Introduction

This application note describes how to get started using the SAMA5D2 ADC under Linux.

With the introduction of the industrial I/O (IIO) subsystem into the kernel, it is easy to access the ADC device in user space via sysfs or a device node. The device driver of the ADC in the SAMA5D2 was implemented based on this subsystem. With the standard interface of IIO, it is easy to develop/port an application program into user space.

Because the features of the ADC are implemented in kernel space, this document explains how to use the ADC in user space.

Reference Documents

<table>
<thead>
<tr>
<th>Title</th>
<th>Reference</th>
<th>Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAMA5D2 Series Datasheet</td>
<td>DS60001476</td>
<td><a href="https://www.microchip.com/design-centers/32-bit-mpus">https://www.microchip.com/design-centers/32-bit-mpus</a></td>
</tr>
<tr>
<td>SAMA5D27 SOM1 Kit1 User Guide</td>
<td>DS50002667</td>
<td><a href="https://www.microchip.com/DevelopmentTools/ProductDetails/PartNO/ATSAMA5D27-SOM1-EK1">https://www.microchip.com/DevelopmentTools/ProductDetails/PartNO/ATSAMA5D27-SOM1-EK1</a></td>
</tr>
</tbody>
</table>

Prerequisites

- **Hardware**
  - PC
  - SAMA5D27 SOM1 Evaluation Kit (Part Number: ATSAMA5D27-SOM1-EK1)
  - SDCard
- **Software**
  This demo runs on the AT91 Linux platform built by Buildroot. The first step is to set up the AT91 Buildroot development environment. Refer to the web site: [http://www.at91.com/linux4sam/bin/view/Linux4SAM/BuildRoot](http://www.at91.com/linux4sam/bin/view/Linux4SAM/BuildRoot)
J9: Disable JLINK CDC must be kept open

J10: JLINK on-board serial-USB converter (CDC)
Power supply

BP1: Reset Button

J12: SD SD Card slot

J13: DBOOT Control CS of SOM1 QSPI

J17: USBA USB Device Interface
SAM-BA USB Device Connection
Power supply
# Table of Contents

- Introduction .................................................................................................................................................. 1
- Reference Documents .................................................................................................................................. 1
- Prerequisites .................................................................................................................................................. 1
  1. Hardware Design ..................................................................................................................................... 4
    1.1. Interface ........................................................................................................................................... 4
  2. Software Design ....................................................................................................................................... 5
    2.1. Device Tree ..................................................................................................................................... 5
    2.2. Kernel ............................................................................................................................................. 6
    2.3. Rootfs ............................................................................................................................................. 6
  3. Hands-On ............................................................................................................................................... 7
    3.1. Software Trigger .............................................................................................................................. 7
    3.2. Hardware Triggers .......................................................................................................................... 7
  4. Microchip Peripheral I/O Python® (MPIO) .............................................................................................. 8
    4.1. MPIO in Buildroot ............................................................................................................................ 8
    4.2. Examples ....................................................................................................................................... 10
  5. Revision History ..................................................................................................................................... 11
    5.1. Rev. A - 09/2019 ............................................................................................................................. 11
- The Microchip Website ............................................................................................................................... 12
- Product Change Notification Service ......................................................................................................... 12
- Customer Support ....................................................................................................................................... 12
- Microchip Devices Code Protection Feature ............................................................................................. 12
- Legal Notice ............................................................................................................................................... 12
- Trademarks ............................................................................................................................................... 13
- Quality Management System ................................................................................................................... 13
- Worldwide Sales and Service .................................................................................................................... 14
1. Hardware Design

1.1 Interface

The mikroBUS1 connector is used for easy testing and monitoring. The analog input pin, AN_mBUS1, of the mikroBUS1 interface is implemented on Linux.

