INTRODUCTION

The Analog-to-Digital Converter (ADC), with computation module (ADC2), in Microchip's 8-bit microcontroller, has built-in computational features that provide post-processing functions such as oversampling, averaging and low-pass filtering.

This technical brief provides a discussion on the ADC2 features, methods of configuration, and modes of operation.

FIGURE 1: ADC BLOCK DIAGRAM

ADC2 MODULE BLOCK DIAGRAM

The block diagram shown in Figure 1 displays the process of converting the analog input signals into a digital form. The diagram is sub-divided into positive channel selection source, the positive and negative voltage reference sources, the conversion clock source, the conversion result and the auto-conversion trigger source. The analog input channel sources are multiplexed into a single sample and hold circuit. The output of the sample and hold circuit is connected to the converter, which generates a binary representation of the analog input. When the ADC is operating with computational features, the conversion result will be passed onto the computational feature block diagram (see Figure 2) for post-processing. The post-processing result is then evaluated using error calculation and threshold comparison.
FIGURE 2: ADC COMPUTATIONAL FEATURE BLOCK DIAGRAM

Channel Selection Source
The ADC Positive Channel Selection register (ADPCH) determines which channel is connected to the sample and hold circuit. Channel selection sources are not limited to external analog input sources but can be an output of a peripheral or an internal reference voltage. Refer to the product data sheet for the list of channel selections available.

Voltage Reference Source
The voltage reference sets the input voltage range of the ADC. It can be an external source from the VREF+/− pins, VDD, FVR, or VSS. The positive and negative voltage references are selected using the ADC Positive Voltage Reference Selection bits (ADPREF) and the ADC Negative Voltage Reference Selection bits (ADNREF) of the ADC Reference Selection register (ADREF).

Equation 1 shows how to calculate the ADC result using VREF+/− pins. It is important to note that VREF+ must always be greater than VREF−, and VREF− must have a value greater than or equal to zero.

EQUATION 1: ADC RESULT

\[
ADRES = \frac{2^n - 1}{V_{REF^+} - V_{REF^-}} \times (V_{IN} - V_{REF^-})
\]

Where: \(n = 10\) for 10-bit ADC
\(= 12\) for 12-bit ADC

Conversion Clock Source
The conversion clock has multiple sources, either from the main oscillator, which is divided by multiples of two (i.e., 2, 4, 6, ..., 128), or from the dedicated internal RC clock. The conversion clock source is controlled by the ADC Clock Selection bit (ADCS) of the ADC Control Register 0 (ADCON0) and the ADC Conversion Clock Select bits (ADCCS) of the ADC Clock Selection register (ADCLK). When ADCS is clear, the clock is supplied by FOSC and is divided according to the value of ADCCS (see Equation 2).

The desired ADC clock should meet the ADC conversion timing specifications provided by the data sheet, (i.e., PIC16F18855 device data sheet (DS40001802), Table 23-1: ADC Clock Period (TAD) Vs. Device Operating Frequencies). When the ADCS is set, the clock is supplied by the dedicated RC oscillator, FRC.

Note: Only one channel can be selected and converted at a time in a single ADC module.

Note: Consult the device data sheet since some devices do not have ADNREF bits.
EQUATION 2: DETERMINING THE VALUE OF ADCCS

\[\text{CLK}_{\text{conversion}} = \frac{F_{\text{OSC}}}{2(\text{ADCCS} + 1)} \]

Example:
The system's oscillating frequency runs at 4 MHz. If the conversion clock needs to run at 400 kHz, find the value of the ADC Conversion Clock Select bits ADCCS.

\[
400000 = \frac{4000000}{2(\text{ADCCS} + 1)}
\]

\[
2(\text{ADCCS} + 1) = \frac{4000000}{400000}
\]

\[
2(\text{ADCCS} + 1) = 10
\]

\[
(\text{ADCCS} + 1) = 5
\]

\[
\text{ADCCS} = 4
\]

\[
\text{ADCCS} = 0b000100
\]

