr>
<tr>
<td>Atlanta</td>
<td>China - Guangzhou</td>
<td>Tel: 82-53-744-4301</td>
<td>33-1-69-53-63-20</td>
</tr>
<tr>
<td>Duluth, GA</td>
<td>Tel: 86-571-8792-8115</td>
<td>Korea - Seoul</td>
<td>Fax: 33-1-69-30-90-79</td>
</tr>
<tr>
<td>Tel: 678-957-9614</td>
<td>China - Hong Kong SAR</td>
<td>Malaysia - Kuala Lumpur</td>
<td>Germany - Garching</td>
</tr>
<tr>
<td>Fax: 678-957-1455</td>
<td>Tel: 852-2943-5100</td>
<td>Tel: 60-3-7651-7906</td>
<td>49-8931-9700</td>
</tr>
<tr>
<td>Austin, TX</td>
<td>China - Nanjing</td>
<td>Malaysia - Penang</td>
<td>Germany - Haan</td>
</tr>
<tr>
<td>Tel: 512-257-3370</td>
<td>Tel: 86-25-8473-2460</td>
<td>Tel: 82-2-554-7200</td>
<td>49-2129-3764-00</td>
</tr>
<tr>
<td>Boston</td>
<td>China - Qingdao</td>
<td>Germany - Hellbronn</td>
<td>Germany - Karlsruhe</td>
</tr>
<tr>
<td>Westborough, MA</td>
<td>Tel: 86-532-8502-7355</td>
<td>Tel: 49-7731-72400</td>
<td>49-721-625370</td>
</tr>
<tr>
<td>Tel: 774-760-0087</td>
<td>China - Shanghai</td>
<td>Germany - Munich</td>
<td>Germany - Rosenheim</td>
</tr>
<tr>
<td>Fax: 774-760-0088</td>
<td>Tel: 86-21-3326-8000</td>
<td>Tel: 49-89-627-144-0</td>
<td>49-8031-354-560</td>
</tr>
<tr>
<td>Chicago</td>
<td>China - Shenzhen</td>
<td>Fax: 49-89-627-144-44</td>
<td>Israel - Ra’anana</td>
</tr>
<tr>
<td>Itasca, IL</td>
<td>Tel: 86-24-2334-2829</td>
<td>Tel: 972-9-744-7705</td>
<td>972-9-744-7705</td>
</tr>
<tr>
<td>Tel: 630-285-0071</td>
<td>China - Suzhou</td>
<td>Italy - Milan</td>
<td>Tel: 39-0331-742611</td>
</tr>
<tr>
<td>Fax: 630-285-0075</td>
<td>Tel: 86-186-6233-1526</td>
<td>Italy - Padova</td>
<td>Fax: 39-0331-466781</td>
</tr>
<tr>
<td>Dallas</td>
<td>China - Wuhan</td>
<td>Tel: 39-049-7625286</td>
<td>Italy - Padova</td>
</tr>
<tr>
<td>Addison, TX</td>
<td>Tel: 86-27-5980-5300</td>
<td>Tel: 31-416-690399</td>
<td>39-049-7625286</td>
</tr>
<tr>
<td>Tel: 972-818-7423</td>
<td>China - Xian</td>
<td>Fax: 31-416-690340</td>
<td>Netherlands - Drunen</td>
</tr>
<tr>
<td>Fax: 972-818-2924</td>
<td>Tel: 86-29-8833-7252</td>
<td>Tel: 31-416-690340</td>
<td>31-416-690399</td>
</tr>
<tr>
<td>Detroit</td>
<td>China - Xiamen</td>
<td>Norway - Trondheim</td>
<td>Poland - Warsaw</td>
</tr>
<tr>
<td>Novi, MI</td>
<td>Tel: 86-992-2388138</td>
<td>Tel: 47-72864388</td>
<td>49-22-3325737</td>
</tr>
<tr>
<td>Tel: 248-848-4000</td>
<td>China - Zhuhai</td>
<td>Romania - Bucharest</td>
<td>Romania - Bucharest</td>
</tr>
<tr>
<td>Houston, TX</td>
