IS206X DSP APPLICATION NOTE – INTRODUCTION TO DSP CONFIGURATION TOOL AND AEC TUNING GUIDE (V1.1)

- Speaker (Phone) Application
- Embedded Car Kit Application
# Change History

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Description of Changes</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>Draft</td>
<td>Jun./08, 2015</td>
<td>Initial version</td>
<td>YT Lin</td>
</tr>
<tr>
<td>Ver. 1.0</td>
<td>April/04, 2016</td>
<td>Release version</td>
<td>Allen Lo</td>
</tr>
<tr>
<td>Ver. 1.1</td>
<td>August/01, 2016</td>
<td>Release version- add an explanation for I2S</td>
<td>Allen Lo</td>
</tr>
</tbody>
</table>
Index

1 Introduction ........................................................................................................................................ 7
2 Overview ............................................................................................................................................... 8
3 Processing Flow .................................................................................................................................. 9
4 IC and DSP Simple Manual for the DSP Configuration Tool .......................................................... 11
5 Voice Processing Functions .................................................................................................................. 12
   5.1 High-Pass Filter ................................................................................................................................. 12
   5.2 Noise Reduction ................................................................................................................................. 13
   5.3 Echo Cancellation ............................................................................................................................... 15
   5.4 Digital MIC Gain ............................................................................................................................... 18
   5.5 Comfort Noise .................................................................................................................................... 19
   5.6 EQ .................................................................................................................................................... 20
   5.7 Speaker/MIC Gain Settings: ............................................................................................................. 23
6 Audio Processing Functions .................................................................................................................... 25
   6.1 EQ ................................................................................................................................................... 25
   6.2 Speaker Gain Setting / Line-In Gain .................................................................................................. 26
   6.3 Auto PowerOff mode for LineIn Silence detection ........................................................................... 26
   6.4 Sound effect – Audio Widening (AW), Multi-band Dynamic-Range-Compression (MB-DRC) ............ 27
7 I2S Digital Output/Input Interface ......................................................................................................... 33
8 Guidelines for Tuning Echo Cancellation Performance ......................................................................... 36
9 EEPROM File Format ............................................................................................................................ 40
Figure

Figure 1: The block diagram of the processing flow for the speakerphone applications for (a) speech and (b) audio signal processing. ................................................................. 9

Figure 2: The main page of the DSP configuration tool......................................................... 11

Figure 3: Configuring the High-pass filter parameter in the DSP configuration tool. .............. 12

Figure 4: Interface of the NR and DualMic NR parameters in the DSP configuration tool. ........ 13

Figure 5: AEC tuning interface in the DSP configuration tool. .................................................. 16

Figure 6: Illustration of double-talk threshold parameter. .................................................... 17

Figure 7: Parameters for MIC gain and comfort noise........................................................ 19

Figure 8: EQ configuration interface for both speaker and MIC paths in SCO(or Speech) mode. 21

Figure 9: An example of configuring the EQ functions. ....................................................... 22

Figure 10: Illustrating the function of the Q factor.............................................................. 23

Figure 11: Interface for the speaker gain configuration in the SCO mode.............................. 24

Figure 12: MIC gain configuration in the SCO mode. ......................................................... 24

Figure 13: EQ configuration interface for audio mode.......................................................... 25

Figure 14: Configuration interface for speaker gains in the audio mode............................... 26

Figure 15: Line-In(or Aux-In) configuration interface........................................................... 27

Figure 16: User interface for sound effect configurations. .................................................... 28

Figure 17: Illustration of attack and release time parameters. ............................................... 29

Figure 18: Mapping function of MB-DRC. ........................................................................... 30

Figure 19: An illustration of audio widening effect................................................................. 31

Figure 20: Block Diagram of AW generator........................................................................... 31

Figure 21: I2S parameter tuning interface for IS2023 chip................................................... 33

Figure 22: I2S configurations for 16-bit/24-bit................................................................. 34

Figure 23: I2S hardware configurations for (a) Master, and (b) Slave modes with external ADC. 34

Figure 24: Low and high levels of RFS denote (a) left channel and (b) right channel .......... 35

Figure 25: An illustration of the AEC tuning flow................................................................. 36
Figure 26: Illustration of the CVSD slope overload effect, where $x(t)$ and $x_Q(n)$ are denoted as the original signal and CVSD encoded/decoded signal, respectively.

Figure 27: An example of the frequency shaping for signal at the speaker path.

Figure 28: EEPROM format and its definitions.

Figure 29: EEPROM content beyond 0x800.
Table

Table 1: Summary of module functionalities ................................................................. 8
Table 2: EEPROM addresses for enabling HPF at the SCO speaker path...................... 12
Table 3: EEPROM addresses for enabling HPF at the SCO MIC path.......................... 13
Table 4: EEPROM addresses for configuring HPF function ........................................ 13
Table 5: EEPROM addresses for enabling NR at the SCO speaker path........................ 15
Table 6: EEPROM addresses for enabling NR at the SCO MIC path........................... 15
Table 7: EEPROM addresses for configuring NR function........................................... 15
Table 8: EEPROM addresses for enabling AEC function........................................... 17
Table 9: Configuring the AEC parameters .................................................................... 18
Table 10: EEPROM addresses for enabling the digital boost gain at the SCO MIC path.. 18
Table 11: EEPROM addresses for enabling the comfort noise at the SCO MIC path .... 20
Table 12: EEPROM addresses for enabling the EQ functions ...................................... 22
Table 13: EEPROM addresses for MIC and Speaker Gains .......................................... 23
Table 14: EEPROM addresses for enabling the EQ in the audio(or SBC) mode ............ 25
Table 15: Parameters of AW effect. ............................................................................ 31
1 Introduction

IS206X chips provide high-performance noise reduction and acoustic echo cancellation with advanced signal processing techniques. Sophisticated voice and audio enhancement functions, including filtering, equalizations and audio effect processing, are also provided. A simple tuning flow for finetuning the AEC and NR accommodated for different applications are given for easy product development as well.