ADC Acquisition Requirements

Acquisition time is the time required for the ADC to capture the input voltage during sampling. For the ADC to meet its specified accuracy, the sample and hold capacitor (CHOLD) must be given sufficient time to settle to the input channel voltage level before the actual conversion is initiated. If sufficient time is not allowed for acquisition, the conversion will be inaccurate. There are many factors that affect the acquisition time. These are the following: CHOLD, interconnect impedance (Ric), output impedance of the analog source (Rs), and the switch impedance (Rss). The maximum recommended impedance for analog sources in 10-bit and 12-bit ADC is 10 kΩ and 4.4 kΩ, respectively. Refer to the specific device data sheet with regard to the equation that calculates the minimum acquisition time for a particular application.

Auto-Conversion Trigger Source

The Auto-conversion Trigger allows the system to schedule acquisition and conversion sequences without software intervention. When a rising edge of the selected source occurs, the ADGO bit is set. The sources for the auto-conversion trigger can be found on the device data sheet. In an application, these auto-conversion trigger sources can be used to set the sampling period of the ADC. The auto-conversion source is selected using the ADC Auto-conversion Trigger Control register (ADACT).

CONTINUOUS MODE RETRIGGER

The Continuous mode retrigger can be enabled by setting the A/D Continuous Operation Enable bit (ADCONT) of the ADCON0 register to ‘1’ (ADCONT = 1). Enabling the Continuous mode allows an automatic sampling retrigger after the threshold has been tested. In this mode, the A/D Conversion Status bit (ADGO) of the ADCON0 register remains set until the threshold conditions are met, according to the selected ADTMD and the A/D Stop On Interrupt bit (ADSOI) of the ADCON3 register.

SLEEP MODE

Operating the ADC^2 module in Sleep mode requires the ADC clock source to use the dedicated RC oscillator (FRC). When the conversion is complete, the device will wake-up if the ADC interrupt is enabled. If the ADC interrupt is disabled, the device will remain in Sleep.

If an external trigger is received during Sleep while the clock source is set to FRC, the ADC will perform the conversion and set the ADC Interrupt Flag bit (ADIF) upon completion. If an external trigger is received during Sleep while the clock source is set to something other than the FRC, the trigger is recorded but the conversion will not begin until the device exits the Sleep mode.
CAPACITIVE VOLTAGE DIVIDER (CVD) FEATURE

One of the features of ADCC module is the CVD. CVD uses capacitors as components for the voltage divider circuit. Figure 3 shows the block diagram for the hardware CVD portion of the ADCC module. This feature of ADCC allows the user to perform relative capacitance measurement on any ADC channel using the internal ADC CHOLD as a reference.

The CHOLD and the external capacitance sensor connected to the selected analog channel are pre-charged to VDD or VSS depending on the selected pre-charge polarity bit (ADDPOL) of ADCON1 register, while the path between CHOLD and external capacitive sensor is disconnected. The amount of time that this charging occurs depends on the value set in the ADPRE register. This pre-charge stage is enabled by writing a non-zero value to the ADPRE register. If the ADPRE is set to ‘0’ when an ADC conversion begins, the pre-charge stage is skipped.

The acquisition stage is a measured time for the CHOLD voltage to charge or discharge from the selected analog channel. During acquisition, a capacitive voltage divider is formed between the pre-charged CHOLD and the selected analog channel while the selected analog channel is connected to CHOLD. As a result, the charge between the CHOLD and the external capacitance sensor connected to the selected analog channel is now equally distributed. After the charge transfer has been stabilized, the CHOLD voltage is measured by the ADCC and used for determining the capacitance value of the external capacitance.

Another unique feature of CVD hardware is the optional additional capacitance that can be added in parallel with the CHOLD. This additional capacitance can be selected via the ADC Additional Sample Capacitor Selection Register (ADCAP). It is used in CVD applications by improving the match between the internal and external capacitance for better sensing performance.

