1. Introduction

Atmel’s AT17FA\(^{(1)}\) series Flash-based FPGA configuration memory devices use a simple serial-access procedure to configure one or more Altera® field-programmable gate arrays (FPGAs). The AT17FA devices include an internal clock oscillator, allowing them to support Altera’s Passive Serial configuration mode, the most common and simple configuration mode supported by all Altera FPGA families.

This application note provides several drawings showing drop-in, stand-alone, in-system and cascade-programming circuits for the AT17FA series devices with Altera FPGAs. Since the AT17FA family devices operate at 3.3V, the Altera FPGAs must be setup to use a 3.3V I/O interface with the configurator. This requires the VCCIO pins of the Altera FPGAs to be set to about 3.3V. The AT17FA devices can be programmed using Atmel’s ATDH2200E programming system and are supported by major third party programmer vendors.

This application note also includes circuit drawings showing the use of Page Enable and Page Select features of the AT17FA.

Note: 1. AT17FA refers to devices: AT17F040A, AT17F080A, AT17F16A, or AT17F32A

2. Drop-In Programming Circuits for AT17FA Series Configurators with Altera FPGAs

The Atmel ATDH2200E programming system allows users to easily program AT17FA Configuration Memory devices with FPGA configuration files prior to mounting them on the target system. Once programmed, the configuration device can be placed on the target board to configure the FPGAs.

Figure 2-1 below shows the use of the ATDH2200.

Figure 2-1. ATDH2200E Stand-Alone Device Programming
In addition to the ATDH2200E programming system, many third-party programmers support the AT17FA Flash memory devices. A list of third-party programmer vendors supporting Atmel products can be found at: http://www.atmel.com/products/Config/thirdparty.asp. Please contact the programmer vendors for support availability.

Figure 2-2 below shows all the required connections between the AT17FA configurator and an Altera FPGA device when in-system programming is not required. This circuit requires that the AT17FA device be programmed either by the ATDH2000E programming system or a third-party programmer prior to mounting or using with target FPGA.

Figure 2-2. Drop-In circuit showing an AT17FA Series Device with an Altera FPGA

Notes:
1. Use of the READY pin is optional.
2. 0.1 µF capacitor is optional. If READY is not connected, an RC filter is recommended for input to nCONFIG to delay configuration until VCC is stable. nCONFIG can instead be connected to an active-low system reset signal.
3. MSEL pins should set the FPGA in the Passive Serial (PS) mode. For more detailed information, refer to the appropriate FPGA datasheet.
4. 10K Ohm
5. VCC = 3.3V
6. 100 pF capacitor
3. **In-System Programming Setup for AT17FA Series Configurators with Altera FPGAs**

To perform In-System Programming (ISP), the ATDH2225 programming dongle is required in order to provide communication between the PC and the configurator targeted for programming. See Figure 3-1.

Figure 3-1. ATDH2225 In-System Programming Setup
4. In-System Programming Circuits for AT17FA Series Configurators with Altera FPGAs

Figure 4-1 below shows all the required connections between the AT17FA Configurator, ISP circuits, and a single Altera FPGA device.

Figure 4-1. In-System Programming Circuit of AT17FA Series Devices with an Altera FPGA

Notes:
1. Use of the READY pin is optional.
2. 0.1 µF capacitor. If READY is used, the 0.1 µF capacitor is not needed. If READY is not connected, an RC filter is recommended for input to nCONFIG to delay configuration until VCC is stable. nCONFIG can instead be connected to an active-low system reset signal.
3. The A2 bit-level setting in the Configurator Programming System (CPS) software should match the A2 pin setting in the hardware. By default, it must be set to high for ISP access to Series Device 1 and set to low for Series Device 2.
4. 10K Ohm
5. VCC = 3.3V
6. MSEL pins should set the FPGA in the Passive Serial (PS) mode. For more detailed information, refer to the appropriate FPGA datasheet.
7. 100 pF capacitor
Figure 4-2. In-System-Programming of a Single AT17FA Series Device with Cascaded Altera FPGAs

Notes: 1. Use of the READY pin is optional.
2. 0.1 µF capacitor. If READY is used, the 0.1 µF capacitor is not needed. If READY is not connected, an RC filter is recommended for input to nCONFIG to delay configuration until VCC is stable. nCONFIG can instead be connected to an active-low system reset signal.
3. The A2 bit-level setting in the Configurator Programming System (CPS) software should match the A2 pin setting in the hardware. By default, it must be set to high for ISP access to Series Device 1 and set to low for Series Device 2.
4. 10K Ohm
5. VCC = 3.3V
6. MSEL pins should set the FPGA in the Passive Serial (PS) mode. For more detailed information, refer to the appropriate FPGA datasheet.
7. 100 pF capacitor
5. Cascaded Programming Circuits using AT17FA Series Configurators with Altera FPGAs

AT17FA devices provide a feature that allows a large FPGA configuration file that will not fit into one configurator device to be stored and downloaded from two AT17FA devices in serial cascade fashion.