This document will also provide the guidance to finetune parameters provided in the DSP configuration tool step-by-step to allow system designers to fit DSP features with particularly desired requirements. The DSP configuration tool provides the visual interface to adjust the parameters for all provided voice and audio signal processing functions.
2 Overview

IS206X chips feature high-performance signal processing that can provide the excellent voice/audio user experience. Included fundamental and optional modules are Stationary Noise Reduction (NR), Acoustic Echo Cancellation (AEC), Audio Equalization (EQ), and High-Pass Filter (HPF). In addition, AEC function is only provided at the microphone (Uplink) path in the SCO link connection.

In addition to NR/AEC function, audio effect functions, including multi-band dynamic-range-compression (MB-DRC), virtual bass enhancement (VB) and audio widening (AW), for A2DP audio streaming are also available to enhance the audio quality for various applications. For mono speaker/speakerphone and stereo headset applications, MB-DRC and VB can be enabled to have much better audio clarity performance. For stereo speaker/speakerphone applications, in addition to turn on MB-DRC and VB, AW is also available to provide much better live audio effect for the users.

Main functionalities are summarized in Table I.

<table>
<thead>
<tr>
<th>Module</th>
<th>Functionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEC</td>
<td>Cancel the acoustic echo coupled into the microphone for the loud speaker output.</td>
</tr>
<tr>
<td>NR</td>
<td>Suppress the stationary ambient noise to enhance the voice signal quality.</td>
</tr>
<tr>
<td>EQ</td>
<td>Provides the 5-band EQs for both voice and audio applications in order to compensate imperfect frequency response of the adopted microphone or speaker. Defaulted audio effects are also provided to enhance the user experience.</td>
</tr>
<tr>
<td>HPF</td>
<td>Provides a low-latency IIR-structured low-pass filter to filter out unwanted low frequency band for both MIC/SPK paths.</td>
</tr>
</tbody>
</table>
3 Processing Flow

Before introducing the signal processing flow, some abbreviations and terminology are defined in advance for avoiding the further confusion. The path, that BT device receives bitstream and pass to DSP for decoding process, can be called as the downlink, downstream, far-end and speaker paths in this document. On contrary, the path, that BT device transmit the bitstream that is encoded by the DSP processor, is called as uplink, upstream, near-end and MIC paths.

![Diagram](image)

**Figure 1**: The block diagram of the processing flow for the speakerphone applications for (a) speech and (b) audio signal processing.

Figure 1 provides the block diagram of the DSP processing flow for
speakerphone/headset applications. The DSP part is focused on speech en/de-coders and audio decoders along with their corresponding signal processing functions. The embedded ADC and DAC provide high-SNR data conversions with 88dB and 98dB SNRs, respectively. The BT and RF/modem processors deal with the medium access control (MAC) and the wireless data transmission. For the speaker/speakerphone application, the external audio amplifiers are usually needed to amplify the audio signal.

In Figure 1(a), CVSD and mSBC speech codecs, whose supported bandwidths are respectively 8 kHz and 16 kHz, are available for Bluetooth speech applications. mSBC is the mandatory speech codec defined in Bluetooth HFP 1.6 profile to provide HD voice quality. Therefore, as long as the host device establishes the BT link via HFP 1.6 profile, mSBC is the speech codec regardless of the cellular network conditions, i.e. 3G network or VoLTE.

As for the audio effect in Figure 1(b), it includes MB-DRC, VB and AW functions followed by the 5-band EQ. The digital line-in loopback mode allows picking up signal from external audio source and feedback into the DSP for audio processing which also goes through the audio effect and 5-band EQ functions as the BT A2DP audio streaming. AAC-LC and SBC audio codecs are both supported in this chip series. However, for legal usage of AAC-LC decoder, licensing from “Via Licensing” is necessary before the product launch to market.
4 IC and DSP Simple Manual for the DSP Configuration Tool

Figure 2 shows the main page of the DSP configuration tool. Four subpages, “Main Function”, “Voice Function”, “Advanced Voice Function” and “Audio Function”, are on the top of the tool layout.

This section mainly introduces the functions within the “Main Function” subpage. Two available configurable modes, “Speaker Phone” and “Speaker” modes, for overall DSP settings are given. The “Speaker Phone” mode allows the user to configure the NR/EC/EQ/FIR functions while “Speaker” mode is not permitted to do so. Whenever selecting either one of these mode, please click the “DSP Default” button to initialize the parameters back to their defaulted settings. The button “Load” is to load and parse the information of DSP-related parameters in the EEPROM file and automatically show its corresponding value in other subpages. The button “Save” is to save current settings in this GUI tool and transform them into the EEPROM format (Please refer to section 9 for simple introduction to EEPROM format). “DSP Parameter” button is to export NR/AEC/Sound Effect/Partial EQ coefficients/DSP-system control parameters but not include DSP patch code, I2S coefficients, and remaining EQ coefficients. In the main page, one can also select desired IC number and configure its corresponding DSP behavior. Note that product portfolio for mono-headset (MHS), stereo-headset (SHS), mono speakerphone (1SPK), stereo speakerphone (2SPK) and I2S interface applications are all supported in the DSP configuration tool.