FIGURE 3: HARDWARE CAPACITIVE VOLTAGE DIVIDER BLOCK DIAGRAM
GUARD RING CIRCUIT

ADCC module is also equipped with a guard ring circuit (see Figure 4) which supports the hardware CVD. Two digital outputs and associated voltage divider resistors are used to drive the guard ring voltage. The guard ring circuit is used to generate a signal in phase with the CVD sensing signal to minimize the effects of the parasitic capacitance on sensing electrodes. It can also be used as a mutual drive for mutual capacitive sensing. For more information about active guard and mutual drive, see Application Note AN1478 "mTouch™ Sensing Solution Acquisition Methods Capacitive Voltage Divider", (DS01478).

The ADCC provides two guard ring outputs, ADGRDA and ADGRDB pins. For a device that has Peripheral Pin Select (PPS), the ADGRDA and ADGRDB can be remapped to any output pins using the PPS Output Selection Register (RxyPPS).

The “Rxy” in the RxyPPS is a place holder for the pin identifier (e.g., RB0PPS = 0x24 and RB1PPS = 0x25), where RB0 is configured as ADGRDA output pin and RB1 as ADGRDB output pin. Note that selector values for the PPS of ADGRDA and ADGRDB are device-specific.

FIGURE 4: GUARD RING CIRCUIT
ADCC OUTPUT ACTIONS

Threshold Comparison

The post-processing result of the ADC\(^2\) module can be compared to the threshold value set in the ADC Error Calculation Mode Select bits (ADCALC) of the ADC Threshold register (ADCON3). The ADC Result register (ADRES), ADC Previous Result register (ADPREV), ADC Threshold Setpoint register (ADSTPT), and ADC Filter register (ADFLTR) are involved in the error calculation. The selected Error Calculation mode and Sample Conversion mode determine how the registers are used in the error calculation (see Table 1).

Double Sampling mode is enabled by setting the Double-Sample Enable bit (ADDSEN) of the ADCON1 register. When this bit is set, two conversions are required before the module starts calculating the threshold error. This is not technically true in hardware, but the finished effect is truthfully described by this when ADIF occurs.

TABLE 1: ERROR CALCULATION MODE

<table>
<thead>
<tr>
<th>ADCALC</th>
<th>ADDSEN=0 Error Calculation</th>
<th>ADDSEN=1 CVD Double-Sample Mode(^{(1)})</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>ADRES-ADPREV</td>
<td>ADRES-ADPREV</td>
<td>First derivative of single measurement(^{(2)})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Actual CVD result in CVD(^{(2)})</td>
</tr>
<tr>
<td>001</td>
<td>ADRES-ADSTPT</td>
<td>(ADRES-ADPREV)-ADFLTR</td>
<td>Actual result vs. setpoint</td>
</tr>
<tr>
<td>010</td>
<td>ADRES-ADFLTR</td>
<td>(ADRES-ADPREV)-ADFLTR</td>
<td>Actual result vs. averaged/filtered value</td>
</tr>
<tr>
<td>011</td>
<td></td>
<td></td>
<td>Reserved</td>
</tr>
<tr>
<td>100</td>
<td>ADPREV-ADFLTR</td>
<td>ADPREV-ADFLTR</td>
<td>First derivative of filtered value(^{(3)}) negative</td>
</tr>
<tr>
<td>101</td>
<td>ADFLTR-ADSTPT</td>
<td>ADFLTR-ADSTPT</td>
<td>Average/filtered value vs. setpoint</td>
</tr>
<tr>
<td>110</td>
<td></td>
<td></td>
<td>Reserved</td>
</tr>
<tr>
<td>111</td>
<td></td>
<td></td>
<td>Reserved</td>
</tr>
</tbody>
</table>

Note
1. When ADPSIS = 0, the value of (ADRES-ADPREV) is equal to \(S_2-S_1\).
2. When ADPSIS = 0.
3. When ADPSIS = 1.
The calculated result is stored in the ADERR, which can be compared to the selected upper or lower threshold. These two threshold values can be set by changing the ADC Upper Threshold (ADUTH) registers and the ADC Lower Threshold (ADLTH) registers. A result of true, based on the comparison shown in Table 2, will trigger an interrupt. This threshold test is selected via the Threshold Interrupt Mode Select bits (ADTMD) of the ADCON3 register.

