INTRODUCTION

In applications that require precise half-bridge and full-bridge control, as in a motor driver application for example, a Complementary Waveform Generator with selectable input sources, dead-band control, polarity control, auto-shutdown and auto-recovery is desirable. The Complementary Waveform Generator (CWG) peripheral in Microchip’s 8-bit microcontrollers can provide these advantages with no processor overhead. This document briefly describes the CWG features, the method of configuration and calculation of important values.

BLOCK DIAGRAM

Figure 1 shows the simplified block diagram of the CWG peripheral. Each block in Figure 1 represents the CWG’s features. The CWG generates a complementary output from one of several selectable input sources. The complementary output can be further modified in different modes of operation such as Push-Pull, Half-Bridge, Full-Bridge and Steering PWM. The clock source can be selected and used in order to insert a dead-band delay between the pair of complementary output waveforms. Each CWG output pin has individual output enable control and the polarity of these pins can be controlled individually as well. In addition, the CWG output can be terminated immediately during a Fault event and can also be recovered when the Fault event is removed.
INPUT SOURCE SELECTION

The CWG generates two complementary output waveforms from one of several selectable input sources. These input sources can be an external input to the CWGxIN pin or an output from other internal peripherals. The Input Source Selection bits (GxIS) are used in selecting the input source. CWG’s input sources and bit selection settings may vary from device to device. Some of the available peripherals used as input sources are Comparator, CCP (Capture, Compare, PWM), NCO (Numerically Controlled Oscillator) and CLC Output (Configurable Logic Cell). The selected peripheral should be configured first before using it as CWG’s input. For devices that have Peripheral Pin Select (PPS), the CWGxIN input pin can be moved to any other pin with the PPS Input Selection register (xxxPPS). By changing the “xxx” notation in the register name to CWGxIN, any available I/O pin can be selected as CWGxIN.

MODE SELECTION

The CWG output can be modified to operate in several different modes. These modes are:

- Half-Bridge mode
- Forward Full-Bridge mode
- Reverse Full-Bridge mode
- Push-Pull mode
- Steering PWM mode

Mode Selection is only available in some device families. One of the device families that has this CWG feature is the PIC16F161X family. In this family, these modes can be selected by setting the CWG Mode Selection bits (CWGxMODE). Figure 2 shows the output of the CWG in different modes of operation for the PIC16F161X family.

In Half-Bridge mode, two output signals are generated as true and inverted version of the input. In Forward and Reverse Full-Bridge modes, three outputs drive static values while the fourth output replicates the input data signal. To change between Forward and Reverse Full-Bridge mode, toggling the MODE<0> bit of the CWGxCON0 register is required. In Push–Pull mode, the output signals generated are alternating copies of the input. In Steered PWM mode, enabling the Steering Enable bits (STRA:D) allows the input event signal to be replicated to any or all of the four CWG outputs (CWGxA:D). When Steering Enable bits (STRA:D) are cleared, the CWG output (CWGxA:D) signal is determined by the Steering Data bits (OVRA:D). When using a Synchronous Steering mode, the next rising input event is required, before the changes on the STRA:D bits take effect. While in Non-Synchronous Steering mode, changes on STRA:D bits take effect on the next instruction cycle.

![FIGURE 2: CWG MODES OF OPERATION](image-url)
CLOCK SOURCE SELECTION

The reference clock for the dead-band control can be selected from several different clock sources. This is possible by using the CWG Clock Selection bits (GxCS). Like the input sources, the available clock sources may vary from device to device.

When the selected clock source is HFINTOSC (16 MHz) and the input source selected remains active, the CWG can still operate even when the microcontroller is in Sleep mode.

DEAD-BAND CONTROL

The dead-band control provides non-overlapping output signals during Half-Bridge mode and changing direction during Full-Bridge mode. The non-overlapping signal prevents the cross conduction of external power switches. Dead-band control uses the selected clock source as a reference to create a delay. A maximum of a 6-bit value can be placed in the Rising Dead-Band Counter register (CWGxDBR) and the Falling Dead-Band Counter register (CWGxDBF) to indicate the count of clock delay periods.

DEAD-BAND RISING EDGE CONTROL

In Figure 3, when CWGxB goes low, the rising edge dead band starts to count and delays the CWGxA for a 10-clock period before it goes high.

DEAD-BAND FALLING EDGE CONTROL

In Figure 4, when CWGxA goes low, the falling edge dead band starts to count and delays the CWGxB for a 10-clock period before it goes high.