![Figure 2: The main page of the DSP configuration tool.](image-url)
5 Voice Processing Functions

5.1 High-Pass Filter

The high-pass filter provides a low-latency filter option and this is IIR-structured filter.

Function:
Seven selectable cutoff frequencies are available for HPF which is to filter out unwanted low-frequency signal, such as PCB noise, coupled current noise and wind noise, etc. It is a trade-off between speech signal quality and the noise reduction level. The interface of HPF parameters for both speaker and mic paths are illustrated in Figure 3.

![Figure 3: Configuring the High-pass filter parameter in the DSP configuration tool.](image)

EERPOM settings:
- To enable the far-end HPF module

<table>
<thead>
<tr>
<th>Addr</th>
<th>Bit 5 at 0x0300</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>0x1</td>
</tr>
</tbody>
</table>
To enable the near-end HPF module, referring to Table 3.

**Table 3: EEPROM addresses for enabling HPF at the SCO MIC path.**

<table>
<thead>
<tr>
<th>Addr</th>
<th>Bit 4 at 0x0300</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>0x1</td>
</tr>
</tbody>
</table>

The EEPROM addresses and settings for HPF are

**Table 4: EEPROM addresses for configuring HPF function**

<table>
<thead>
<tr>
<th>EEPROM addr</th>
<th>Default</th>
<th>Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nar-end HPF</td>
<td>0x030</td>
<td>0x02</td>
</tr>
</tbody>
</table>

| Far-end HPF | 0x0317 | 0x02 |
| 0x00: 50Hz   | 0x01: 80Hz   |
| 0x02: 120Hz  | 0x03: 180Hz  |
| 0x04: 210Hz  | 0x05: 300Hz  |
| 0x06: 400Hz  |

5.2 Noise Reduction

![Figure 4: Interface of the NR and DualMic NR parameters in the DSP configuration tool.](image-url)
The noise reduction (NR) function suppresses stationary noises present in the far-end/downstream and near-end/up-stream signals. With proprietary intelligent voice activity detection (VAD), the NR module can effectively suppress the unwanted noise while maintaining satisfactory quality for the speech communication. This function allows both near-end and far-end talkers to experience benefits.

In Figure 4, the dualmic (dual microphone noise suppression) function can only be activated when two microphone are physically enabled for “headset” applications. Note that, dualmic function cannot be enabled for speakerphone applications and is not the design target for dualmic echo cancellation. Dualmic parameters include “DualMic_NRCoef”, “Mic_Distance” and “DualMic_Stepsize.”

**Function:**

- **NR suppression level:**
  Two selectable parameters for NR configurations shown in Figure 4 are suppression levels for low-frequency (<1000Hz) and high-frequency (from 1000Hz to 4000Hz). The tunable range for both speaker and MIC paths are from 0dB to 21dB. However, in the DSP configuration tool, only the low-frequency NR suppression level is provided while high-frequency suppression levels are determined empirically based on field-test results.

  **DualMic NR Coef:**
  This parameter determines the dualmic suppression level. However, the dualmic suppression level is a tradeoff between noise suppression capability and voice quality. If the higher the suppression level is selected, the easier the voice quality is degraded.

- **Mic Distance:**
  To define the distance between two microphones to achieve its optimal performance of the dualmic suppression algorithm. If the distance between two MICs are farther (typically longer than 10cm, or say long-boom headset), one can select for higher noise suppression level since its SNR at the main microphone side is much higher than short-boom headsets (Typically around 4cm).

- **DualMicStepsize:**
  Denote the convergence time of the dualmic noise suppression algorithm. If choose faster convergence time, then linear noise suppression capability is worse than the slowest convergence time. It is a tradeoff between faster convergence time and better noise suppression.

**EERPOM settings:**

- To enable the far-end NR module
Table 5: EEPROM addresses for enabling NR at the SCO speaker path.

<table>
<thead>
<tr>
<th>Addr</th>
<th>Bit 2 at 0x01df</th>
<th>Bit 0 at 0x01ec</th>
<th>Bit 0-3 at 0x01E1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>1</td>
<td>1</td>
<td>0x1</td>
</tr>
</tbody>
</table>

- To enable the near-end NR module

Table 6: EEPROM addresses for enabling NR at the SCO MIC path.