The ADC channel AD6 is connected to the AN_mBUS1 via GPIO PD25 on the SAMA5D27-SOM-EK1:

- AD6 → PD25 → AN_mBUS1

For more details about the pin multiplexing of the SAMA5D2, refer to the table “Pin Description (all packages)” in the SAMA5D2 data sheet.
2. Software Design

The Microchip Linux platform was built using Buildroot with the following configuration:

```
atmel_sama5d27_som1_ek_mmc_dev_defconfig
```

An ADC device driver has been implemented based on the Industrial Input/Output (IIO) framework in the kernel space.

Most features are supported by this driver.

This section illustrates how to interact with an ADC driver via the standard IIO sysfs interface.

No C-code demo is included in this document because all steps in the section Hands-On can be done with sysfs or Linux commands.

2.1 Device Tree

- Action: need to change
  - Change 1:
    - With the default setting, the ADC device was disabled in the device tree. The text in bold below shows how to enable the ADC in `at91-sama5d27_som1_ek.dts`.
    - Location: buildroot-at91/output/build/linux-linux4sam_6.0/arch/arm/boot/dts
    - Sources:
      - sama5d2.dtsi
      - at91-sama5d27_som1_ek.dts

Device tree for ADC in sama5d2.dtsi:

```c
adc: adc@fc030000 {
    compatible = "atmel,sama5d2-adc"; // specify which driver is used for this ADC device
    reg = &lt;0xfc030000 0x100&gt;; // ADC base address is 0xfc030000, size is 0x100
    interrupts = &lt;40 IRQ_TYPE_LEVEL_HIGH 7&gt;; // PID of ADC is 40, high level triggered,
    // priority is 7
    // used to configure ADC interrupt in AIC
    clocks = &amp;&amp;adc_clk;&lt;; // definition of ADC clock source
    clock-names = "adc_clk";
    // one DMA channel was used by ADC
    dmas = &amp;&amp;dma0 (AT91_XDMAC_DT_MEM_IF(0) | AT91_XDMAC_DT_PER_IF(1) |
        AT91_XDMAC_DT_PERID(25));&lt;;
    dma-names = "rx";
    atmel,min-sample-rate-hz = &lt;2000000&gt;; // define minimum sample rate
    atmel,max-sample-rate-hz = &lt;20000000&gt;; // define maximum sample rate
    atmel,startup-time-ms = &lt;4&gt;; // define startup time, 4ms
    atmel,trigger-edge-type = &lt;IRQ_TYPE_EDGE_RISING&gt;; // define trigger mode
    #io-channel-cells = &lt;1&gt;;
    status = "disabled"; // default disabled, and will be replaced with "okay" to enable
};
adc_clk: adc_clk {
    #clock-cells = &lt;0&gt;;
    reg = &lt;40&gt;; // PID of ADC is 28, this definition of offset will be used to enable
    // ADC clock in PMC
    atmel,clk-output-range = &lt;0 83000000&gt;; // ADC input clock, max frequency is 83 MHz
};
```

Device tree for ADC in at91-sama5d27_som1_ek.dts:

```c
adc: adc8fc030000 {
    vddana-supply = &lt;&vddana&gt;; // Analog power supply for ADC
    vref-supply = &lt;&advref&gt;; // reference voltage for ADC
    status = "okay"; // This is change 1: The default setting is ADC disabled,
    // it is enabled here.
};
```
### 2.2 Kernel

- **Action:** no need to change
- **Location:** buildroot-at91/output/build/linux-linux4sam_6.0/
- **Defconfig:** sama5_defconfig
- **Driver files:** drivers/iio/adc/at91-sama5d2_adc.c

Check the kernel configuration for the ADC function:

```
user@at91:~/buildroot-at91$ make linux-menuconfig
```

**Device Drivers > Industrial I/O support > Analog to digital converters > Atmel AT91 SAMA5D2 ADC**

With this setting, the ADC driver for SAMA5D2 is built into the kernel.