<td>Tel: 86-756-3210040</td>
<td>Tel: 40-21-407-87-50</td>
<td>40-21-407-87-50</td>
</tr>
<tr>
<td>Tel: 281-894-5983</td>
<td>India - New Delhi</td>
<td>Spain - Madrid</td>
<td>34-91-708-08-90</td>
</tr>
<tr>
<td>Indianapolis</td>
<td>Tel: 91-11-4160-8631</td>
<td>Tel: 34-91-708-08-91</td>
<td>Fax: 34-91-708-08-91</td>
</tr>
<tr>
<td>Noblesville, IN</td>
<td>Tel: 91-20-4121-0141</td>
<td>Sweden - Gothenberg</td>
<td>46-31-704-60-40</td>
</tr>
<tr>
<td>Tel: 317-773-8323</td>
<td>Japan - Tokyo</td>
<td>Sweden - Stockholm</td>
<td>46-8-5090-4654</td>
</tr>
<tr>
<td>Fax: 317-773-5453</td>
<td>Tel: 81-6-6152-7160</td>
<td>Tel: 46-8-5090-4654</td>
<td>UK - Wokingham</td>
</tr>
<tr>
<td>Tel: 317-536-2380</td>
<td>Tel: 81-3-6880-3770</td>
<td>Tel: 44-118-921-5800</td>
<td>44-118-921-5800</td>
</tr>
<tr>
<td>Los Angeles</td>
<td>Tel: 886-7-213-7830</td>
<td>Fax: 44-118-921-5820</td>
<td>Ukraine - Kyiv</td>
</tr>
<tr>
<td>Mission Viejo, CA</td>
<td>Taiwan - Taipei</td>
<td>Ukraine - Kyiv</td>
<td>38-52-555-8022</td>
</tr>
<tr>
<td>Tel: 949-462-9523</td>
<td>Tel: 886-2-2508-8600</td>
<td>Ukraine - Kyiv</td>
<td>38-52-555-8022</td>
</tr>
<tr>
<td>Fax: 949-462-9608</td>
<td>Taiwan - Kaohsiung</td>
<td>Ukraine - Kyiv</td>
<td>38-52-555-8022</td>
</tr>
<tr>
<td>Tel: 951-273-7800</td>
<td>Tel: 886-7-213-7830</td>
<td>Ukraine - Kyiv</td>
<td>38-52-555-8022</td>
</tr>
<tr>
<td>Raleigh, NC</td>
<td>Tel: 886-7-213-7830</td>
<td>Ukraine - Kyiv</td>
<td>38-52-555-8022</td>
</tr>
<tr>
<td>Tel: 919-844-7510</td>
<td>Tel: 886-2-2508-8600</td>
<td>Ukraine - Kyiv</td>
<td>38-52-555-8022</td>
</tr>
<tr>
<td>New York, NY</td>
<td>Thailand - Bangkok</td>
<td>Ukraine - Kyiv</td>
<td>38-52-555-8022</td>
</tr>
<tr>
<td>Tel: 631-435-6000</td>
<td>Tel: 66-2-694-1351</td>
<td>Ukraine - Kyiv</td>
<td>38-52-555-8022</td>
</tr>
<tr>
<td>San Jose, CA</td>
<td>Vietnam - Ho Chi Minh</td>
<td>Ukraine - Kyiv</td>
<td>38-52-555-8022</td>
</tr>
<tr>
<td>Tel: 408-735-9110</td>
<td>Tel: 84-28-5448-2100</td>
<td>Ukraine - Kyiv</td>
<td>38-52-555-8022</td>
</tr>
<tr>
<td>Tel: 408-436-4270</td>
<td>Vietnam - Ho Chi Minh</td>
<td>Ukraine - Kyiv</td>
<td>38-52-555-8022</td>
</tr>
<tr>
<td>Fax: 905-695-1980</td>
<td>Vietnam - Ho Chi Minh</td>
<td>Ukraine - Kyiv</td>
<td>38-52-555-8022</td>
</tr>
<tr>
<td>Fax: 905-695-2078</td>
<td>Vietnam - Ho Chi Minh</td>
<td>Ukraine - Kyiv</td>
<td>38-52-555-8022</td>
</tr>
</tbody>
</table>

© 2019 Microchip Technology Inc.