<table>
<thead>
<tr>
<th>Addr</th>
<th>Bit 1 at 0x01df</th>
<th>Bit 0 at 0x01ec</th>
<th>Bit 4-7 at 0x01E1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>1</td>
<td>1</td>
<td>0x1</td>
</tr>
</tbody>
</table>

- The EEPROM addresses to modify the NR noise suppression levels are

Table 7: EEPROM addresses for configuring NR function

<table>
<thead>
<tr>
<th>EEPROM addr</th>
<th>Default</th>
<th>Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Far-end NR</td>
<td>0x0325</td>
<td>0x16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0x7F: 0dB suppression</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0x40: 6dB suppression</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0x2D: 9dB suppression</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0x20: 12dB suppression</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0x16: 15dB suppression</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0x10: 18dB suppression</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0x0B: 21dB suppression</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0x08: 24dB suppression</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0x06: 27dB suppression</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0x04: 30dB suppression</td>
</tr>
<tr>
<td>Near-end NR</td>
<td>0x0327</td>
<td>0x10</td>
</tr>
</tbody>
</table>

5.3 Echo Cancellation

In order to linearly cancel and suppress returned echo, acoustic echo canceller (AEC) and acoustic echo suppression (AES) functions are both needed. The difference between AEC and AES is that AEC can cancel out the linearly coupled echo while maintaining the desired near-end speech. With good AEC performance, the full-duplex speech communication can be achieved easily. However, unfortunately, nonlinear echo, generated by speakerphone housing, imperfect speaker/microphone devices and undesired echo environment, cannot be canceled out by AEC. Hence, the function of AES is to suppress input signal mixed with desired signal and unwanted echo signal in the frequency domain based on the information of voice activity detection. One needs to carefully select the parameters for AES and double-talk threshold to prevent from the degradation of desired speech quality in the case of strong nonlinear echo or close
placement between microphone and speakers.

Figure 5: AEC tuning interface in the DSP configuration tool.

**Function:**
In Figure 5, adjustable parameters to finetune the performance of echo cancellation are provided as follows:

- **AEC Stepsize:** The AEC convergence speed. If fast convergence rate is selected, fewer echo is capable to be cancelled out linearly. On the contrary, better linear echo cancellation can be achieved.

- **AECTapLength:** Tap length should be selected to be longer than the echo tail and it is also a tradeoff between echo cancellation (EC) performance, mega-instructions per second (MIPS). If longer tap length is selected, higher MIPS and power consumption by DSP are the result.

- **Double-Talk Threshold:** The full-duplexity of the AEC means the level of how much can the far-end talker can listen to the near-end talker voice while both talkers speak at the same time. Basically, this parameter maps to a threshold that controls the AES to nonlinearly suppress the echo. If this parameter is configured to be more favorable for half-duplexity, the double-talk capability is supposed to degrade more but can remove more residual echo.

If assuming that x[n] and y[n] are respectively near-end and far-end signal, then the cross-correlation equation between these signals are expressed as:
\[ \text{Echo\_corr} = \text{EMA}(\text{corr\_coef}) \]

where \(\text{corr\_coef} = \frac{\sum x[n]y[n]}{\sqrt{\sum x[n]^2} \sqrt{\sum y[n]^2}}\) and EMA: exponentially moving average

If “Echo\_Corr” is higher the double-talk threshold, it is considered as a pure single-talk condition.

**Figure 6: Illustration of double-talk threshold parameter.**

In Figure 6, it shows that if selecting double-talk threshold as 0x50, the threshold to determine the presence of echo is higher, and, as a result, AES function is less likely to kick in to suppress residual echo. On the contrary, for the case of Double-talk Threshold as 0x2D, this setting is more actively to enable AES function for echo suppression.

- **AES Suppression**: This parameter determines the maximal non-linear echo suppression capability.
- **Linear AEC Threshold**: This parameter determines the linearity threshold of the returned echo. If selecting toward “Worst linearity”, then AES function is configured to more easily kick in and suppress the residual echo while the “Higher Linearity” option allows having better Full-duplex echo cancellation performance but may contain more echo in the returned signal.

**EERPOM settings:**
To enable the AEC, one needs to set as follows:

**Table 8: EEPROM addresses for enabling AEC function.**

<table>
<thead>
<tr>
<th>Addr</th>
<th>Bit 0 at 0x01df</th>
<th>Bit 4 at 0x01ec</th>
<th>Bit 0-2 at 0x01E2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>1</td>
<td>1</td>
<td>0x01</td>
</tr>
</tbody>
</table>

The AEC’s parameters and their corresponding meaning are
Table 9: Configuring the AEC parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Address</th>
<th>Note</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEC_Stepsize</td>
<td>0x032D</td>
<td>0x01: Fastest AEC convergence ~ 0x06: Slowest AEC convergence</td>
<td>0x03</td>
</tr>
<tr>
<td></td>
<td>Bit 4~7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AECTapLength</td>
<td>0x0311</td>
<td>0x01: 8msec Echo Tail ~ 0x0A: 80msec Echo Tail</td>
<td>0x06</td>
</tr>
<tr>
<td>Double-Talk</td>
<td>0x0322/0x0339(mSBC)</td>
<td>0x7F: More Full Duplex ~ 0x1C: Least Full Duplex</td>
<td>0x50</td>
</tr>
<tr>
<td>Threshold</td>
<td>0x0313/0x0336(mSBC)</td>
<td>0x01: Less Echo Suppression ~ 0x10: Most Echo Suppression</td>
<td>0x04</td>
</tr>
<tr>
<td>AES_Suppression</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear AEC</td>
<td>0x032E/0x0338(mSBC)</td>
<td>0x7F: Worst Linearity ~ 0x03: Best Linearity</td>
<td>0x7F</td>
</tr>
<tr>
<td>Threshold</td>
<td>Bit 0~3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5.4 Digital MIC Gain

Digital MIC gain provides different digital control functions at the MIC path. In Figure 7, “Digital MIC Gain” allows user to boost the volume digitally in case that the analog amplifier of ADC is unable to provide enough gain. As shown in Figure 1(a), the digital boost part of the dynamic MIC Control is placed at the end of all digital signal processing modules.

