INTRODUCTION

This application note provides information on Printed Circuit Board layout for High-Speed Secure-Digital (SD) media sockets with USB225x/USB224x/USB264x/USB266X.

OVERVIEW

Successful High-Speed operation of Secure-Digital media with USB225x/USB224x/USB264x/USB266X requires special consideration for Printed Circuit Board (PCB) layout. This application note describes the important items to consider for layout of PCB.

PCB LAYOUT GUIDELINES

The guidelines presented are applicable to all Microchip card-reader products that support High-Speed Secure-Digital operation. Guidelines for both two-layer and four-layer Microchip PCBs are presented here. This is for the SD signals only.

Power and Ground Distribution to SD Socket

Ground connection between the card-reader and the media socket is important, both for supply return current and signal return currents. The ground should be solid, have low impedance and few constrictions between the card-reader and the socket. The card-reader supplies the power to the socket in most applications since the power-FET is built-in to the Microchip card-reader.

- MEC163x / MEC164x PCS, TBD
- SD socket ground connection: plane, 0.5 oz or thicker, between socket and card-reader.

Note: No constrictions or cuts allowed in the ground between card-reader and socket.
Signal Traces to SD Socket

The Secure-Digital interface has a total of seven signals to the card-reader. Six of these signals are critical for high-speed operation: SD_DAT[0:3], SD_CMD and SD_CLK and require special considerations.

• Signal traces must be above a solid and continuous ground plane along the path from card-reader to socket.
• SD_CLK termination resistor must be placed close, within 400 mils to the SD_CLK pin on card-reader for two layers PCB.
• SD_CLK termination resistor must be placed close, within 400 mils to socket for four layers PCB.
• SD_CLK must be buffered when trace length exceeds 1000 mils. A 74AHC1G125 or equivalent buffer can be used that has less than 2.5 ns propagation delay.

Signal Trace Length

Trace length for SD signals must be less than the maximum length specified in Table 1. An external buffer is required for SD_CLK when trace lengths exceed 1000 mils (800 mils excluding the socket itself). Table 1 provides the trace length when the unbuffered SD_CLK is driven directly by the Microchip card-reader. Skew control between data lines is not critical within the limits given in the tables.

Figure 2 and Figure 3 show the suggested placement of a series termination resistor.

TABLE 1: TRACE LENGTH AND TOLERANCE FOR UNBUFFERED SD_CLK

<table>
<thead>
<tr>
<th>Signal</th>
<th>Maximum Trace Length (including socket) [mils]</th>
<th>PCB Trace Impedance 2-layer PCB [Ohm]</th>
<th>PCB Trace Impedance 4-layer PCB [Ohm]</th>
<th>Trace Length Tolerance [mils]</th>
<th>Maximum Trace Length difference to SD_CLK [mils]</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD_CLK</td>
<td>1000</td>
<td>100 - 130</td>
<td>> 55</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>SD_DAT[0:3]</td>
<td>2500</td>
<td>80 - 150</td>
<td>> 50</td>
<td>+/- 750</td>
<td>-250 to +1500</td>
</tr>
<tr>
<td>SD_CMD</td>
<td>2500</td>
<td>80 - 150</td>
<td>> 50</td>
<td>N/A</td>
<td>-250 to +1500</td>
</tr>
</tbody>
</table>

© 2014 Microchip Technology Inc.
Card Detect and Write Protect

The card detect switch and the write protect switch behavior can vary between different socket models. Table 2 provides suggestions of routing sockets with different types of card detect and/or write protect switch behaviors.

TABLE 2: SOCKET SWITCH CONFIGURATIONS

<table>
<thead>
<tr>
<th>Socket Circuit Diagram:</th>
<th>CARD DETECT/WRITE PROTECT switch behavior when card is INSERTED/UNLOCKED respectively:</th>
<th>Appropriate circuit connections:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The switch closes to digital GROUND (most common).</td>
<td>Connect the socket pin to the input of the card reader.</td>
</tr>
<tr>
<td></td>
<td>The switch closes to a signal pin.</td>
<td>Connect one pin to input of the card reader and the other to digital ground.</td>
</tr>
<tr>
<td></td>
<td>The switch closes to the socket shield.</td>
<td>Connect the socket pin to input of the card reader and the chassis to ground with galvanic isolation.</td>
</tr>
<tr>
<td></td>
<td>The switch opens from a signal pin.</td>
<td>Connect strong pull up to one pin of the socket. Connect the input of the card reader and weak pull down on the other pin of the socket.</td>
</tr>
<tr>
<td></td>
<td>The switch opens from a power rail.</td>
<td>Connect the socket pin to input of the card reader with a series resistor and a weak pull down.</td>
</tr>
</tbody>
</table>
For microSD card applications, the SD_WP input of the card reader should be pulled low with a 1K Ohm resistor to enable writing to the media, or pulled high for read-only applications.

In microSD card applications where the card is not removable, the SD_nCD input of the card reader should be pulled low with a 1k Ohm resistor.

Placement of Series Termination Resistor and Buffer

FIGURE 2: PLACE SERIES TERMINATION RESISTOR CLOSE TO CARD-READER PIN SD_CLK FOR TWO LAYER PCBs.

FIGURE 3: PLACE SERIES TERMINATION RESISTOR CLOSE TO MEDIA SOCKET PIN SD_CLK FOR FOUR LAYER PCBs.
THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

• **Product Support** – Data sheets and errata, application notes and sample programs, design resources, user’s guides and hardware support documents, latest software releases and archived software

• **General Technical Support** – Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing

• **Business of Microchip** – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip’s customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under “Support”, click on “Customer Change Notification” and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

• Distributor or Representative

• Local Sales Office

• Field Application Engineer (FAE)

• Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.

- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.

- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

- Microchip is willing to work with the customer who is concerned about the integrity of their code.

- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELoo, KEELoo logo, MPLAB, PIC, PICmicro, PICSTART, PICC, rPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscent Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

A more complete list of registered trademarks and common law trademarks owned by Standard Microsystems Corporation (“SMSC”) is available at: www.smsc.com. The absence of a trademark (name, logo, etc.) from the list does not constitute a waiver of any intellectual property rights that SMSC has established in any of its trademarks.

All other trademarks mentioned herein are property of their respective companies.

© 2014, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-63276-466-9