![Kernel Configuration Diagram]

### 2.3 Rootfs

- **Action:** no need to change
- **Location:** buildroot-at91/output/images/rootfs.tar

After Linux boot-up, two paths will be created to access the ADC driver:

- `/sys/bus/iio/devices/iio:device0`
  - This is the main entry of the IIO interface for the ADC device (iio:device0).
- `/dev/iio:device0`
  - IIO device node is used to read converted data from the ADC driver.
3. **Hands-On**

There are two ways to request an ADC conversion:

1. **Software trigger** – Internal synchronous trigger, by writing `ADC_CR.START`.
2. **Hardware trigger** – Asynchronous trigger, asserted by an internal or external signal (pins or periodic event). Refer to `ADC_TRGR.TRGMOD` for more information.

### 3.1 Software Trigger

When reading the ADC channel raw file directly, a software trigger action is performed by the ADC driver:

```
# cat /sys/bus/iio/devices/iio:device0/in_voltage6_raw
16380
# cat /sys/bus/iio/devices/iio:device0/in_voltage_scale
0.201416015
```

The converted raw data is 16380 and the scaling ratio is 0.201416015.

Voltage value is:

\[
16380 \times 0.201416015 = 3.299 \text{ mV}
\]

### 3.2 Hardware Triggers

Hardware triggers are an operating mode of the ADC where conversions are triggered directly by the hardware. In general, the ADTRG pin is used to receive the external hardware trigger signal.

In the SAMA5D2, the pin ADTRG is multiplexed with GPIO PD31.

In SAMA5D27-SOM1-EK1, GPIO PD31 was not exported to any connector and thus a workaround is used to handle this unexpected case.

```
# echo 1 > /sys/bus/iio/devices/iio:device0/scan_elements/in_voltage6_en
# cat /sys/bus/iio/devices/trigger0/name
fc030000.adc-dev0-external_rising
# echo fc030000.adc-dev0-external_rising > /sys/bus/iio/devices/iio:device0/trigger/current_trigger
# echo 100 > /sys/bus/iio/devices/iio:device0/buffer/length
# echo 1 > /sys/bus/iio/devices/iio:device0/buffer/enable
# devmem2 0xfc0300C0 w 0xffff0005
   // workaround here, use ADC internal periodic trigger instead of external trigger
... Written 0xFFFF0005; readback 0xFFFF0005
# hexdump -e '/2 "%d\n" -v /dev/iio:device0
16380
16380
16380
16380
16380
...
```

As stated in the section **Software Trigger** above, the converted raw data is 16380 and the scaling ratio is 0.201416015.

Voltage value is:

\[
16380 \times 0.201416015 = 3.299 \text{ mV}
\]
4. Microchip Peripheral I/O Python® (MPIO)

The Microchip Peripheral I/O (MPIO) Python package provides easy access to various hardware peripherals found on Microchip MPU processors and evaluation boards running Linux. The API is clean, consistent, flexible, documented, and well tested. It makes navigating and exercising even the most complex hardware peripherals a trivial task.

For more information, see https://github.com/linux4sam/mpio. Code examples showing how to work with the MPIO interface modules are provided in the folder mpio/examples.

4.1 MPIO in Buildroot

In order to benefit from MPIO in your Buildroot configuration, follow the steps below:

1. Enable Python

   user@at91:~/buildroot-at91$ make menuconfig

   Select “python” to enable python support:
   - Target packages > Interpreter languages and scripting > [*] python

   Then enter “python module format to install” and select “.py sources and .pyc compiled”.
   - Target packages > Interpreter languages and scripting > python > python module format to install > .py sources and .pyc compiled

   Some additional python modules must be selected. Enter “core python modules” and select “curses module”, “readline” and “hashlib module”.
   - Target packages > Interpreter languages and scripting > core python modules > [*] curses module
   - Target packages > Interpreter languages and scripting > core python modules > [*] readline
• Target packages > Interpreter languages and scripting > core python modules > [*] hashlib module

Enter “External python modules” and select “python-setuptools”.