Notice:
- **Digital MIC gain**: by adjusting the digital MIC gain, one potential issue is that the suppressed echo is going to be amplified as well.

EEPROM settings:
- To enable the Digital MIC gain, one needs to configure the following addresses:

Table 10: EEPROM addresses for enabling the digital boost gain at the SCO MIC path.

<table>
<thead>
<tr>
<th>EEPROM Addr</th>
<th>0x0318</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIC Gain (Digital)</td>
<td>0x00: -19dB Digital Boost</td>
</tr>
<tr>
<td></td>
<td>0x03: -16dB Digital Boost</td>
</tr>
<tr>
<td></td>
<td>0x05: -14dB Digital Boost</td>
</tr>
<tr>
<td></td>
<td>0x07: -12dB Digital Boost</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
0x13: 0dB Digital Boost
0x15: 2dB Digital Boost
0x17: 4dB Digital Boost
0x27: 20dB Digital Boost

Note that the available selections of the Dynamic Range would be automatically updated according to the MIC gain (Codec) by the DSP configuration tool.

Figure 7: Parameters for MIC gain and comfort noise.

5.5 Comfort Noise

The comfort noise is generated by a random number generator and its frequency response is flat across all frequencies. The main purpose is to provide a constant noise level to prevent the speech codec algorithm of host cellphones from injecting unwanted noise which could degrade speech clarity at the far-end listener side.

Function:
One parameter to adjust the configuration of the comfort noise is as shown in Figure 7:

- **Background Noise**: This adjusts the level of the comfort noise.

EERPOM settings:
Table 11: EEPROM addresses for enabling the comfort noise at the SCO MIC path

<table>
<thead>
<tr>
<th>EEPROM Address</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x7FFF: 0dB</td>
<td>Highest Comfort Noise level</td>
</tr>
<tr>
<td>0x4000: 6dB</td>
<td>Comfort Noise level</td>
</tr>
<tr>
<td>0x2000: 12dB</td>
<td>Comfort Noise level</td>
</tr>
<tr>
<td>0x1000: 18dB</td>
<td>Comfort Noise level</td>
</tr>
<tr>
<td>0x0800: 24dB</td>
<td>Comfort Noise level</td>
</tr>
<tr>
<td>0x0400: 30dB</td>
<td>Comfort Noise level</td>
</tr>
<tr>
<td>0x0200: 36dB</td>
<td>Comfort Noise level</td>
</tr>
<tr>
<td>0x0100: 42dB</td>
<td>Comfort Noise level</td>
</tr>
<tr>
<td>0x0080: 48dB</td>
<td>Comfort Noise level</td>
</tr>
<tr>
<td>0x0040: 54dB</td>
<td>Comfort Noise level</td>
</tr>
<tr>
<td>0x0020: 60dB</td>
<td>Comfort Noise level</td>
</tr>
<tr>
<td>0x0010: 66dB</td>
<td>Comfort Noise level</td>
</tr>
<tr>
<td>0x0008: 72dB</td>
<td>Comfort Noise level</td>
</tr>
<tr>
<td><strong>0x0004: 78dB</strong></td>
<td><strong>Comfort Noise level (Recommended)</strong></td>
</tr>
<tr>
<td>0x0002: 84dB</td>
<td>Comfort Noise level</td>
</tr>
<tr>
<td>0x0001: 90dB</td>
<td>Comfort Noise level</td>
</tr>
</tbody>
</table>

5.6 EQ

The EQ provides the flexibility for compensating the imperfect frequency responses of the selected MIC and speaker. This function provides a 5-band customized filter for both MIC and speaker paths.
Figure 8: EQ configuration interface for both speaker and MIC paths in SCO(or Speech) mode.

Figure 8 shows the interface to configure equalizers for both speaker and microphone paths as the buttons of “Custom EQ – MIC”, and “Custom EQ – SPK”. Note that Custom EQ ones with mSBC is configured for the Hands-free profile (HFP) 1.6 supporting the wideband (16khz sampling rate) speech features. One need to configure the EQ coefficients for 8khz and 16khz separately if desiring to support HFP 1.6. By clicking buttons of “Custom EQ – MIC” or “Custom EQ – SPK”, the EQ configuration window shown in Figure 9 is popped out.

In Figure 10, one can type in the desired frequencies and the gain/attenuations. The “Q” (Quality factor) columns are to configure the cutoff frequencies of each equalizer band. An example is shown in Figure 10, the smaller the value of “Q” is, and the wider the bandpass cutoff frequency is. Buttons, “M+” and “MR”, function as the calculator’s “M+” and “MR”. The major purpose for these two buttons is to record the frequency responses for easy analysis comparison.

If one wants to save the frequency response that just being designed, click “Save” in Figure 9 and system would automatically store the current EQ’s configuration into a file. Also, if want to restore a frequency response that have been previously designed, click “Load Response” to restore the EQ configurations.
The column “Stage” configures how many bands of 1-order IIR filter are used. The fewer the “Stages” are, the lower the MIPS as well as the power consumption is.

