Introduction

QTtouchADC is the newest addition to the range of sensing algorithms available in the Atmel® QTouch® Technology. It is implemented by oversampling a standard ADC and requires only one pin per channel. The only external component required is a series resistor on the ADC input pin. Compared to standard QTouch technology, QTouchADC offers faster acquisition times with shorter burst lengths, resulting in lower power consumption. This acquisition method is available as part of the QTouch Library for selecting Atmel AVR®s. It has also been implemented on certain touch sensor ICs. This application note aims to familiarize the reader with QTouchADC measurement technology and sensitivity tuning techniques.
Table of Contents

1. QTouchADC basics ... 3

2. Sensitivity tuning ... 4
 2.1 Ensure full charge transfer .. 5
 2.1.1 Coin-scope method .. 5
 2.1.2 CSD adjustment method .. 7
 2.2 Adjust pulse-scale factor .. 7
 2.2.1 Pulse factor .. 7
 2.2.2 Scale factor ... 8
 2.2.3 Setting the pulse-scale factor ... 8

3. Salient features ... 9
 3.1 Single pin per channel ... 9
 3.2 Simple design ... 9
 3.3 No external C\textsubscript{s} .. 9
 3.4 Noise immunity .. 9
 3.5 Faster acquisition .. 9
 3.6 Proximity sensing .. 9
 3.7 Resilient to AV\textsubscript{CC} changes .. 9

4. References ... 9
1. **QTouchADC basics**

The QTouchADC acquisition method works by sharing charge between the ADC’s internal sample-and-hold capacitor (C_s) and the sense electrode capacitance (C_x).

The charge sharing is carried out in the following sequence:

Step 1. C_x is charged and connected in parallel with C_s. This causes charge to flow between the capacitors until the charge is distributed proportionally between them.

Step 2. The resulting voltage across C_s is digitized by the ADC.

Step 3. C_s is charged and connected in parallel with C_x. The charge is shared between the capacitors again.

Step 4. The voltage across C_s, due to the remaining charge, is digitized by the ADC.

The two ADC values obtained are averaged and this gives the signal on the key. The long term average of the signal without touch is called the reference.

When the sensor is touched the effective capacitance of the sensor electrode increases and becomes $C_x + C_t$. This affects the amount of charge shared between the capacitors. When pre-charging C_x and sharing with C_s, charge transferred to C_s increases on touch and ADC input voltage increases. When pre-charging C_x and sharing with C_s, charge remaining on C_x decreases on touch and ADC input voltage decreases. But the resulting signal from the averaged ADC values increases on touch. If the difference between signal and reference is greater than the user-determined threshold (delta), a touch is reported.

Figure 1-1. QTouchADC block diagram.

Since an internal sampling capacitor is used, only a single physical pin is required per channel. The differential nature of the measurement provides a level of low frequency noise rejection.

It should be noted that C_x and C_t are not physical capacitors. C_x is the effective capacitance of the sense electrode and C_t is the effective capacitance of the human finger touching the sensor.
2. Sensitivity tuning

The touch sensor circuit can be represented as shown in Figure 2-1.

Figure 2-1. Equivalent charge sharing circuit.

The touch sense pin (QT) is connected through series resistor R_s to the sensor electrode capacitance, represented by C_x. The switch ST represents a finger touching the key. The capacitance introduced by the finger is represented as C_t. When the key is touched, C_t is switched into the circuit forming a parallel capacitor with C_x, changing the effective sensor capacitance to $C_x + C_t$. In the following discussion C_{xt} is used to represent the sum of $C_x + C_t$. The value of C_x should be close to that of C_s. If C_x is significantly larger than C_s then the ADC will saturate. For best performance it is recommended that C_{xt} should not be greater than $\sim 60\text{pF}$.

The series resistor R_s is nominally $1\text{k}\Omega$, but it may be increased to higher values to improve the noise immunity of the circuit. The value of R_s should be increased in steps to find the lowest value that provides adequate noise immunity. Resistance values of up to $100\text{k}\Omega$ have proven to be useful in extremely noisy environments.

The time constant τ to charge C_{xt} to 63% through R_s is given by:

$$\tau = R_s \times C_{xt}$$

In the extreme case given above, the time constant is

$$\tau = R_s \times C_{xt} = 100 \times 10^3 \times 60 \times 10^{-12} = 6 \times 10^{-6} \text{ that is, } \tau = 6\mu\text{s}$$

As the voltage across C_{xt} rise asymptotically, the charging current, and therefore the rate of transfer of charge through R_s falls asymptotically. After a charge time delay of 4τ the voltage across C_{xt} will be 98% of the applied voltage and the charge will be 98% of $V \times C_{xt}$.