• Target packages > Interpreter languages and scripting > External python modules > [*] python-setuptools

2. Enable the MPIO Module
Enter “External options” and select “python-mpio”.

• External options > [*] python-mpio

3. Finish the Buildroot Configuration and Build
Enter “Filesystem images” and set the exact size of rootfs to 120MB.

• Filesystem images > (120M) exact size
After saving, the following new settings are added to the configuration file of Buildroot:

```
......
BR2_PACKAGE_PYTHON=y
BR2_PACKAGE_PYTHON_PY_PYC=y
BR2_PACKAGE_PYTHON_CURSES=y
BR2_PACKAGE_PYTHON_READLINE=y
BR2_PACKAGE_PYTHON_HASHLIB=y
BR2_PACKAGE_PYTHON_SETUPTOOLS=y
BR2_PACKAGE_PYTHON_MPIO=y
BR2_TARGET_ROOTFS_EXT2_SIZE="120M"
......
```

Then re-configure and build Buildroot:

```
user@at91:~/buildroot-at91$ make atmel_sama5d27_som1_ek_mmc_dev_defconfig
user@at91:~/buildroot-at91$ make
```

### 4.2 Examples

After building successfully, burn your SD card with buildroot-at91/output/images/sdcard.img.

Execute the python codes on the target board, for example:

```
# ./adc2.py DEVICE
# ./gpio1.py PIN
# ./pwm_led.py DEVICE CHANNEL
......
```

**Note:** The python example code can be found in [https://github.com/linux4sam/mpio/examples](https://github.com/linux4sam/mpio/examples)
5. Revision History

5.1 Rev. A - 09/2019

First issue.
The Microchip Website

Microchip provides online support via our website at http://www.microchip.com/. This website is used to make files and information easily available to customers. Some of the content available includes:

- **Product Support** – Data sheets and errata, application notes and sample programs, design resources, user’s guides and hardware support documents, latest software releases and archived software
- **General Technical Support** – Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip design partner program member listing
- **Business of Microchip** – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service

Microchip’s product change notification service helps keep customers current on Microchip products. Subscribers will receive email notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, go to http://www.microchip.com/pcn and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Embedded Solutions Engineer (ESE)
- Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: http://www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Legal Notice

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with
your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLAB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TempTracker, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimePictra, TimeProvider, Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.


SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2019, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-5044-3

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

Quality Management System

For information regarding Microchip’s Quality Management Systems, please visit http://www.microchip.com/quality.
## Worldwide Sales and Service