TABLE 2: THRESHOLD INTERRUPT MODE

<table>
<thead>
<tr>
<th>ADTMD</th>
<th>Interrupt Condition</th>
<th>Comparator Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>Never Interrupt</td>
<td></td>
</tr>
<tr>
<td>001</td>
<td>Error < Lower threshold</td>
<td>True, —</td>
</tr>
<tr>
<td>010</td>
<td>Error ≥ Lower threshold</td>
<td>False, —</td>
</tr>
<tr>
<td>011</td>
<td>Error is between thresholds</td>
<td>False, AND, False</td>
</tr>
<tr>
<td>100</td>
<td>Error is outside thresholds</td>
<td>True, OR, True</td>
</tr>
<tr>
<td>101</td>
<td>Error ≤ Upper threshold</td>
<td>—, False</td>
</tr>
<tr>
<td>110</td>
<td>Error > Upper threshold</td>
<td>—, True</td>
</tr>
<tr>
<td>111</td>
<td>Interrupt for all data</td>
<td>—, —</td>
</tr>
</tbody>
</table>
COMPUTATION MODES

Basic Mode

The Basic mode of the ADC^2 mimics the legacy ADC operation. In this mode, the accumulator logic is not active. This means that the A/D Accumulator (ADACC) and A/D Repeat Count (ADCNT) registers values are not used throughout the operation and the ADRES register is used in all modes. The Basic mode of the ADC^2 is selected by setting the A/D Operating Mode selection bits (ADMD) of the A/D Control Register 2 (ADCON2) to 0 (ADMD = 000). With the auto-trigger feature of the module, input sampling can be easily triggered by other peripherals and external sources. The result of the conversion can be compared to a threshold set point which may trigger the Analog-to-Digital Converter Interrupt Flag bit (ADTIF) of the PIR1 register.

Figure 5 shows the result of the Basic mode ADC conversion using different sampling rates.

FIGURE 5: BASIC MODE
Accumulate Mode

The Accumulate mode of the ADC2 is selected by setting the ADMD bits of the ADCON2 register to 1 (ADMD = 001). In this mode, the digital representation of the analog input signal in the 10-bit or 12-bit ADRES register is accumulated to the 16-bit or 18-bit ADACC register, respectively. With each sample, ADCNT is incremented, indicating the number of samples accumulated. The ADCNT value saturates at 255 samples and does not rollover to zero. Since the value being accumulated to ADACC is a 10-bit or 12-bit ADRES value, the ADACC may overflow after as few as 64 samples. This event will trigger the ADC Accumulator Overflow bit (ADAOV) of the status register, ADSTAT.

The accumulated value can be right-shifted up to six times by changing the value of the ADC Accumulate Calculation Right Shift Select bits (ADCRS) of the ADCON2 register. This means that the accumulated value is effectively divided by a power of two (2^{ADCRS}). The result of the shifted accumulated value is stored in the ADFLTR register. Table 3 shows a sample data of an Accumulator mode with 10-bit ADRES register.

<table>
<thead>
<tr>
<th>ADCNT</th>
<th>ADCRS</th>
<th>VINPUT</th>
<th>10-bit ADRES</th>
<th>16-bit ADACC</th>
<th>16 bit ADFLTR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2.5V</td>
<td>514</td>
<td>514</td>
<td>64</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2.5V</td>
<td>514</td>
<td>1028</td>
<td>128</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2.5V</td>
<td>514</td>
<td>1542</td>
<td>192</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2.5V</td>
<td>514</td>
<td>2056</td>
<td>257</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2.5V</td>
<td>514</td>
<td>2570</td>
<td>321</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>2.5V</td>
<td>514</td>
<td>3084</td>
<td>385</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>2.5V</td>
<td>514</td>
<td>3598</td>
<td>449</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>2.5V</td>
<td>514</td>
<td>4112</td>
<td>514</td>
</tr>
</tbody>
</table>

Averaging Mode

The Average mode of the ADC2 is selected by setting the ADMD bits of the ADCON2 register to 2 (ADMD = 010). This mode is like an Accumulate mode wherein the ADACC accumulates the data sample and the ADCNT increments with each sample, except that the number of samples being accumulated in this mode is up to the value set in the A/D Repeat Setting register (ADRPT). When the ADCNT is equal to ADRPT, the value stored in the ADC Filter register (ADFLTR) becomes the average value of the input signal. Effectively, the value stored in the ADFLTR is the resulting factor of ADACC and ADRPT. The average value of the input voltage can be correctly calculated when the ADRPT is equal to Equation 3. When the ADCNT exceeds the value of ADRPT, the ADCNT and ADACC registers reset automatically to accumulate again the data samples.