FIGURE 3: RISING EVENT DEAD BAND

Input Source

CWGxA

CWGxB

Clock Source

Rising Event Dead-Band Counter Register (CWGxDBR) = 0x0A

Input Source

CWGxA

CWGxB

Clock Source

Falling Event Dead-Band Counter Register (CWGxDBF) = 0x0A

FIGURE 4: FALLING EVENT DEAD BAND
The CWGxDBR and CWGxDBF are double-buffered registers. When CWG enable bit EN is ‘0’, the CWGxDBR and CWGxDBF registers are loaded right after writing to the CWGxDBR and CWGxDBF registers. When EN is ‘1’, the CWGxDBR and CWGxDBF registers are loaded on the next falling edge for the CWG input signal after setting the LD bit of the CWGxCON0 register. If the input source signal is not present long enough for the count to be completed, no output will be seen on the respective output.

AUTO-SHUTDOWN

Auto-shutdown can be triggered by one of the available Fault event sources or by software execution. The Fault event source can be selected using the Auto-Shutdown Control register (CWGxAS1).

Auto-shutdown is an active-low operation. When the selected Fault event goes low, the output pin will be in shutdown state. The output pin shutdown state can be selected as forced-low, forced-high, tri-state or inactive by setting the Auto-Shutdown State Control bits (LSBD/LSAC). Also, setting the SHUTDOWN bit of the Auto-Shutdown Control register (CWGxAS0) in software will force the output into shutdown state.

The shutdown state can be held until cleared by the software or cleared automatically. Clearing the auto-shutdown automatically requires enabling auto-restart. Auto-restart can be enabled using the Auto-Restart Enable bit (REN).

OUTPUT ENABLE

Each CWG output pin has individual output pin enable control. When an output pin enable bit is cleared, the CWG has no connection to the output pin. When the output enable is set, the override value or active waveform is applied to the pin per the internal port priority selection. The output control can be completely disabled by clearing the module enable bit. Output enables are selected in the CWG using the Output Enable bits (OEA:D). Setting the bit enables the output. By default, the complementary drive is configured as inactive in output CWGxA/C while the complementary drive is configured as active in output CWGxB/D.

Some devices allow CWG output to be moved to its alternate pins. Using the Alternate Pin Function register (APFCON), the CWG output function can be moved between its default and alternate pins.

For the devices that have Peripheral Pin Select (PPS), there is no output control available. Instead, each device pin has an individual output selection controlled by the PPS register. When the output is not selected in the PPS register, the peripheral has no connection to the output pin.

POLARITY CONTROL

Polarity control can be set to invert the output signal. The polarity of each CWG output can be selected independently. When the output polarity bit is set, the corresponding output will become active-low. Clearing the output polarity bit configures the corresponding output as active-high. Inverting the polarity of the output signal would allow Output A or Output B to output the exact same signal. Output polarity are selected using the Output Polarity bits (GxPOLA:D).

DEAD-BAND TIME CALCULATION AND UNCERTAINTY

Dead band is timed by counting the clock periods from zero up to the value in its respective count registers. The exact dead-band time is calculated using Equation 1.

EQUATION 1: TIME CALCULATION

\[
\begin{align*}
\text{Time}_{(\text{min})} &= \frac{\text{Count}}{\text{Frequency } \text{(Clock Source)}} \\
\text{Time}_{(\text{max})} &= \frac{\text{Count} + 1}{\text{Frequency } \text{(Clock Source)}}
\end{align*}
\]

Where:

<table>
<thead>
<tr>
<th>TIME</th>
<th>COUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rising Dead-Band</td>
<td>CWGxDBR</td>
</tr>
<tr>
<td>Falling Dead-Band</td>
<td>CWGxDBF</td>
</tr>
</tbody>
</table>

There are instances when the time calculation may not be accurate every time. This is referred to as time uncertainty as shown in Figure 5.