<table>
<thead>
<tr>
<th>AMERICAS</th>
<th>ASIA/PACIFIC</th>
<th>ASIA/PACIFIC</th>
<th>EUROPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corporate Office</td>
<td>Australia - Sydney</td>
<td>India - Bangalore</td>
<td>Austria - Wels</td>
</tr>
<tr>
<td>2355 West Chandler Blvd.</td>
<td>Tel: 61-2-9868-6733</td>
<td>Tel: 91-80-3090-4444</td>
<td>Tel: 43-7242-2244-39</td>
</tr>
<tr>
<td>Chandler, AZ 85224-6199</td>
<td>China - Beijing</td>
<td>India - New Delhi</td>
<td>Fax: 43-7242-2244-393</td>
</tr>
<tr>
<td>Tel: 480-792-7200</td>
<td>Tel: 86-10-8569-7000</td>
<td>India - Pune</td>
<td>Denmark - Copenhagen</td>
</tr>
<tr>
<td>Fax: 480-792-7277</td>
<td>China - Chengdu</td>
<td>Tel: 91-11-4160-8631</td>
<td>Tel: 45-4450-2828</td>
</tr>
<tr>
<td>Technical Support:</td>
<td>China - Chongqing</td>
<td>India - Pune</td>
<td>Fax: 45-4485-2829</td>
</tr>
<tr>
<td><a href="http://www.microchip.com/support">http://www.microchip.com/support</a></td>
<td>China - Dongguan</td>
<td>Japan - Osaka</td>
<td>Finland - Espoo</td>
</tr>
<tr>
<td>Web Address:</td>
<td>Tel: 86-23-8980-9588</td>
<td>Tel: 81-6-6152-7160</td>
<td>Tel: 358-9-4520-820</td>
</tr>
<tr>
<td><a href="http://www.microchip.com">http://www.microchip.com</a></td>
<td>China - Guangzhou</td>
<td>Japan - Tokyo</td>
<td>France - Paris</td>
</tr>
<tr>
<td>Atlanta</td>
<td>Tel: 86-20-8755-8029</td>
<td>Tel: 81-3-6880-3770</td>
<td>Tel: 33-1-69-53-63-20</td>
</tr>
<tr>
<td>Duluth, GA</td>
<td>China - Hangzhou</td>
<td>Korea - Daegu</td>
<td>Fax: 33-1-69-30-90-79</td>
</tr>
<tr>
<td>Tel: 678-957-9614</td>
<td>Tel: 86-51-8792-8115</td>
<td>Korea - Seoul</td>
<td>Germany - Garching</td>
</tr>
<tr>
<td>Fax: 678-957-1455</td>
<td>China - Hong Kong SAR</td>
<td>Tel: 82-53-744-4301</td>
<td>Tel: 49-8931-9700</td>
</tr>
<tr>
<td>Austin, TX</td>
<td>Tel: 852-2943-5100</td>
<td>Malagasia - Kuala Lumpur</td>
<td>Germany - Haan</td>
</tr>
<tr>
<td>Tel: 512-257-3370</td>
<td>China - Nanjing</td>
<td>Tel: 60-4-227-8870</td>
<td>Tel: 49-2129-3766400</td>
</tr>
<tr>
<td>Boston</td>
<td>Tel: 86-25-8473-2460</td>
<td>Malaysia - Penang</td>
<td>Germany - Helbronn</td>
</tr>
<tr>
<td>Westborough, MA</td>
<td>China - Qingdao</td>
<td>Malaysia - Kuala Lumpur</td>
<td>Tel: 49-7731-72400</td>
</tr>
<tr>
<td>Tel: 774-760-0087</td>
<td>Tel: 86-532-8502-7355</td>
<td>Tel: 60-2-2554-7200</td>
<td>Germany - Karlsruhe</td>
</tr>
<tr>
<td>Fax: 774-760-0088</td>
<td>China - Shanghai</td>
<td>Tel: 40-4-227-8870</td>
<td>Tel: 49-721-625370</td>
</tr>
<tr>
<td>Chicago</td>
<td>Tel: 86-21-3326-8000</td>
<td>Taiwan - Hsin Chu</td>
<td>Germany - Munich</td>
</tr>
<tr>
<td>Itasca, IL</td>
<td>China - Shenzhen</td>
<td>Tel: 886-3-577-8366</td>
<td>Tel: 49-89-627-144-0</td>
</tr>
<tr>