Table 4 shows the data samples for the Averaging mode where the ADRPT is equal to two, and with the ADRPT equal to four. This means that four samples will be accumulated to get the average value, then on the fifth sample, the accumulator will be cleared automatically as shown in Figure 6.

EQUATION 3: NUMBER OF SAMPLES TO BE TAKEN

$$ADRPT = 2^{ADCRS}$$
TABLE 4: AVERAGE MODE EXAMPLE

<table>
<thead>
<tr>
<th>ADCRS</th>
<th>ADRPT</th>
<th>SAMPLE</th>
<th>ADCNT</th>
<th>10-bit ADRES</th>
<th>ADACC</th>
<th>ADFLTR</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>518</td>
<td>518</td>
<td>129</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>518</td>
<td>1036</td>
<td>259</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>516</td>
<td>1552</td>
<td>388</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>517</td>
<td>2069</td>
<td>517</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>518</td>
<td>518</td>
<td>129</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>517</td>
<td>1035</td>
<td>258</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>6</td>
<td>3</td>
<td>517</td>
<td>1552</td>
<td>388</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>7</td>
<td>4</td>
<td>518</td>
<td>2070</td>
<td>517</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>8</td>
<td>1</td>
<td>517</td>
<td>517</td>
<td>129</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>9</td>
<td>2</td>
<td>516</td>
<td>1033</td>
<td>258</td>
</tr>
</tbody>
</table>

FIGURE 6: ADC^2 AVERAGE MODE

![ADC^2 AVERAGE MODE Diagram]

10-Bit Digital Representation

Time (ms)
Burst Average Mode

Like Averaging mode, the Burst Average mode averages the input signal except that the sampling is acquired quickly after a single trigger (see Figure 7). This means that in a single conversion, all the data samples are accumulated up to the set ADRPT and when the ADCNT matches the set ADPRT value, the average value of the input signal is attained. Once the burst average value is attained, the threshold comparison can be performed. For further information, see Section “Threshold Comparison”. Consequently, ADTIF can only occur at the end of a burst.

The Burst Average mode is selected by setting the ADMD bits of the ADCON2 register to 3 (ADMD = 011).

Table 5 shows the data sample for Burst Average mode.

TABLE 5: BURST AVERAGE MODE EXAMPLE

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>TRIGGER</th>
<th>ADCNT</th>
<th>ADRS</th>
<th>ADRPT</th>
<th>10-bit ADRES</th>
<th>ADACC</th>
<th>ADFLTR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-8</td>
<td>1</td>
<td>8</td>
<td>3</td>
<td>8</td>
<td>207</td>
<td>1655</td>
<td>206</td>
</tr>
<tr>
<td>9-16</td>
<td>2</td>
<td>8</td>
<td>3</td>
<td>8</td>
<td>207</td>
<td>1653</td>
<td>206</td>
</tr>
<tr>
<td>17-24</td>
<td>3</td>
<td>8</td>
<td>3</td>
<td>8</td>
<td>206</td>
<td>1653</td>
<td>206</td>
</tr>
<tr>
<td>25-32</td>
<td>4</td>
<td>8</td>
<td>3</td>
<td>8</td>
<td>207</td>
<td>1653</td>
<td>206</td>
</tr>
<tr>
<td>33-40</td>
<td>5</td>
<td>8</td>
<td>3</td>
<td>8</td>
<td>207</td>
<td>1652</td>
<td>206</td>
</tr>
<tr>
<td>41-48</td>
<td>6</td>
<td>8</td>
<td>3</td>
<td>8</td>
<td>207</td>
<td>1653</td>
<td>206</td>
</tr>
<tr>
<td>49-56</td>
<td>7</td>
<td>8</td>
<td>3</td>
<td>8</td>
<td>206</td>
<td>1654</td>
<td>206</td>
</tr>
<tr>
<td>57-64</td>
<td>8</td>
<td>8</td>
<td>3</td>
<td>8</td>
<td>206</td>
<td>1652</td>
<td>206</td>
</tr>
<tr>
<td>65-72</td>
<td>9</td>
<td>8</td>
<td>3</td>
<td>8</td>
<td>206</td>
<td>1655</td>
<td>206</td>
</tr>
<tr>
<td>73-80</td>
<td>10</td>
<td>8</td>
<td>3</td>
<td>8</td>
<td>207</td>
<td>1654</td>
<td>206</td>
</tr>
</tbody>
</table>

