Peripheral Brief: Programmable Switch Mode Controller (PSMC)

INTRODUCTION

This peripheral brief reviews the basic functionality of the Programmable Switch Mode Controller (PSMC), as well as discusses which PIC® MCUs have this peripheral, and some suggested applications examples utilizing this peripheral.

WHAT IS THE PSMC?

The Programmable Switch Mode Controller (PSMC) is a high-performance 16-bit pulse-width modulator (PWM), that can be configured to operate in one of many modes to support single or multiple phase applications. It was designed to meet a need to intelligently and efficiently drive the MOSFET switching of various Switch Mode Power Supplies, lighting, and motor drive applications. Basically, it is a PWM Swiss army knife that gives you 12 different modes of PWM generation, and the flexibility to be used with other on-board peripherals to solve or update real world applications. The PIC16(LF)F178X family of devices are the first PIC microcontrollers introduced with the PSMC module, which are also equipped with advanced analog peripherals, such as 12-bit ADCs, high-speed comparators, operational amplifiers, 8-bit DACs, capture/compare/PWMs, Fixed Voltage Reference, multiple timers, I²C™/SPI/EUSART communications, debug capability, and low-power features. Refer to the PIC16(L)F1782/3 product page at www.microchip.com, and the product data sheet (DS41579) for more details and information.

FIGURE 1: PSMC SIMPLIFIED BLOCK DIAGRAM

![PSMC Simplified Block Diagram](image-url)
FUNDAMENTAL OPERATION

Blanking

The inputs to the PSMC can be selected from: the on-board high-speed comparator outputs (CxOUT), an external input pin (PSMCxIN), or the output of the on-board CCP (capture/compare/PWM) modules can be used for PSMC modulation, which will be discussed later. The inputs from the comparators or the external input pin can then go through an input blanking control. Input blanking is a function whereby the inputs (PSMC input pin and/or any of the comparator outputs) may be driven inactive for a short period of time. This is to prevent electrical transients, from the turning on and/or off of power components, from generating a false event.

Inputs

After blanking control, the input signals will then go to the core of the PSMC, where the fundamental operation begins. Here, the PSMC operates based on a sequence of three events; the Period Event, the Rising Edge Event, and the Falling Edge Event. Each of these three events are triggered by the user selecting a combination of external inputs (comparator outputs and PSMC input pin), or time-based counter inputs derived from an internal clock (PSMCxPR, PSMCxPH, PSMCxDC, and PSMCxTMR registers) – see Figure 1.

Period Event

The period event determines the frequency of the output pulse, which of its sources include any combination of the PSMC timer/counter match, PSMC input pin, and/or any of the comparator outputs (see Figure 2). During a period, the rising edge event and falling edge event are each permitted to occur only once. Subsequent rising or falling edge events that may occur within the period are suppressed, thereby preventing output chatter from spurious inputs (see Figure 3 and Figure 4).

Rising Edge Event

The rising edge event determines the start of the output pulse. Depending on the PSMC mode, one or more of the PSMC outputs will change in immediate response to the rising edge event (see Figure 2). A rising edge event that occurs after a falling edge event within the same period is suppressed, resulting in no PWM output signal (see Figure 5).

Falling Edge Event

The falling edge event determines the end of the output pulse. The falling edge event is also referred to as the duty cycle, because varying the falling edge event, while keeping the rising edge event and period events fixed, varies the active drive duty cycle. Depending on the PSMC mode, one or more of the PSMC outputs will change in immediate response to the falling edge event (see Figure 2). If a falling edge event continues on into the next cycle period, the rising edge event of that next cycle period is suppressed, resulting in no PWM output signal for that cycle period (see Figure 6).

Clock Selection

The PSMC module is clocked from one of three options; an external clock pin, 64 MHz, or the system oscillator frequency (FOSC). An external clock source can range from 32 kHz to 20 MHz, depending on the crystal used, independently from the oscillator selection of the microcontroller CPU. Using the 64 MHz clock option, the user can have the PSMC running at 64 MHz, while the rest of the microcontroller is running at 32 kHz, thus allowing the CPU to run in a lower power mode while the PSMC runs at a much faster speed. As a final option, the user can setup the PSMC to run at the same clock speed as the CPU. See Figure 1 for a PSMC Simplified Block Diagram.