FIGURE 5: TIME UNCERTAINTY

When the rising and falling sources that trigger the dead-band timer come from asynchronous inputs, such as the external input to CWGxIN pin, it creates an uncertainty in the time. Time uncertainty can be calculated using Equation 2.
EQUATION 2: TIME UNCERTAINTY CALCULATION

\[
\begin{align*}
T_{\text{uncertainty}} &= T_{\text{max}} - T_{\text{min}} \\
T_{\text{uncertainty}} &= \frac{1}{\text{Frequency(Clock Source)}}
\end{align*}
\]

CONFIGURING CWG USING MICROCHIP MPLAB® CODE CONFIGURATOR (MCC)

In this section, the MPLAB® Code Configurator (MCC) is utilized to easily configure the CWG module. The MCC is a user-friendly plug-in tool for MPLAB® X IDE, which generates drivers for controlling and driving peripherals of PIC® microcontrollers, based on the settings and selections made in its Graphical User Interface (GUI). For installation and setup of the MCC in MPLAB® X IDE, refer to the “MPLAB® Microchip Code Configurator User Guide” which can be found at www.microchip.com.

The following steps will guide on how to configure the CWG module in PIC16F1509 using the MCC. The CCP’s Pulse-Width Modulation (PWM) output signal, running at 50% duty cycle, is used as the input source and the High-Frequency Internal Oscillator (HFINTOSC) is used as the dead-band reference clock. After a successful configuration, the CWG produces two complementary waveform outputs which can be terminated using an active-low external switch connected in CWGxIN for shutdown control.

1. Navigate to: “Tools – Embedded – MPLAB Code Configurator” to launch the MCC.
2. Set the desired Configuration registers and the system clock source on the “System” label inside of MPLAB X in the “Project Resources” window.
3. Configure the input source to be used:
 - **PWM Configuration**
 - Under the device resources panel. Expand “PWM” and then double-click on “PWM2” to bring the module up to the “Project Resources” panel.
 - In the center panel, after clicking the “PWM2::PWM” in the “Project Resources” window, set the duty cycle to 50% and Timer2 as timer source. When Timer2 is selected as timer source for CCP1, the configurator will automatically add it in “Project Resources”.

 - **Timer2 Configuration**
 - In the center panel, after clicking the “TMR2::Timer” in the “Project Resources” window, set the Prescaler to 1:64 in the drop-down menu and the “PR Match Value” to 0xFF.
 - Check the “Start Timer After Initialization” check box.

4. After configuring the CCP, CWG can now be configured by bringing the module up to the “Project Resources” panel. The following instructions will configure the CWG.
5. In the center panel, after clicking the “CWG1::CWG” in the “Project Resources” window, check the “Enable CWG” checkbox to enable CWG. Select the “PWM2OUT” as input source in the “Select an Input Source” drop-down menu.
6. Select HFINTOSC (16 MHz) as the reference clock source for the dead-band timer.
7. Under the “Output Pins Configuration” tab, check the “Enable CWGA Pin” and “Enable CWGB Pin” to enable both outputs.
 - Choose the “Non-Inverted” checkbox on both CWGA and CWGB to disregard polarity change on the outputs.
8. Under the “Auto-Shutdown” Tab, check the “Shutdown when CWGFLT input is low” and “Enable Auto-Restart” checkbox to activate the auto-shutdown and restart feature. To avoid shutdown, drive the CWGFLT (RA2) pin to high.
 - Set the “CWGA Pin Shutdown State” and “CWGB Pin Shutdown State” to “driven_low” in the drop-down menu.
9. In configuring the dead-band control under the “Rising Event” and “Falling Event” tab, select “9 to 10_counts” as the CWG Rising/Falling counts.
10. Click the “Generate Code” button in the top left corner of the center panel. This will generate a main.c file to the project automatically. It will also initialize each module and leave an empty while(1) loop for custom code entry. See Figure 6 for the User Interface of CWG in MCC and Example 1 for the generated initialization code for the CWG module.
FIGURE 6: MCC USER INTERFACE FOR CWG
EXAMPLE 1: MCC GENERATED INITIALIZATION CODE FOR CWG

```c
void CWG1_initializerDefault(void)
{
    // Set the CWG to the options selected in MPLAB® Code Configurator
    // Writing to CWGxCON0, CWGxCON1, CWGxCON2, CWGxDBR & CWGxDBF registers
    // G1ASDLA driven_low; G1IS PWM2OUT; G1ASDLB driven_low;
    CWG1CON1 = 0xA3;
    // G1ASDSCLC2 disabled; G1ASDSC2 disabled; G1ASDSC1 disabled;
    // G1ARSEN enabled; G1ASDSFLT enabled; G1ASE no_auto_shutdown;
    CWG1CON2 = 0x42;
    // CWG1DBR 9to10_counts;
    CWG1DBR = 0x09;
    // CWG1DBF 9to10_counts;
    CWG1DBF = 0x09;
    // G1EN enabled; G1OEA enabled; G1OEB enabled; G1CS0 HFINTOSC;
    // G1POLA normal_polarity; G1POLB normal_polarity;
    CWG1CON0 = 0xE1;
}
```
TABLE 1: SUMMARY OF 8-BIT MICROCONTROLLER FAMILIES FEATURING THE CWG MODULE