<td>Tel: 630-285-0071</td>
<td>Tel: 86-24-2334-2829</td>
<td>Taiwan - Kaohsiung</td>
<td>Fax: 49-89-627-144-44</td>
</tr>
<tr>
<td>Fax: 630-285-0075</td>
<td>China - Suzhou</td>
<td>Tel: 886-7-213-7830</td>
<td>Germany - Rosenheim</td>
</tr>
<tr>
<td>Dallas</td>
<td>Tel: 86-186-6233-1526</td>
<td>Taiwan - Taipei</td>
<td>Tel: 49-8031-354-560</td>
</tr>
<tr>
<td>Addison, TX</td>
<td>China - Wuhan</td>
<td>Tel: 886-2-2508-8600</td>
<td>Israel - Ra'anan</td>
</tr>
<tr>
<td>Tel: 972-818-7423</td>
<td>Tel: 86-27-5980-5300</td>
<td>Thailand - Bangkok</td>
<td>Tel: 972-9-744-7705</td>
</tr>
<tr>
<td>Fax: 972-818-2924</td>
<td>China - Xian</td>
<td>Tel: 66-2-694-1351</td>
<td>Italy - Milan</td>
</tr>
<tr>
<td>Detroit</td>
<td>Tel: 86-29-8833-7252</td>
<td>Vietnam - Ho Chi Minh</td>
<td>Tel: 39-0331-742611</td>
</tr>
<tr>
<td>Novi, MI</td>
<td>China - Xiamen</td>
<td>Tel: 84-28-5448-2100</td>
<td>Fax: 39-0331-466781</td>
</tr>
<tr>
<td>Tel: 248-848-4000</td>
<td>Tel: 86-992-2388138</td>
<td></td>
<td>Italy - Padova</td>
</tr>
<tr>
<td>Houston, TX</td>
<td>China - Zhuhai</td>
<td></td>
<td>Tel: 39-049-7625286</td>
</tr>
<tr>
<td>Tel: 281-894-5983</td>
<td>Tel: 86-756-3210040</td>
<td></td>
<td>Netherlands - Drunen</td>
</tr>
<tr>
<td>Indianapolis</td>
<td></td>
<td></td>
<td>Tel: 31-416-690399</td>
</tr>
<tr>
<td>Noblesville, IN</td>
<td></td>
<td></td>
<td>Fax: 31-416-690340</td>
</tr>
<tr>
<td>Tel: 317-773-8323</td>
<td></td>
<td></td>
<td>Norway - Trondheim</td>
</tr>
<tr>
<td>Fax: 317-773-5453</td>
<td></td>
<td></td>
<td>Tel: 47-72884388</td>
</tr>
<tr>
<td>Tel: 317-536-2380</td>
<td></td>
<td></td>
<td>Poland - Warsaw</td>
</tr>
<tr>
<td>Los Angeles</td>
<td></td>
<td></td>
<td>Tel: 48-22-3325737</td>
</tr>
<tr>
<td>Mission Viejo, CA</td>
<td></td>
<td></td>
<td>Romania - Bucharest</td>
</tr>
<tr>
<td>Tel: 949-462-9523</td>
<td></td>
<td></td>
<td>Tel: 40-21-407-87-50</td>
</tr>
<tr>
<td>Fax: 949-462-9608</td>
<td></td>
<td></td>
<td>Spain - Madrid</td>
</tr>
<tr>
<td>Tel: 951-273-7800</td>
<td></td>
<td></td>
<td>Tel: 34-91-708-08-90</td>
</tr>
<tr>
<td>Raleigh, NC</td>
<td></td>
<td></td>
<td>Fax: 34-91-708-08-91</td>
</tr>
<tr>
<td>Tel: 919-844-7510</td>
<td></td>
<td></td>
<td>Sweden - Gothenberg</td>
</tr>
<tr>
<td>New York, NY</td>
<td></td>
<td></td>
<td>Tel: 46-31-704-60-40</td>
</tr>
<tr>
<td>Tel: 631-435-6000</td>
<td></td>
<td></td>
<td>Sweden - Stockholm</td>
</tr>
<tr>
<td>San Jose, CA</td>
<td></td>
<td></td>
<td>Tel: 46-8-5090-4654</td>
</tr>
<tr>
<td>Tel: 408-735-9110</td>
<td></td>
<td></td>
<td>UK - Wokingham</td>
</tr>
<tr>
<td>Tel: 408-436-4270</td>
<td></td>
<td></td>
<td>Tel: 44-118-921-5800</td>
</tr>
<tr>
<td>Canada - Toronto</td>
<td></td>
<td></td>
<td>Fax: 44-118-921-5820</td>
</tr>
</tbody>
</table>