INTRODUCTION
Microchip has introduced cascaded dual op amps: MCP627X (2 MHz), MCP628X (5 MHz) and MCP629X (10 MHz). Features of this new topology include:

- Chip Select (CS) pin for both amplifiers
- Small 8-pin packages (PDIP-8, SOIC-8, MSOP-8)
- Pinout similar to the industry standard for duals

The two op amps are connected so they will support many application circuits.

FUNCTIONALITY
The output of op amp A is connected internally to the non-inverting input of op amp B (see Figure 1). Combining these into one pin (VOUTA/VINB+ = pin # 1) makes it possible to add a CS input (pin # 5) to an 8-pin package. Both op amps function as normal op amps.

APPLICATIONS
The most common application circuit supported by these parts is cascaded amplifiers (see Figure 2). These parts allow for easy layout in this common application. Usually, most of the gain is produced by the first stage.

FIGURE 2: Cascaded Amplifiers.
There are several interesting variations of the circuit in Figure 2 that are supported by these parts. For instance, the input op amp (op amp A) can be configured as an inverting amplifier, as an inverting (Miller) integrator or as a difference amplifier. The output amplifier can be set up as a unity-gain buffer to isolate the load from op amp A. This results in an overall performance improvement when driving heavy loads (e.g., 1 kΩ).

It is also possible to make a low-pass filter using just resistors (no capacitors) (see Figure 3). This is a high bandwidth, second-order filter. The resistors R1 and R2 set the DC gain, while R3 maintains stability and controls the filter Q. The filter cutoff frequency is typically 10% to 50% of the op amp gain bandwidth product (GBWP).

FIGURE 3: Low-pass Filter with no Capacitors.
The MCP627X (DS21810), MCP628X (DS21811) and MCP629X (DS21812) data sheets provide more application circuits (e.g., an inverting integrator with improved performance). These data sheets also shed more light on the circuits shown in this Technical Brief.
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip’s products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Microchip received ISO/TS-16949:2002 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona and Mountain View, California in October 2003. The Company’s quality system processes and procedures are for its PICmicro® 8-bit MCUs, dsPIC® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.