**EERPOM settings:**
In order to enable the EQ for voice application, one needs to configure the following bits:

<table>
<thead>
<tr>
<th>Table 12: EEPROM addresses for enabling the EQ functions.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit3 0x1EC</td>
</tr>
<tr>
<td>MIC path</td>
</tr>
<tr>
<td>Speaker path</td>
</tr>
</tbody>
</table>

![Figure 9: An example of configuring the EQ functions.](image)
5.7 Speaker/MIC Gain Settings:

The number of speaker gain levels and MIC gain levels are configured in the DSP configuration tool. Figure 11 shows that there are three different number of speaker gain levels are selectable based on particular requirements. Once the number of the speaker gain level is determined, one can choose the corresponding gain for each level.

In Figure 12, gain difference between each MIC gain level for “MIC Gain (Codec)” is ranging between 2.7dB ~ 3.4dB per step.

EERPOM settings:

**Table 13: EEPROM addresses for MIC and Speaker Gains**

<table>
<thead>
<tr>
<th>Path</th>
<th>EEPROM address</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIC path</td>
<td>0x00C5</td>
</tr>
<tr>
<td>Speaker path</td>
<td>0x018D~0x019C</td>
</tr>
</tbody>
</table>
Figure 11: Interface for the speaker gain configuration in the SCO mode.

Figure 12: MIC gain configuration in the SCO mode.
6 Audio Processing Functions

6.1 EQ

The system diagram of the audio signal processing is shown in Figure 1(b). In addition to the SBC decoder, only one EQ are allowed to process to audio signal. Figure 13 shows the configuration of the EQ for the audio function. In the column “EQ Mask Selection,” one can select the adjustable special audio sound effect. Except the option “Custom EQ,” one can use an external button to select different sound effects. The procedure to configure “Custom EQ 2” is also identical to the EQ introduced in section 5.6.

EERPOM settings:

In order to enable the EQ for Audio application, one needs to configure the following bits:

Table 14: EEPROM addresses for enabling the EQ in the audio(or SBC) mode.

<table>
<thead>
<tr>
<th>Addr</th>
<th>Bit3 0x1EC</th>
<th>Bit5 of 0x1E0</th>
<th>0x1E7</th>
<th>0x1E8</th>
<th>0x1E9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Values</td>
<td>1</td>
<td>1</td>
<td>0x0A</td>
<td>0x07</td>
<td>0xFF</td>
</tr>
</tbody>
</table>

Figure 13: EQ configuration interface for audio mode.
6.2 Speaker Gain Setting / Line-In Gain

Similar to the speaker setting for voice application, the number of speaker gain level is also selectable. The selection procedure can refer to section 5.7.

![Configuration interface for speaker gains in the audio mode.](image)

6.3 Auto PowerOff mode for LineIn Silence detection

This DSP function enables the system to detect power level of the line-in signal. The power level of the line-in signal is calculated digitally and then, the silence status is reported to the Bluetooth MAC controller. “Initial Line-In Gain” is to configure the line-in gain to amplify the external signal source and playback to the speakers.

“Silence Detection Threshold” determines silence power threshold level of line-in signal for auto power-off mechanism.
6.4 Sound effect – Audio Widening (AW), Multi-band Dynamic-Range-Compression (MB-DRC)

AW and MB-DRC are embedded audio signal processing functions, which can provide better audio quality and user experience without needing external digital signal processor, in the IS20XX chip series.

AW function processes audio signal by manipulating the signal played by a close-placed speakers sounding like a farther-placed speakers. In such way, the sound quality can be enriched with better surrounding effects.

MB-DRC function is an automatic volume control. Loud sounds over a certain threshold are reduced in level while quiet sounds remain untreated-- (this is known as downward compression, while the less common upward compression involves making sounds below the threshold louder while the louder passages remain unchanged). In this way, it reduces the dynamic range of an audio signal. This may be done for aesthetic reasons, to deal with technical limitations of audio equipment, or to improve audibility of audio in noisy environments.

Checkboxes of AW and MB-DRC:

Figure 15 shows adjustable parameters for AW and MB-DRC. Checkboxes for MB-DRC and AW should be checked if one wants to enable these functions.
Audio Effect – Mask Selection:

The “Audio Effect – Mask Selection” checkbox group is to select what combinations of audio effects can be selectable by either external buttons. In the case given in Figure 16, “All off”, “MB-DRC On” and “All On” are selected. When one presses the “Next” button, the audio effect switches from one to its next. The order of selected audio effect is “All off” → “MB-DRC On” → “All On” → “All off”.

Default Audio Effect:

To select the initial audio effect mode after the device is powered on.

MB-DRC Parameters:

Figure 16 shows the general concept of MB-DRC which transform the input signal nonlinearly to its output. Three parameters control the behavior of MB-DRC which are “KneeTh”, “Compression Ratio” and “Make-Up Gain”. To better process the input signal, MB-DRC provides adjustable parameters in three different bands (0~1kHz, 1kHz~6kHz and beyond 6kHz). Explanations of these parameters are listed as follows:

Knee TH:
This parameter corresponds to the compression threshold in Figure 16. This parameter constrains that sound level to which the make-up gain is applied.

**Compression Ratio (CR):**

CR is a compression ratio which compresses the average sound level, exceeding “Knee TH”, of the audio signal. However, if CR is closer to 0, the distortion due to the compression could be generated more easily.

