INTRODUCTION

Microchip’s SCSI USB to I²C™ bridge devices provide a USB to I²C bridge. The I²C bridge utilizes SCSI pass-through commands using the Mass Storage Class driver. The internal hub can have e.g., three ports enabled with two exposed externally. This document includes the following topics:

• Example of a USB to I²C Bridge Environment on page 1
• SCSI Pass-through Commands on page 3

EXAMPLE OF A USB TO I²C BRIDGE ENVIRONMENT

Figure 1 provides an example how the USB to I²C bridge can be integrated in an environment.

FIGURE 1: USB TO I²C BRIDGE ENVIRONMENT (EXAMPLE)
Figure 2 depicts which function blocks are involved in such an example environment.

FIGURE 2: USB TO I²C BRIDGE AS FBLOCK IN THE EXAMPLE ENVIRONMENT

<table>
<thead>
<tr>
<th>Head Unit Application</th>
<th>Operating System</th>
<th>Application Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other USB Device Class</td>
<td>HUB Driver</td>
<td>Mass Storage Class</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HID Class</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USB EHCI Driver or Equivalent</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SCSI PASS-THROUGH COMMANDS

General Description of the Write_I²C_Stream Command

A Write I²C Stream command sends any length of data over the I²C interface. The sequence shall follow the I²C protocol for writing data. Such a command can look as the sequence below:

\[
S \text{ write_addr c0 c1 .. cn d0 d1 d2 d3 d4 .. dn P}
\]

where:

- **S** - Start
- **P** - Stop
- **addr** - Slave address
- **cx** - Command bytes
- **dx** - data bytes

It is expected that all bytes are ACK’d by the slave. A failure of the slave to ACK any byte will terminate the transfer and an error will be reported.

All clock L->H are checked for clock stretching.

This routine allows up to 512 data bytes to be transferred in a single operation. Only one Start and one Stop command will be issued. If the number of bytes to write is 1 to 9, then all data can be sent as immediate write data. In this case, set the Write Data Length to 0 and the Write Immediate Length to the number of bytes. The bytes should be loaded into the Write Data (0-8) as required. In this case there will be no data phase.

TABLE 1: SCSI Vendor Command Data Block (CDB) - Write_I²C_Stream

<table>
<thead>
<tr>
<th>Bit</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Byte</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SCSI Operation Code (0xCF)

SCSI Vendor Action (0x23) - Write I²C Stream

I²C Slave Address (Write)

I²C Slave Address (Read) - UNUSED

I²C Write Data Length (0-512)

Length in DATA phase

I²C Write Immediate Length (0-9)

Can be used if number of bytes to write is less than 10

I²C Write Data 0

I²C Write Data 1

I²C Write Data 2

I²C Write Data 3

I²C Write Data 4

I²C Write Data 5

I²C Write Data 6

I²C Write Data 7

I²C Write Data 8
General Description of the WriteRead_I²C_Stream Command

A WriteRead I²C Stream command reads any length of data over the I²C interface. The sequence shall follow the I²C protocol for reading data. Such a command can look as the sequence below:

\[S \text{ write_addr} \; c_0 \; c_1 \; \ldots \; c_n \; S \; \text{read_addr} \; d_0 \; d_1 \; d_2 \; d_3 \; d_4 \; \ldots \; d_n \; P \]

where:
- \(S \) - Start
- \(P \) - Stop
- \(addr \) - Slave address
- \(cx \) - command bytes
- \(dx \) - data bytes

It is expected that all bytes are ACK'd by the slave. A failure of the slave to ACK any byte will terminate the transfer and an error will be reported.

The command bytes (up to 9 as applicable) will be transferred first using the write slave address. A restart will occur and then up to 512 bytes will be read using the read slave address.

This routine allows up to 512 data bytes to be transferred in a single operation. Only one Start, one Re-Start, and one Stop command will be issued.

TABLE 2: SCSI VENDOR COMMAND DATA BLOCK (CDB) - WRITEREAD_I²C_STREAM

<table>
<thead>
<tr>
<th>Bit</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- SCSI Operation Code (0xCF)
- SCSI Vendor Action (0x22) - WriteRead I²C Stream
- I²C Slave Address (Write) - used if Write command length > 0
- I²C Slave Address (Read)
- I²C Read Data Length (0-512)
- Length in DATA phase
- I²C Write Command Length (0-9)
- I²C Write Data 0
- I²C Write Data 1
- I²C Write Data 2
- I²C Write Data 3
- I²C Write Data 4
- I²C Write Data 5
- I²C Write Data 6
- I²C Write Data 7
- I²C Write Data 8
General Description of the GPIO_1_SET_OUTPUT Command

This command must be used for a USB ROM version 2.04. It allows an application to control the GPIO_1. The command utilizes a Command Block Wrapper (CBW), a data packet and a Command Status Wrapper (CSW).