FIGURE 2: BASIC PWM WAVEFORM GENERATION

<table>
<thead>
<tr>
<th>PWM Cycle Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period Event</td>
</tr>
<tr>
<td>Rising Edge Event</td>
</tr>
<tr>
<td>Falling Edge Event</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>PWM Output</td>
</tr>
</tbody>
</table>

The diagram shows the basic PWM waveform generation with inputs and outputs.
The first falling edge event in a cycle period is permitted to cause action in the PWM output signal, all other falling edge events.

A rising edge event that occurs after a falling edge event in the same cycle period is also suppressed.
FIGURE 6: FALLING EDGE EVENT COVERING MULTIPLE CYCLE PERIODS

Time-Based Events

If your application requires a PWM output based on very specific rising and falling edge events for a specific period, that all three can be preloaded, then using time-based event sources is the way to go. The PSMC\textsubscript{x}TMR register (a 16-bit counter) is used as a timing reference for each PWM period. The counter starts at 0000h and increments to FFFFh on the rising edge of the PSMC\textsubscript{c} clock signal. The PSMC\textsubscript{x}PR period register is used to determine a period event referenced to the 16-bit digital counter PSMC\textsubscript{x}TMR. A match between the PSMC\textsubscript{x}TMR and the PSMC\textsubscript{x}PR registers will generate a period event. For example; if PSMC\textsubscript{x}PR = 0030h, PSMC\textsubscript{x}TMR will increment from 0000h to 0030h, then roll over to 0000h, and so on. Thus, each set of 0030h counts will be one PWM cycle number or one PWM output period. The PSMC\textsubscript{x}PH phase register is used to determine a rising edge event referenced to the 16-bit PSMC\textsubscript{x}TMR digital counter. A match between the PSMC\textsubscript{x}TMR and the PSMC\textsubscript{x}PH register values will generate a rising edge event. For example; if PSMC\textsubscript{x}PH = 0002h, when the PSMC\textsubscript{x}TMR counter increments to 0002h, a rising edge event will occur. The PSMC\textsubscript{d} duty cycle register is used to determine a synchronous falling edge event referenced to the 16-bit PSMC\textsubscript{x}TMR digital counter. A match between the PSMC\textsubscript{x}TMR and the PSMC\textsubscript{x}DC register values will generate a falling edge event. For example; if PSMC\textsubscript{x}DC = 0028h, when the PSMC\textsubscript{x}TMR counter increments to 0028h, a falling edge event will occur. Also, to configure the PWM output for a zero percent duty cycle operation, set PSMC\textsubscript{x}DC equal to PSMC\textsubscript{x}PH. This will trigger a falling edge event simultaneously with the rising edge event, thus preventing an output PWM signal. Likewise, with a 100% duty cycle operation, set PSMC\textsubscript{x}DC greater than PSMC\textsubscript{x}PR. This will prevent a falling edge event from occurring, as the PSMC\textsubscript{x}DC value and the time base counter value will never be equal. These rising and falling edge events will determine the PWM output signal for the given PWM cycle number period. For an example of a PWM waveform generated with the time-based event sources, see Figure 7.
FIGURE 7: BASIC PWM WAVEFORM GENERATED BY TIME-BASED EVENT SOURCES

<table>
<thead>
<tr>
<th>PWM Cycle Number</th>
<th>PSMC clock</th>
<th>Counter</th>
<th>PSMCxPR<15:0></th>
<th>PSMCxPH<15:0></th>
<th>PSMCxDC<15:0></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0000h</td>
<td>0001h</td>
<td>0002h</td>
<td>0003h</td>
<td>0004h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0002h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0002h</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0027h</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0028h</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0029h</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0030h</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0030h</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0028h</td>
</tr>
</tbody>
</table>

Inputs
- Period Event
- Rising Edge Event
- Falling Edge Event

Outputs
- PWM Output
Modes of Operation

After the rising and falling edge events are logically combined, via an SR latch, various output PWM pulse signals are produced based on the mode of operation selected. Here the user can select one of 12 modes, each with its own set of features, to drive almost any type of MOSFET switching application available, from Switch Mode Power Supplies to lighting or motor control. Because this peripheral can be used for so many applications, a short summary table with a complete list of modes with features and application examples for each of the 12 different PSMC modes of operation is shown in Table 1.