FIGURE 7: ADC² BURST AVERAGE MODE
Low-Pass Filter Mode

A low-pass filter passes signals with frequencies below its cutoff and attenuates frequencies above its cutoff. This mode is selected by setting the ADMD bits of the ADCON2 register to 4 (ADMD = 100). The ADCRS determines the low-pass filter order. Given the radian value in Table 6, the cutoff frequency (@ – 3 dB gain) can be calculated using Equation 4.

\[
\text{Equation 4: Cutoff Frequency at a Given Radian Value} \\
\text{ } \quad f_{\text{cutoff}} = \frac{\text{radian value @ -3 dB gain}}{2\pi T}
\]

Figure 8 shows the bode plot gain of the 10-bit ADCC low-pass filter using a sampling interval T of 1/960 Hz. The figure is actual 10-bit ADC data, and exhibits both sampling and quantization effects.

Table 6: Filter Cutoff Frequency Examples

<table>
<thead>
<tr>
<th>ADCRS</th>
<th>Radian Value @ -3 dB Gain (radian)</th>
<th>Gain @ f=1/2T (dB)</th>
<th>T (sec)</th>
<th>F_{\text{cutoff}} (Hz)</th>
<th>F_{\text{Nyquist}} = 1/2T (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.72</td>
<td>-9.5</td>
<td>1/960 Hz</td>
<td>110.01</td>
<td>480</td>
</tr>
<tr>
<td>2</td>
<td>0.284</td>
<td>-16.9</td>
<td>1/960 Hz</td>
<td>43.39</td>
<td>480</td>
</tr>
<tr>
<td>3</td>
<td>0.134</td>
<td>-23.5</td>
<td>1/960 Hz</td>
<td>20.47</td>
<td>480</td>
</tr>
<tr>
<td>4</td>
<td>0.065</td>
<td>-29.8</td>
<td>1/960 Hz</td>
<td>9.93</td>
<td>480</td>
</tr>
<tr>
<td>5</td>
<td>0.032</td>
<td>-36</td>
<td>1/960 Hz</td>
<td>4.89</td>
<td>480</td>
</tr>
<tr>
<td>6</td>
<td>0.016</td>
<td>-42</td>
<td>1/960 Hz</td>
<td>2.44</td>
<td>480</td>
</tr>
</tbody>
</table>

Note 1: Not all values are supported in all devices.

Note 2: T = sampling interval (sec).

Note 3: The T, F_{\text{cutoff}} and F_{\text{Nyquist}} are examples.
Table 7 shows the summary of the different operating modes of ADC².