The specific parameters and operating conditions of the key will vary from design to design. A certain amount of tuning will be required to optimize the performance of the key in each design. The main steps involved in tuning a sensor are ensuring full charge transfer on C_x, setting the appropriate gain on the signal and setting the averaging factor.

Note: 1. An asymptote is a line whose distance to a give curve tends to zero. An asymptote may or may not intersect its associated curve.
2.1 **Ensure full charge transfer**

In order to ensure reliable operation, it is essential to ensure that full charge transfer is achieved at all the relevant stages of the measurement procedure. The largest time constant to be considered during a measurement cycle is the charging of C_{xt} through R_s in step 1. This will be a function of C_{xt} and R_s as described above. The time constant associated with the charge sharing phases of the measurement will be a function of R_s and the series combination of C_{xt} and C_s (that is $(C_{xt} \times C_s)/(C_{xt} + C_s)$).

Hence with every change in R_s, the charging of C_{xt} needs to be measured to ensure full charge transfer. Two procedures are described to ensure that full charge is achieved at the sensor electrode. It is recommended that both methods are used to double-check that full charge transfer is achieved.

2.1.1 **Coin-scope method**

This method uses an oscilloscope to observe the pulses. The scope probe is coupled to the sensor electrode capacitively using a small coin on top of the overlying panel as shown in Figure 2-2. Alternatively a small piece of copper tape can be used. Probing the sensor directly will add the capacitance of the probe and will give an unrealistic wave shape.

![Figure 2-2. Coin-scope method used to measure charge pulses.](image)

Figure 2-3 represents the signal observed on the oscilloscope using the coin-scope method.
Five distinct regions can be identified in the signal:

- **Region 1:** Initially all the capacitors are discharged to eliminate any influence from previous measurements
- **Region 2:** The C_{xt} capacitor is pre-charged
- **Region 3:** Charge is shared from C_{xt} to C_s and the first measurement is performed
- **Region 4:** The C_s capacitor is pre-charged. This is not visible as sensor input is grounded during this phase
- **Region 5:** Charge is shared from C_s to C_{xt} and the second measurement is performed

The important aspect to check on this waveform is that the signal levels off least 1µs before the end of region 2. A key with insufficient charge time will show a waveform with a sharp peak similar to that shown in Figure 2-4.
Where such a waveform is observed, the Charge Share Delay (CSD) time should be increased until a waveform similar to the one in Figure 2-3 is observed. In Atmel QTTouch Libraries v4.4 and above the charge time can be increased by changing the value of the ‘DEF_QT_CHARGE_SHARE_DELAY’ parameter in the ‘touch_config_dp.h’ file associated with library file of the device. The value of this parameter can be varied from 1 to 255. Each unit of the parameter represents ~1μs of delay. CSD is a global parameter that affects all the channels.

2.1.2 CSD adjustment method

Proper charge transfer can also be verified without the use of an oscilloscope. To do this the Pulse and Scale factors should be set to 0. This is done by setting `qt_pulse_scale[Ch] = 0X00, where Ch is the channel number.

Initially the CSD is set to the minimum value. Now the signal should be noted while a full touch is applied. Next, with the CSD increased by 1μs, the signal level for a full touch is noted again. If the signal level increases by more than 1 with the extended charge time, then it can be determined that the sensor was not fully charged with the previous setting. CSD should be increased incrementally until the signal remains stable from one setting to the next. This is the optimal signal level and indicates that the charge transfer is complete.

Note:
1. A full touch is where the sensor has the maximum capacitive loading by applied touch which would be present in the target environment and usage of the application. For example, a grounded metal plate may be placed on top of the cover dielectric over the keys.

2.2 Adjust pulse-scale factor

The gain and averaging factor need to be adjusted to provide an appropriate touch delta and appropriate level of noise rejection to the measured signal. These two factors can be adjusted by changing the value of the ‘qt_pulse_scale[Ch]’ parameter, where ‘Ch’ is the channel number. The `qt_pulse_scale[Ch]` parameter can be assigned an 8-bit value where the high nibble indicates the ‘Pulse’ value and the low nibble sets the ‘Scale’ value.

2.2.1 Pulse factor

The Pulse setting configures the number of measurements to be carried out in each cycle, with the resulting values being accumulated to obtain measurement gain. In order to provide for an extremely wide dynamic range of Cx measurement, Pulse is implemented as a power of 2, that is, 2^{Pulse} measurements are accumulated. Each incremental increase of Pulse doubles the measured signal and also the touch delta.