<table>
<thead>
<tr>
<th>Family</th>
<th>Input Sources</th>
<th>Clock Sources</th>
<th>Shutdown Sources</th>
<th>Modes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIC10(L)F3XX</td>
<td>LC1OUT</td>
<td>HFINTOSC</td>
<td>LC1OUT</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>NCO1OUT</td>
<td>Fosc</td>
<td>CWG1FLT (CWG1IN)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PWM2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PWM1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC1X(L)F150X</td>
<td>CLC1OUT</td>
<td>HFINTOSC</td>
<td>C2</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>NCO1OUT</td>
<td>Fosc</td>
<td>C1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PWM4</td>
<td></td>
<td>CLC2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PWM3</td>
<td></td>
<td>CWG1FLT (CWG1IN)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PWM2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PWM1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC16(L)F145X</td>
<td>PWM2</td>
<td>HFINTOSC</td>
<td>C2</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>PWM1</td>
<td>Fosc</td>
<td>C1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C1</td>
<td></td>
<td>CWG1FLT (CWG1IN)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC1X(L)F157x</td>
<td>PWM3</td>
<td>HFINTOSC</td>
<td>C1</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>PWM2</td>
<td>Fosc</td>
<td>CWG1FLT (CWG1IN)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PWM1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC1X(L)F1612/3</td>
<td>CCP2</td>
<td>HFINTOSC</td>
<td>TMR6</td>
<td>Half-Bridge</td>
</tr>
<tr>
<td></td>
<td>CCP1</td>
<td>Fosc</td>
<td>TMR4</td>
<td>Full-Bridge</td>
</tr>
<tr>
<td></td>
<td>C2</td>
<td></td>
<td>TMR2</td>
<td>Push-Pull</td>
</tr>
<tr>
<td></td>
<td>C1</td>
<td></td>
<td>C2</td>
<td>Steering mode</td>
</tr>
<tr>
<td></td>
<td>CWG1IN</td>
<td></td>
<td>C1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CWG1FLT (CWG1IN)</td>
<td></td>
</tr>
</tbody>
</table>

CONCLUSION

This technical brief briefly covers the CWG peripheral features and capabilities. It also provides the calculations of relevant value such as dead-band time. The configuration of CWG is demonstrated using code configurator MCC and example initialization code is generated using MCC as well.
Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks
The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, flexPWR, JukeBox, KEELOQ, KEELOQ logo, Kleer, LANCheck, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC12 logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

The Embedded Control Solutions Company and mTouch are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet, KleerNet logo, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2014, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Worldwide Sales and Service

AMERICAS

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/support
Web Address:
www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Austin, TX
Tel: 512-257-3370

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Novi, MI
Tel: 248-848-4000

Houston, TX
Tel: 281-894-5983

Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

New York, NY
Tel: 631-435-6000

San Jose, CA
Tel: 408-735-9110

Canada - Toronto
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2943-5100
Fax: 852-2401-3431

Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8552-2104

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500

China - Hangzhou
Tel: 86-571-8792-8115
Fax: 86-571-8792-8116

China - Hong Kong SAR
Tel: 852-2943-5100
Fax: 852-2401-3431

China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8864-2200
Fax: 86-755-8203-1760

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130

China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-3019-1500

Japan - Osaka
Tel: 81-6-6152-7160
Fax: 81-6-6152-9310

Japan - Tokyo
Tel: 81-3-6880-3770
Fax: 81-3-6880-3771

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-5778-386
Fax: 886-3-5770-955

Taiwan - Kaohsiung
Tel: 886-7-213-7830

Taiwan - Taipei
Tel: 886-2-2508-8600
Fax: 886-2-2508-1012

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Dusseldorf
Tel: 49-2129-3766400

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Germany - Pforzheim
Tel: 49-7231-424750

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Italy - Venice
Tel: 39-049-7625286

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Poland - Warsaw
Tel: 48-22-3325737

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

Sweden - Stockholm
Tel: 46-8-5090-4654

UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service
03/25/14