When performing in-system programming with cascaded configurators, special attention must be given to the CEO/A2 I/O pins of the two configurator devices. While in configurator programming mode, (SEREN = 0), the CEO/A2 pins act as address line input A2. Consequently, in order for the ISP software to individually communicate with each device, each device must have a different address setting. In Figure 5-1, Device 1 uses its internal pull-up resistor to provide the logic “1” setting to its A2 pin, while the A2 pin of Device 2 is connected to ground for logic “0”. Hence, each configurator responds only to ISP software messages bearing its unique address.

Figure 5-1. In-System Programming of cascaded AT17FA Series Devices with Single Altera FPGA
Notes:
1. Use of the READY pin is optional.
2. 0.1 µF capacitor. If READY is used, the 0.1 µF capacitor is not needed. If READY is not con-
nected, an RC filter is recommended for input to nCONFIG to delay configuration until VCC is
stable. nCONFIG can instead be connected to an active-low system reset signal.
3. The A2 bit-level setting in the Configurator Programming System (CPS) software should match
the A2 pin setting in the hardware. By default, it must be set to high for ISP access to Series
Device 1 and set to low for Series Device 2.
4. 10K Ohm
5. VCC = 3.3V
6. MSEL pins should set the FPGA in the Passive Serial (PS) mode. For more detailed informa-
tion, refer to the appropriate FPGA datasheet.
7. 100 pF capacitor

Figure 5-2. In-System Programming of cascaded AT17FA Series Devices with Cascaded
Altera FPGAs
6. Using the Multiple Configuration Page Capabilities of AT17FA Configurators

AT17FA configurators provide a memory page feature that allows users to store four configuration files at four different page locations and instantly configure their FPGA device with the functionality given by each bitstream.

As an example of its usefulness, designs requiring a 1M-bit configuration device may benefit from using the AT17F040A since up to four different configurations can be stored and accessed as needed. This will simplify field upgrades and parts inventory by reducing the need for four 1M-bit devices holding 4 different design implementations, to just one 4M-bit device with four different configurations.

When the PAGE_EN(1) input of the AT17FA device is set to logic “1”, the storage space of the AT17FA device is split into four equal size partitions. Upon initiating a FPGA configuration sequence, the configuration bitstream residing at the page given by the Pagesel [1:0] bits, will be downloaded into the FPGA.

CPS software version 8.05 or later can be used to select and program the individual bitstreams at the page locations the user desires. Alternatively, designers who choose to write their own ISP code should note the address page boundaries as shown in Table 6-1.

Additional details on the use of the memory page feature and exact address boundary locations can be found in the corresponding AT17FA device datasheet.

Table 6-1. AT17FA Address Boundaries

<table>
<thead>
<tr>
<th>PAGE_EN</th>
<th>PAGESEL [1:0]</th>
<th>PAGE</th>
<th>AT17F040A ADDR RANGE</th>
<th>AT17F080A ADDR RANGE</th>
<th>AT17F16A ADDR RANGE</th>
<th>AT17F32A ADDR RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>XX</td>
<td>1-4</td>
<td>00000-3FFFFF</td>
<td>00000-7FFFFF</td>
<td>00000-FFFFFF</td>
<td>000000-1FFFFFF</td>
</tr>
<tr>
<td>1</td>
<td>00</td>
<td>1</td>
<td>00000-0FFFFF</td>
<td>00000-1FFFFF</td>
<td>00000-3FFFFF</td>
<td>000000-07FFFFF</td>
</tr>
<tr>
<td>1</td>
<td>01</td>
<td>2</td>
<td>10000-1FFFFF</td>
<td>20000-3FFFFF</td>
<td>40000-7FFFFF</td>
<td>080000-0FFFFF</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>3</td>
<td>20000-2FFFFF</td>
<td>40000-5FFFFF</td>
<td>80000-0FFFFF</td>
<td>100000-17FFFFF</td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>4</td>
<td>30000-3FFFFF</td>
<td>60000-7FFFFF</td>
<td>C0000-FFFFFF</td>
<td>180000-1FFFFF</td>
</tr>
</tbody>
</table>

Figures 6-1 and 7-1 show circuit drawings, implementing the page enable and page select features of AT17FA devices. Use of the page feature is aided by control logic such as a microcontroller, PLD or DIP switch for the purpose of controlling the page selection pins.