TABLE 3: SCSI VENDOR COMMAND DATA BLOCK (CDB) - GPIO_1_SET_OUTPUT

<table>
<thead>
<tr>
<th>Bit</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SCSI Operation Code (0xCF)</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SCSI Vendor Action (0x20) - I²C BRIDGE COMMAND</td>
<td></td>
</tr>
</tbody>
</table>

The DATA block uses the following data structures:

typedef struct {
 uint8 GPIO_1_FLAG; // if zero, GPIO_1 is output LOW, if 0xFF, high
} U2C_GPIO_MODE;

typedef struct usb_i2c_cmd_struct {
 unsigned char mCommandType; // 0x0F for GPIO_1_SET_OUTPUT
 union usb_i2c_cmd {
 U2C_WRITE_ONLY_DATA mWriteDataParams;
 U2C_READ_ONLY_DATA mReadDataParams;
 U2C_CMD_RESPONSE mCmdResponseParams;
 U2C_READ_DATA_RESPONSE mReadDataResponseParams;
 U2C_GPIO_MODE mSwitchModeParams;
 U2C_CLK mClkDelayParams;
 }mCommandParams;
} USB_I2C_CMD, *pUSB_I2C_CMD;

mCommandType must be set to 0x0F. A standard CSW will also be returned.
General Description of the SET_CLOCK_DELAY Command

The command allows an application to change the I²C clock. It utilizes a CBW, a data packet and a CSW.

TABLE 4: SCSI VENDOR COMMAND DATA BLOCK (CDB) - SET_CLOCK_DELAY

<table>
<thead>
<tr>
<th>Bit</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The DATA block uses the data structures described below. For operation at 50 kHz, a value of roughly 25 should be used.

```c
typedef struct {
    unsigned char mClkDelay;  // adds delay to the SCL if required. 1-127
}U2C_CLK, *pU2C_CLK;

typedef struct usb_i2c_cmd_struct {
    unsigned char mCommandType; // 0x14 for SET_CLOCK_DELAY
    union usb_i2c_cmd {
        U2C_WRITE_ONLY_DATA mWriteDataParams;
        U2C_READ_ONLY_DATA mReadDataParams;
        U2C_CMD_RESPONSE mCmdResponseParams;
        U2C_READ_DATA_RESPONSE mReadDataResponseParams;
        U2C_GPIO_MODE mSwitchModeParams;
        U2C_CLK mClkDelayParams;
    }mCommandParams;
}USB_I2C_CMD, *pUSB_I2C_CMD;
```

mCommandType must be set to 0x14. A standard CSW will also be returned.
APPENDIX A: TERMS AND ACRONYMS

TABLE A-1: TERMS AND ACRONYMS

<table>
<thead>
<tr>
<th>Acronym / Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACK</td>
<td>Acknowledge</td>
</tr>
<tr>
<td>CBW</td>
<td>Command Block Wrapper</td>
</tr>
<tr>
<td>CDB</td>
<td>Command Data Block</td>
</tr>
<tr>
<td>CSW</td>
<td>Command Status Wrapper</td>
</tr>
<tr>
<td>GPIO</td>
<td>General Purpose Input / Output</td>
</tr>
<tr>
<td>HID</td>
<td>Human Interface Device</td>
</tr>
<tr>
<td>HS</td>
<td>High-speed</td>
</tr>
<tr>
<td>FC</td>
<td>Inter-Integrated Circuit</td>
</tr>
<tr>
<td>MMC</td>
<td>MultiMediaCard</td>
</tr>
<tr>
<td>MSC</td>
<td>Mass Storage Class</td>
</tr>
<tr>
<td>SCSI</td>
<td>Small Computer System Interface</td>
</tr>
<tr>
<td>SD</td>
<td>Secure Digital</td>
</tr>
<tr>
<td>SPI</td>
<td>Serial Peripheral Interface Bus</td>
</tr>
<tr>
<td>USB</td>
<td>Universal Serial Bus</td>
</tr>
</tbody>
</table>
APPENDIX B: APPLICATION NOTE REVISION HISTORY

TABLE B-1: REVISION HISTORY

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Section</th>
<th>Description of Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS00001630 Revision A</td>
<td>2014-01-08</td>
<td>All</td>
<td>AN1630, Revision A replaces the previous SMSC version AN 25.19</td>
</tr>
<tr>
<td>Previous versions</td>
<td></td>
<td></td>
<td>For former changes refer to the previous version.</td>
</tr>
</tbody>
</table>
THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** – Data sheets and errata, application notes and sample programs, design resources, user’s guides and hardware support documents, latest software releases and archived software
- **General Technical Support** – Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- **Business of Microchip** – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip’s customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under “Support”, click on “Customer Change Notification” and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:
- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks
The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, Keeloq, Keeloq logo, MPLAB, PIC, PICmicro, PICSTART, PIC$ logo, rPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, Hi-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEm, dsPICDEM.net, dsPICworks, dsSPEAKE, ECAN, ECONOMONITOR, FanSense, Hi-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestiC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

flexPWR, JukeBlox, Kleer, KleerNet, MediaLB, and MOST

The preceding is a non-exhaustive list of trademarks in use in the US and other countries. For a complete list of trademarks, email a request to legal.department@microchip.com. The absence of a trademark (name, logo, etc.) from the list does not constitute a waiver of any intellectual property rights that SMSC has established in any of its trademarks.