Table 2-1. Pulse vs. number of measurements.

<table>
<thead>
<tr>
<th>Pulse</th>
<th>Number of measurements</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
</tr>
<tr>
<td>7</td>
<td>128</td>
</tr>
<tr>
<td>8</td>
<td>256</td>
</tr>
<tr>
<td>9</td>
<td>512</td>
</tr>
<tr>
<td>A</td>
<td>1024</td>
</tr>
<tr>
<td>B</td>
<td>2048</td>
</tr>
<tr>
<td>C</td>
<td>4096</td>
</tr>
</tbody>
</table>
2.2.2 Scale factor

The Scale setting provides a division factor for the accumulated signal (accumulated for 2^{pulse} measurements). Its purpose is to provide an averaging factor which will reduce or eliminate the effects of noise on the measured signal. To match the dynamic range achieved by the pulse, the scale follows the same 2^n implementation.

Table 2-2. Pulse vs. averaging factor

<table>
<thead>
<tr>
<th>Pulse</th>
<th>Averaging factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
</tr>
<tr>
<td>7</td>
<td>128</td>
</tr>
<tr>
<td>8</td>
<td>256</td>
</tr>
<tr>
<td>9</td>
<td>512</td>
</tr>
<tr>
<td>A</td>
<td>1024</td>
</tr>
<tr>
<td>B</td>
<td>2048</td>
</tr>
<tr>
<td>C</td>
<td>4096</td>
</tr>
<tr>
<td>D</td>
<td>8192</td>
</tr>
<tr>
<td>E</td>
<td>16384</td>
</tr>
<tr>
<td>F</td>
<td>32768</td>
</tr>
</tbody>
</table>

2.2.3 Setting the pulse-scale factor

With Scale = 0 (that is, divide by 1), Pulse should be used to configure the gain of each sensor key such that the delta seen on touch is in the range of 20 to 100.

Scale should be increased incrementally in order to achieve the desired level of signal averaging. In order to maintain the gain for which Pulse was configured, Pulse should be incremented once for each increase in Scale.

For example, it may be found that the required touch delta can be achieved with Pulse = 4 (16 measurements), and Scale = 3 (divide by 8). This gives $\text{qt}_\text{pulse_scale}[\text{Ch}] = 0X43$.

The same touch delta will be achieved with Pulse = 3 (8 measurements) and Scale = 2 (divide by 4) or any other settings with the same ratio of accumulated pulses to scale factor. It should be noted that increasing the Pulse factor will also increase the measurement time and response time. The default value of the Pulse-Scale factor is $\text{qt}_\text{pulse_scale}[\text{Ch}] = 0X21$.
3. **Salient features**

Following are some of the salient features of the QTouchADC acquisition method.

3.1 **Single pin per channel**

QTouchADC can be implemented on devices with an ADC peripheral. The device can support as many keys as the number of ADC inputs. When only a single key is configured the consecutive key needs to be reserved as a partner key. The partner key needs to be left unconnected. The partner key assignment is handled internally when two or more keys are configured.

3.2 **Simple design**

The sensor design for QTouchADC is very simple. A copper fill connected to the pin through a series resistor will function as a touch sensor. Shape, size and tracking considerations are same as those specified for standard QTouch sensors. Further details can be found in the application note ‘QTAN0079 Buttons, Sliders and Wheels Sensor Design Guide’ from Atmel.

3.3 **No external Cs**

Since the internal sample and hold capacitor of the ADC is used there is no need to add an external Cs capacitor. Only a single resistor (Rs) needs to be added on the ADC input pin. Thus reducing the number of external components used for each key.

3.4 **Noise immunity**

As described in Chapter 1, two pulses are used to carry out each acquisition. The process of averaging the signal over the two differential pulses inherently reduces low frequency noise present in the signal. Oversampling and averaging can also be used to reduce the effects of other types of noise.

3.5 **Faster acquisition**

The number of pulses for a reliable QTouchADC measurement is generally about 8 or 16 for a standard key. The number of pulses required may increase to some extent depending on application and environment. Conventional QTouch acquisition method can use hundreds of pulses for each acquisition. Hence the measurement time for each QTouchADC channel is much lower. With the device running at 4MHz, each acquisition takes 100-300µs.

3.6 **Proximity sensing**

QTouchADC can be used to make proximity sensors whose performance is better than that of standard QTouch proximity sensors.

3.7 **Resilient to AVcc changes**

The ADC is referenced to the same supply voltage used to charge the capacitors. Therefore the measured signal is independent of AVcc. Over long term variations of AVcc, only 5% variation is observed on the signal.

4. **References**