**Make-Up Gain:**

Make-up gain is the maximal gain applying to audio signal whose average power is between silence threshold and the compression knee. This parameter can boost soft music signal to an audible level especially in a noisy environment.

**Attack Time and Release Time:**

The attack and release time parameters are the period of time to hit $1-1/e = 63\%$ of its final value. The difference between attack and release time constants can be illustrated in Figure 17. The attack time is the time period to decrease the signal amplitude exceeding the level of “Knee TH” while the release time is the time period to increase the signal amplitude below the level of “Knee TH” to its desired “Make-Up Gain” level.

![Figure 17: Illustration of attack and release time parameters.](image)

**Bass Enhancement:**
This parameter controls the level of bass enhancement which is enabled along with the MB-DRC function.

![Figure 18: Mapping function of MB-DRC.](image)

**AW Parameters:**

As illustrated in Figure 19, AW sound effect is to process the music signal played out by speakers placed close apart or inside one housing ID to make it sound like being placed far apart from each other. As shown in Figure 20, virtually generated widening signal are mixed with original signal with various levels of weighting pairs.
Audio Widening Level:

This parameter controls the extent of AW effect. It basically is a mixing ratio of original sound and AW-processed sound signal.

Table 15: Parameters of AW effect.

<table>
<thead>
<tr>
<th>EEPROM Address</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x353</td>
<td>0x00: SideCoef = 0; Main Coef = 1</td>
</tr>
<tr>
<td>Bit 7~4: SideCoef</td>
<td>0x01: SideCoef = 1/16; Main Coef = 1</td>
</tr>
<tr>
<td>Bit 3~0: Main Coef</td>
<td>0x02: SideCoef = 2/16; Main Coef = 1</td>
</tr>
<tr>
<td></td>
<td>0x03: SideCoef = 3/16; Main Coef = 14/16</td>
</tr>
<tr>
<td>Address</td>
<td>Side Coefficient</td>
</tr>
<tr>
<td>---------</td>
<td>------------------</td>
</tr>
<tr>
<td>0x04</td>
<td>4/16</td>
</tr>
<tr>
<td>0x05</td>
<td>5/16</td>
</tr>
<tr>
<td>0x06</td>
<td>6/16</td>
</tr>
<tr>
<td>0x07</td>
<td>7/16</td>
</tr>
<tr>
<td>0x08</td>
<td>8/16</td>
</tr>
<tr>
<td>0x09</td>
<td>9/16</td>
</tr>
<tr>
<td>0x0A</td>
<td>10/16</td>
</tr>
<tr>
<td>0x0B</td>
<td>11/16</td>
</tr>
<tr>
<td>0x0C</td>
<td>12/16</td>
</tr>
<tr>
<td>0x0D</td>
<td>13/16</td>
</tr>
<tr>
<td>0x0E</td>
<td>14/16</td>
</tr>
<tr>
<td>0x0F</td>
<td>15/16</td>
</tr>
</tbody>
</table>
7 I2S Digital Output/Input Interface

![I2S Parameter Tuning Interface for IS2023 Chip](image)

**Figure 21: I2S parameter tuning interface for IS2023 chip.**

IS2023-002 chip or BM23-002 bluetooth module can support the I2S interface for digital input/output. In this document, the hardware wiring issue is discussed but only the FW configuration is introduced. The selectable parameters are given as “I2S Mode”, “Data bitwidth” and “MIC ADC bitwidth” as shown in Figure 21.

Details of these parameters are discussed as follows.

**I2S Mode:**
- **Master:** IS2023 chip serves as a master to provide clock and frame sync signals for the master/slave data synchronizations as shown in Figure 23(a).
- **Slave:** IS2023 chip serves as a slave to receive clock and frame sync signals from external codec or DSP devices illustrated in Figure 23(b).

**Data Bitwidth:**

The numbers of bits for DR/DT are expected to receive from or transmit to external codec or DSPs as shown in Figure 22.
- **16bit:** BT supported codec can only have 16-bit resolution.
- **24bit:** Trailing zeros in LSBs is the only way to meet the external DSP that supported 24-bit I2S port.
requirement. In this way, the 16 bits occupy 16 MSBs and 8 zeros are filled in for LSBs.

![Image of I2S configurations for 16-bit/24-bit.](image_url)

**Figure 22: I2S configurations for 16-bit/24-bit.**

**MIC ADC Selection:**
If the hands-free function is supported, one must carefully select the ADC configuration

- **Internal ADC:** on-chip ADC is used.
- **External ADC:** external ADC/DSP is selected.

![Image of I2S hardware configurations for (a) Master, and (b) Slave modes with external ADC.](image_url)

**Figure 23: I2S hardware configurations for (a) Master, and (b) Slave modes with external ADC.**

**RFSSetting:**
This setting determines that either high or low level of the RFS signal represents L channel data for both

- **RFS low level -> Left channel:** please refer to the timing diagram in Figure 24(a).
- **RFS highlevel -> Left channel:** please refer to the timing diagram in Figure 24(b).
Figure 24: Low and high levels of RFS denote (a) left channel and (b) right channel.
8 Guidelines for Tuning Echo Cancellation Performance

This section introduces a guideline to fine-tune the echo cancellation performance. There are usually three requirements, which are **high MIC volume, echo-free** and **double-talk (DT)** performance, for the EC tuning. These three requirements contradict with each other. For example, if requiring high volume at the MIC path, echo would be amplified as well and need to tune some parameters to make echo inaudible which would result in worse DT performance. As shown in Figure 25, step 1 ~ step 5 are basically handling these whole speakerphone/carkit echo issues.