TABLE 7: ADC² COMPUTATION MODES SUMMARY

<table>
<thead>
<tr>
<th>Mode</th>
<th>ADMD</th>
<th>Bit Clear Conditions</th>
<th>Value after Trigger Completion</th>
<th>Value at ADTIF Interrupt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic</td>
<td>0</td>
<td>ADACLR = 1</td>
<td>Unchanged</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Unchanged</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ADAOV</td>
<td>ADFLTR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ADCNT</td>
<td></td>
</tr>
<tr>
<td>Accumulate</td>
<td>1</td>
<td>ADACLR = 1</td>
<td>S+ADACC or (S₂⁻S₁) + ADACC</td>
<td>ADCNT+1, but not more</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>than 255</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ADACC overflow</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ADACC/2²ADCRS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Count</td>
</tr>
<tr>
<td>Average</td>
<td>2</td>
<td>ADACLR = 1 or ADCN ≥ ADRT at ADGO set or retrigger</td>
<td>S+ADACC or (S₂⁻S₁) + ADACC</td>
<td>ADCNT+1, but not more</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>than 255</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ADACC overflow</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ADACC/2²ADCRS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Count</td>
</tr>
<tr>
<td>Burst Average</td>
<td>3</td>
<td>ADACLR = 1 or ADGO set or retrigger</td>
<td>Each repetition: same as Average</td>
<td>Each repetition: same</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>End with sum of all samples</td>
<td>as Average End with ADCTN =</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ADRPT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ADACC overflow</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ADACC/2²ADCRS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ADRPT</td>
</tr>
<tr>
<td>Low-pass Filter</td>
<td>4</td>
<td>ADACLR = 1</td>
<td>S + ADACC - ADACC/2²ADCRS or (S₂⁻S₁) + ADACC - ADACC/2²ADCRS</td>
<td>ADCNT+1, but not more</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>than 255</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ADACC overflow</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Filtered value</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Count</td>
</tr>
</tbody>
</table>

Note 1: S = Single sample;
S₂⁻S₁ = A double sample difference that is used in place of the single sample.

CONCLUSION

This technical brief describes how the Analog-to-Digital Converter with computation module works on PIC® microcontrollers. It covers the ADC² built-in computational features and post-processing functions.
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks
The Microchip name and logo, the Microchip logo, AVR, AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SSI, SST SSI logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
Worldwide Sales and Service

AMERICAS

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277

Technical Support: http://www.microchip.com/support
Web Address: www.microchip.com

- **Atlanta**
 - Duluth, GA
 - Tel: 678-957-9614
 - Fax: 678-957-1455

- **Austin, TX**
 - Tel: 512-257-3370

- **Boston**
 - Westborough, MA
 - Tel: 774-760-0087
 - Fax: 774-760-0088

- **Chicago**
 - Itasca, IL
 - Tel: 630-285-2380
 - Fax: 630-285-0075

- **Dallas**
 - Addison, TX
 - Tel: 972-818-7423
 - Fax: 972-818-2924

- **Detroit**
 - Novi, MI
 - Tel: 248-848-4000

- **Houston, TX**
 - Tel: 281-894-5983

- **Indianapolis**
 - Noblesville, IN
 - Tel: 317-536-2380
 - Fax: 317-773-5453

- **Los Angeles**
 - Mission Viejo, CA
 - Tel: 949-462-9523
 - Fax: 949-462-9608

- **Raleigh, NC**
 - Tel: 919-844-7510

- **New York, NY**
 - Tel: 631-435-6000

- **San Jose, CA**
 - Tel: 408-735-9110
 - Fax: 408-436-4270

- **Canada - Toronto**
 - Tel: 905-695-1980
 - Fax: 905-695-2078

ASIA/PACIFIC

Asia Pacific Office
1150 Wembley Street
Harbour City, Kowloon
Hong Kong
Tel: 852-2943-5100
Fax: 852-2401-3431

Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-9500

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Hong Kong SAR
Tel: 852-2943-5100
Fax: 852-2401-3431

China - Hangzhou
Tel: 86-20-8775-8029
Fax: 86-20-8792-8115

China - Nanjing
Tel: 86-20-8792-8116
Fax: 86-571-8792-8116

China - Shenzhen
Tel: 86-769-8702-9880
Fax: 86-769-8702-9880

China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130

India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4444

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-3019-1500
Fax: 91-20-3019-1500

Japan - Osaka
Tel: 81-6-6152-7160
Fax: 81-6-6152-9310

Japan - Tokyo
Tel: 81-3-6880-3770
Fax: 81-3-6880-3771

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955

Taiwan - Kaohsiung
Tel: 886-7-213-7830
Fax: 886-7-213-7830

Taiwan - Taipei
Tel: 886-2-2508-8000
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

Worldwide Sales and Service
11/07/16