All other trademarks mentioned herein are property of their respective companies.

© 2014, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV
ISO/TS 16949

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, Keeloq® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
Worldwide Sales and Service

AMERICAS

Corporate Office
2335 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support: http://www.microchip.com/support

Web Address:
www.microchip.com

- **Atlanta**
 - Duluth, GA
 - Tel: 678-957-9614
 - Fax: 678-957-1455
- **Austin, TX**
 - Tel: 512-257-3370
- **Boston**
 - Westborough, MA
 - Tel: 774-760-0087
 - Fax: 774-760-0088
- **Chicago**
 - Itasca, IL
 - Tel: 216-447-0464
 - Fax: 216-447-0088
- **Dallas**
 - Addison, TX
 - Tel: 972-818-7423
 - Fax: 972-818-2924
- **Detroit**
 - Novi, MI
 - Tel: 248-848-4000
- **Houston, TX**
 - Tel: 281-894-5983
- **Indianapolis**
 - Noblesville, IN
 - Tel: 317-773-8323
 - Fax: 317-773-5453
- **Los Angeles**
 - Mission Viejo, CA
 - Tel: 949-462-9523
 - Fax: 949-462-9608
- **New York, NY**
 - Tel: 631-435-6000
- **San Jose, CA**
 - Tel: 408-735-9110
- **Canada - Toronto**
 - Tel: 905-673-0699
 - Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2943-5100
Fax: 852-2401-3431

- **Australia - Sydney**
 - Tel: 61-2-9868-6733
 - Fax: 61-2-9868-6755
- **China - Beijing**
 - Tel: 86-10-8569-7000
 - Fax: 86-10-8528-2104
- **China - Chongqing**
 - Tel: 86-23-8890-9588
 - Fax: 86-23-8865-7889
- **China - Hangzhou**
 - Tel: 86-571-8792-8115
 - Fax: 86-571-8792-8116
- **China - Hong Kong SAR**
 - Tel: 852-2943-5100
 - Fax: 852-2401-3431
- **China - Nanjing**
 - Tel: 86-25-8473-2460
 - Fax: 86-25-8473-2470
- **China - Qingdao**
 - Tel: 86-532-8502-7355
 - Fax: 86-532-8502-7205
- **China - Shanghai**
 - Tel: 86-21-5407-5533
 - Fax: 86-21-5407-5066
- **China - Shenyang**
 - Tel: 86-24-2334-2829
 - Fax: 86-24-2334-2393
- **China - Shenzhen**
 - Tel: 86-755-8684-2200
 - Fax: 86-755-8203-1760
- **China - Wuhan**
 - Tel: 86-27-5980-5300
 - Fax: 86-27-5980-5118
- **China - Xian**
 - Tel: 86-29-8833-7252
 - Fax: 86-29-8833-7256
- **China - Xiamen**
 - Tel: 86-592-2388138
 - Fax: 86-592-2388130
- **China - Zuhai**
 - Tel: 86-756-3210040
 - Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123

- **India - New Delhi**
 - Tel: 91-11-4160-8631
 - Fax: 91-11-4160-8632
- **India - Pune**
 - Tel: 91-20-3019-1500
 - Fax: 91-20-3019-1500
- **Japan - Osaka**
 - Tel: 81-6-6152-7160
 - Fax: 81-6-6152-9310
- **Japan - Tokyo**
 - Tel: 81-3-6880-3770
 - Fax: 81-3-6880-3771
- **Korea - Daegu**
 - Tel: 82-53-744-4301
 - Fax: 82-53-744-4302
- **Korea - Seoul**
 - Tel: 82-2-554-7200
 - Fax: 82-2-558-5932 or 82-2-558-5934
- **Malaysia - Kuala Lumpur**
 - Tel: 60-3-6291-9857
 - Fax: 60-3-6291-9859
- **Malaysia - Penang**
 - Tel: 60-4-227-8870
 - Fax: 60-4-227-4068
- **Philippines - Manila**
 - Tel: 63-2-634-9065
 - Fax: 63-2-634-9069
- **Singapore**
 - Tel: 65-6334-8870
 - Fax: 65-6334-8850
- **Taiwan - Hsin Chu**
 - Tel: 886-3-5770-955
 - Fax: 886-3-5770-955
- **Taiwan - Kaohsiung**
 - Tel: 886-7-213-7830
 - Fax: 886-7-213-7830
- **Taiwan - Taipei**
 - Tel: 886-2-2508-8600
 - Fax: 886-2-2508-0102
- **Thailand - Bangkok**
 - Tel: 66-2-694-1351
 - Fax: 66-2-694-1350

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Dusseldorf
Tel: 49-2129-3766400

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Germany - Pforzheim
Tel: 49-7231-424750

Italy - Milan
Tel: 39-031-742611
Fax: 39-0331-466781

Italy - Venice
Tel: 39-049-762586

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Poland - Warsaw
Tel: 48-22-3325737

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

Sweden - Stockholm
Tel: 46-8-5090-4654

UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

03/25/14