Notes:
1. The page enable feature is not available on the low 8-lead LAP package
2. The address ranges reflect that data is stored 16-bits per address.
Figure 6-1. PLD/Microcontroller Logic Controlled Page Selection

Notes:
1. Use of the READY pin is optional.
2. 0.1 µF capacitor. If READY is used, the 0.1 µF capacitor is not needed. If READY is not connected, an RC filter is recommended for input to nCONFIG to delay configuration until VCC is stable. nCONFIG can instead be connected to an active-low system reset signal.
3. The A2 bit-level setting in the Configurator Programming System (CPS) software should match the A2 pin setting in the hardware. By default, it must be set to high for ISP access to Series Device 1 and set to low for Series Device 2.
4. 1K Ohm
5. VCC = 3.3V
6. MSEL pins should set the FPGA in the Passive Serial (PS) mode. For more detailed information, refer to the appropriate FPGA datasheet.
7. 100 pF capacitor
7. How to Generate a Programming File for AT17FA Series Devices to be Used in Altera FPGA Applications

To program Atmel AT17FA series devices for configuring Altera FPGAs in Passive Serial (PS) mode, the user can export a compressed or decompressed raw binary file (.rbf) programming file from Altera’s Quartus® II software.

In Quartus, the user can go to the “Assignments” manual > “Device” > “Device & Pin Options” > “programming files” > Raw binary file (*.rbf) to generate the RBF for targeting an EPC series device.

The following describes the steps to setup the compression option in Quartus II for generating the programming file:

1. Go to “Assignments” > “Device” from the main menu of Quartus II.
2. In the main “Settings” window, click on the “Device & Pin Options” button.
3. In the “Device & Pin Options” window, select the “Configuration” tab.
4. For the “Configuration Scheme” field, select “Passive Serial (can use Configuration Device)”.
5. In the “Configuration Device” section, select “EPC2”, “EPC4”, “EPC8”, or “EPC16”.

Notes: 1. The programming file for targeting EPC16 with compression can be used for AT17F32A. The programming file for targeting EPC8 with compression can be used for AT17F16A. The programming file for targeting EPC4 with compression can be used for AT17F080A. The programming file for targeting EPC2 with compression can be used for AT17F040A.
2. The configuration bit of an Altera FPGA can be used to determine the density of the Atmel AT17FA series configuration memory that can be used.
6. Check the “Generate compressed bitstreams” option.
7. Click on the “Configuration Device Options” button.
8. In the “Configuration Device Options” window, check the “Compression mode” option.
9. Clock “OK” three times to close all windows and return to the Quartus main menu.

Note: Atmel AT17FA configurators do not have a decompression feature. However, there are two types of decompression used for Altera FPGA configuration. One decompression type is done by Altera enhanced configuration memory and the other type is done by an Altera FPGA during configuration which is used in the above mentioned case.

To disable compression for generating the normal programming file, both the “Generate compressed bitstreams” and “Compression mode” options should be unchecked in Quartus.

1. Go to “Assignments” > “Device” from the Quartus main menu.
2. In the main “Settings” window, click on the “Device & Pin Options” button.
3. In the “Device & Pin Options” window, select the “Configuration” tab.
4. For the “Configuration scheme” field, select “Active Serial (can use Configuration Device)”.
5. In the “Configuration device” section, select “EPC4”, “EPC8” or “EPC16”.
6. Check the “Generate compressed bitstreams” options.

Notes: 1. The programming file for targeting EPC16 without compression can be used for AT17F16A. The programming file for targeting EPC8 without compression can be used for AT17F080A. The programming file for targeting EPC4 without compression can be used for AT17F040A.
2. The configuration bit of an Altera FPGA can be used to determine the density of the Atmel AT17FA series configuration memory that can be used.
3. The programming file cannot be generated by selecting the EPCS family of the configuration memories (EPCS1, EPCS4, EPCS16) for targeting the AT17FA series devices since SPI Flash instructions are not supported by AT17FA series devices.
If the Atmel ATDH2200E or ATDH2225 programming hardware is used, the RBF file can be directly programmed to the device with the "/A" procedure in the Atmel CPS software. However, if a third-party programmer is used, the user must use the .rbf file with the "/B" procedure in the Atmel CPS software to convert it to a .hex file first (if two hex files are generated, only the first hex file is used). For file conversion, the input file is .rbf and the output file is .bst. The .hex file (Intel® MCS®-86 hex object file) will be generated at the same time.

The converted hex file can program as an Intel MCS86 hex object file to an Atmel AT17FA device using any third-party programmer that supports AT17FA devices.

Figure 7-1. Manually-Controlled Paging Selection

Notes:
1. Use of the READY pin is optional.
2. 0.1 μF capacitor. If READY is used, the 0.1 μF capacitor is not needed. If READY is not connected, an RC filter is recommended for input to nCONFIG to delay configuration until VCC is stable. nCONFIG can instead be connected to an active-low system reset signal.
3. The A2 bit-level setting in the Configurator Programming System (CPS) software should match the A2 pin setting in the hardware. By default, it must be set to high for ISP access to Series Device 1 and set to low for Series Device 2.
4. 1K Ohm
5. VCC = 3.3V
6. MSEL pins should set the FPGA in the Passive Serial (PS) mode. For more detailed information, refer to the appropriate FPGA datasheet.
7. 100 pF capacitor