![Diagram](image)

**Figure 25: An illustration of the AEC tuning flow.**

The details of these steps are explained as follows.

**Step 1:** First of all, download all of the merged patch code which consists of the settings, for user interface (UI), 8051 and DSP, and merged patch code for 8051 and DSP parts. Some DSP functions may be implemented in the patch code such that download the latest patch code can get in sync with this document.

**Step 2:** Before tuning the AEC performance, the desired maximal speaker output level must be determined. More specifically, the recommended speaker output volume should be at least 95dB SPL.
(sound pressure level) and 100dB SPL for indoor speakerphone and car-kit applications, respectively. Note that the target speaker output volume needs to be determined in the beginning based on the required specification.

**Step 3:** The principle to adjust the MIC gain to a suitable value. It is not necessarily good to set the MIC to its maximal level because the slope overload effect, as shown in Figure 26, caused by the CVSD codec itself would naturally suppress the high frequency parts and makes it look like a low pass filter. This effect would distort the near-end speech and make it not as clear as the softer MIC gain levels.

(See the reference link for more information of the CVSD slope overload effect: http://www.datasheetcatalog.org/datasheet/CML/mXxyzvw.pdf)

![Figure 26: Illustration of the CVSD slope overload effect, where x(t) and x_Q(n) are denoted as the original signal and CVSD encoded/decoded signal, respectively.](image)

**Step 4:** This is an optional step. The purpose of this step is to shape the frequency response of the speaker output by lowering the low frequency (<1 kHz) and enhancing the high frequency parts (1 kHz to 3 kHz). By doing so, the echo reverberation within the speakerphone/ car kit housing can be reduced such that the linearity of the echo coupled to the MIC input can be better. The echo linearity is highly associated with the AEC performance. An example is given in Figure 27; these settings can is obtained empirically. However, the required frequency shaping may vary in terms of what the speaker and the housing is selected.
Figure 27: An example of the frequency shaping for signal at the speaker path.

**Step 5:** This step is to finetune the AEC performance step. It basically breaks into two parts which are single-talk echo and the double talk echo tunings.

- **Single-talk echo:** “Double-Talk Threshold” and “AES Suppression” introduced in section 4.4 are responsible for tuning the single-talk echo performance. As a rule of thumb, firstly adjust the parameter of “Double-Talk Threshold” from 0x7F to 0x1C. If the value of the “AES Suppression” is 0x04 and still can’t effectively suppress the echo (audible single-talk echo), then, start to fine tune the “AES Suppression” from 0x01 toward the value 0x0F.

  Note that: Although the selectable value of “Double-Talk Threshold” can be up to 0x1C, these two values are not recommended to suppress the echo since it would distort the MIC speech severely.

- **Double-talk echo:** If the single talk echo can already be effectively suppressed by the default settings of “Double-Talk Threshold” and “AES Suppression”, then, the double-talk performance can be further moved on and finetuned. The first recommended parameter for the double-talk performance is “AES Suppression” which is suggested to tune from 0x0F to 0x01(No Half-duplex). If the single-talk echo is still not present for “Double-Talk Threshold” at 0x01, the parameter “AES Suppression” is then considered to be adjusted from 0x0C to 0x01.
Four possible measures to improve the double-talk performance:

1. *Increase the AEC MIC gain:* Go back to step 3 to increase the MIC gain. Because AES and AEC would suppress echo as well as the double-talk near-end speech, the double-talk performance can be improved if the near-end speech energy is raised up such that the near-end speech may become audible while no single-talk echo is present.

2. *Adjust the frequency shaping shown in Figure 27:* If the speaker output level is very loud and echo-to-speech ratio at the MIC input is too high, one way to improve this is to further suppress the low-frequency part of the speaker output. As a result, the echo-to-speech ration at the low frequency parts of the MIC input is further reduced and could have better double-talk performance.

3. *Use the handsets supporting the full-duplex AEC:* Some handsets, such as Samsung Galaxy II, and HTC Incredible etc., don’t support the full-duplex speech communication while connecting with the BT handfree devices. In this way, one can’t obtain satisfactory full-duplex performance while using these handsets.

4. *Allow only one channel output (Assuming for the stereo speakerphone case):* If the distance between the MIC and one of the speaker channels are very close (<4cm), the AEC tuning for the full-duplexity becomes very difficult. One simple way is to turn off the closer speaker channel output and only allow the other speaker to output such that the full-duplexity can be much easier to be achieved. The User Interface (UI) can configure the number of the desired speaker channel outputs.
9 EEPROM File Format

The DSP configuration tool is to generate the EEPROM-formatted file, as illustrated in Figure 28, based on configurable parameters on the GUI.

The header information defines the IC version, DSP configuration tool version, date and checksum of the content. As being brought up in Figure 2, the button “DSP Parameter” only produces the EEPROM content whose address is below 0x400. The full EEPROM table needs to be generated via the button “Save”. Note that, the content stored beyond 0x800, shown in Figure 29, includes the DSP patch code, I2S coefficients, and partial EQ coefficients.

Figure 28: EEPROM format and its definitions.
The placing order is DSP patch → I2S parameters → EQ coefficients

Figure 29: EEPROM content beyond 0x800.