Cascaded Programming Circuits using AT17(A) Configurators with Atmel, Xilinx® and Altera® FPGAs

Atmel AT17A series configurators use a simple serial-access procedure to configure one or more Field Programmable Gate Arrays (FPGAs) or Field Programmable System Level Integrated Circuits (FPSLIC™) devices.

This application note provides circuits showing how to perform In-System Programming (ISP) on two cascaded AT17(A) devices, as well as how to use these devices to configure Atmel, Xilinx and Altera FPGAs.

The A2 input of cascaded configurators must be used as an address pin (set to logic level “0” for one configurator and logic level “1” for the other). Each configurator responds only to messages from the programming interface bearing its unique address.

The A2 pin of the AT17LVXXX and AT17LVXXXA series configurator has internal weak pull-down circuitry. However, the A2 pin of the AT17FXXX an AT17FXXXA series configurator has internal weak pull-up resistor. This default setting of the A2 pin requires the appropriate A2 bit level setting in the message of the programming software.

To enter programming mode, the SER_EN pin has to be set to logic Low. For in-system programming, this is accomplished by connecting the 10-pin ISP connector to the ISP cable. Since pin 10 of the ISP cable is connected to GND, SER_EN is grounded automatically.

For drop-in/stand-alone programming, the SER_EN pin is set to logic Low by the programmer.

In configuration mode, the SER_EN pin has to be set to logic High. For In-system programming, this can be achieved by releasing the ISP cable to allow the external pull-up resistor to pull the SER_EN pin to V_CC (High). For stand-alone and drop-in programming, the SER_EN pin can be directly connected to V_CC.

1. AT17(A) = AT17/AT17A
 AT17 = AT17LV/FXXX
 AT17A = AT17LV/FXXXA
 AT17NXXX series configurators should not be used in the cascaded circuits of this document.
The In-System Programming (ISP) circuit diagrams are shown in Figures 1 through 4. Atmel ATDH2200E or ATDH2225 ISP download cable is recommended to use for the ISP circuit. Refer to the ATDH2200E or ATDH2225 user guides, available on the Atmel web site, for the ISP programming procedure.

Figure 1. ISP of AT17LVXXXA Series Devices for Altera FPGA Applications, Internal Oscillator and Cascaded Arrangement

Notes:
1. Reset polarity level of the configurator must be set to active Low (RESET/OE) by ISP programmer.
2. Use of the READY pin is optional.
3. RC filter recommended for input to nCONFIG to delay configuration until VCC is stable. nCONFIG can instead be connected to an active Low system reset signal. The capacitor is only recommended if slow or fast power up ramp rate of the power supply is used.
4. The internal oscillator of the second cascaded configurator must be disabled by the programmer.
5. The A2 bit level setting in the Configurator Programming System (CPS) software must be set to low for ISP access to Series Device 1, and set to high for Series Device 2.
Figure 2. ISP of AT17FXXXA Series Devices for Altera FPGA Applications, Internal Oscillator and Cascaded Arrangement

Note:
1. Use of the READY pin is optional.
2. RC filter recommended for input to nCONFIG to delay configuration until \(V_{CC} \) is stable. nCONFIG can instead be connected to an active Low system reset signal. The capacitor is only recommended if slow or fast power up ramp rate of the power supply is used.
3. The A2 bit level setting in the Configurator Programming System (CPS) software must be set to high for ISP access to Series Device 1, and set to low for Series Device 2.
Figure 3. ISP of AT17LVXXX Series for Xilinx/Lattice® FPGA Applications, Cascaded Arrangement

Notes: 1. Reset polarity level of the configurator must be set to active Low (RESET/OE) by ISP programmer.
2. Use of the READY pin is optional.
3. A 330Ω external pull-up resistor on the DONE pin is required for Virtex® and Virtex-II FPGAs. Xilinx FPGAs can use LDC instead of the DONE pin.
4. Xilinx FPGAs can use RESET instead of the PROGRAM pin. ORCA® FPGAs can use PRGM instead of the PROGRAM pin.
5. The A2 bit level setting in the Configurator Programming System (CPS) software must be set to low for ISP access to Series Device 1, and set to high for Series Device 2.
Figure 4. ISP of AT17FXXX Series for Xilinx/Lattice® FPGA Applications, Cascaded Arrangement

Notes:
1. Use of the READY pin is optional.
2. A 330Ω external pull-up resistor on the DONE pin is required for Virtex® and Virtex-II FPGAs. Xilinx FPGAs can use LDC instead of the DONE pin.
3. Xilinx FPGAs can use RESET instead of the PROGRAM pin. ORCA® FPGAs can use PRGM instead of the PROGRAM pin.
4. The A2 bit level setting in the Configurator Programming System (CPS) software must be set to high for ISP access to Series Device 1, and set to low for Series Device 2.
The Drop-in/stand-alone programming circuit diagrams are displayed in Figure 5 and Figure 6. Atmel ATDH2200E programming kit and many other third-party programmers can be used to program the configuration bitstream to the EEPROMs, before the parts are placed into the drop-in/stand-alone programming circuits.

Figure 5. Drop-In Replacement of AT17A Devices for Altera FPGAs, Internal Oscillator and Cascaded Arrangement

Notes:

1. Reset polarity level of the configurator must be set to active Low (RESET/OE) by programmer if AT17LVXXXA series configurators are used.
2. RC filter recommended for input to nCONFIG to delay configuration until Vcc is stable. nCONFIG can instead be connected to an active Low system reset signal. The capacitor is only recommended if slow or fast power up ramp rate of the power supply is used.
3. If AT17LVXXXA series configurators are used, the internal oscillator of the DCLK pin of the second configurator must be disabled to avoid clock contention.
Figure 6. Drop-In Replacement of AT17 Series Devices for Xilinx and Lattice Applications, Cascaded Arrangement

Notes:
1. Reset polarity level of the configurator must be set to active Low (RESET/OE) by programmer if AT17LVXXX series configurators are used.
2. A 330Ω external pull-up resistor on the DONE pin is required for Virtex and Virtex-II FPGAs. Xilinx FPGAs can use LDC instead of the DONE pin.
3. Use of the READY pin is optional.
4. Xilinx FPGAs can use RESET instead of the PROGRAM pin. ORCA FPGAs can use PRGM instead of the PROGRAM pin.
Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Regional Headquarters

Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Atmel Operations

Memory
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01

RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 7131-67-0
Fax: (49) 7131-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: (719) 576-3300
Fax: (719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom
Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80

Literature Requests
www.atmel.com/literature