TABLE 1: PSMC MODES OF OPERATION

<table>
<thead>
<tr>
<th>Modes of Operation</th>
<th>Dead-Band Delay</th>
<th>PWM Steering</th>
<th>Primary Outputs</th>
<th>Complementary Outputs</th>
<th>Fractional Freq. Adjust (FFA)</th>
<th>Application Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Phase PWM</td>
<td>No</td>
<td>Yes</td>
<td>A,B,C,D,E,F</td>
<td>—</td>
<td>No</td>
<td>- Stepper motor control</td>
</tr>
<tr>
<td>Complementary PWM</td>
<td>Yes</td>
<td>Yes</td>
<td>A,C,E</td>
<td>B,D,F</td>
<td>No</td>
<td>- Brushed DC motor control</td>
</tr>
<tr>
<td>Push-Pull PWM</td>
<td>No</td>
<td>No</td>
<td>A,B</td>
<td>—</td>
<td>No</td>
<td>- Half and full bridge power supplies</td>
</tr>
<tr>
<td>Push-Pull PWM w/ Complementary Outputs</td>
<td>Yes</td>
<td>No</td>
<td>A,E</td>
<td>B,F</td>
<td>No</td>
<td>- Synchronous drives</td>
</tr>
<tr>
<td>Push-Pull PWM w/4 Full-Bridge Outputs</td>
<td>No</td>
<td>No</td>
<td>A,B,C,D</td>
<td>—</td>
<td>No</td>
<td>- DC to AC inverters</td>
</tr>
<tr>
<td>Push-Pull PWM w/4 Full-Bridge and Complementary Outputs</td>
<td>Yes</td>
<td>No</td>
<td>A,B,C,D</td>
<td>E,F</td>
<td>No</td>
<td>- Class-D output drives</td>
</tr>
<tr>
<td>Pulse Skipping PWM</td>
<td>No</td>
<td>No</td>
<td>A</td>
<td>—</td>
<td>No</td>
<td>- High efficiency boost converters</td>
</tr>
<tr>
<td>Pulse Skipping PWM w/ Complementary Outputs</td>
<td>Yes</td>
<td>No</td>
<td>A</td>
<td>B</td>
<td>No</td>
<td>- Voltage mode boost controllers</td>
</tr>
<tr>
<td>ECCP Compatible Full-Bridge PWM</td>
<td>Yes (Forward and Reverse)</td>
<td>No</td>
<td>A,B,C,D</td>
<td>—</td>
<td>No</td>
<td>- Brushed DC motor control</td>
</tr>
<tr>
<td>Variable Freq. – Fixed Duty Cycle PWM</td>
<td>No</td>
<td>No</td>
<td>A</td>
<td>—</td>
<td>Yes</td>
<td>- Resonant converters</td>
</tr>
<tr>
<td>Variable Freq. – Fixed Duty Cycle PWM w/ Complementary Outputs</td>
<td>Yes</td>
<td>No</td>
<td>A,C,E</td>
<td>B,D,F</td>
<td>Yes</td>
<td>- Resonant power supplies</td>
</tr>
<tr>
<td>3-Phase PWM</td>
<td>No</td>
<td>Yes</td>
<td>A and D</td>
<td>A and F, A and C, A and B, C and B, C and E, C and D</td>
<td>—</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- AC inverters</td>
</tr>
</tbody>
</table>
Single-Phase PWM

The single-phase PWM is the most basic of all the waveforms generated by the PSMC module. Common application examples are motor control and power supply drivers. It consists of a single output that uses all three events (rising edge, falling edge and period events) to generate the waveform. This mode of operation does not have dead-band delay control, but the PWM output can be steered to any combination of the six output pins. See Figure 8 for an example waveform of single-phase PWM operation.

FIGURE 8: SINGLE-PHASE PWM MODE

Complementary PWM

The complementary PWM uses the same event sources as the single phase PWM, but two waveforms are generated instead of only one. The two waveforms are opposite in polarity to each other, thus one is the complement of the other. The two waveforms will also have dead-band control as well. The dead-band control provides non-overlapping PWM signals to prevent shoot-through current in series connected power switches. Dead-band control is available only in modes with complementary waveform capability. The module contains independent 8-bit dead-band counters for rising edge and falling edge dead-band control. The PWM outputs can be steered to three primary PWM output pins and three complementary output pins. See Figure 9 for an example waveform of complementary PWM operation.

FIGURE 9: COMPLEMENTARY PWM MODE
Push-Pull PWM

The push-pull PWM is used to drive half and full-bridge power supplies, as well as other synchronous drives. It uses at least two outputs and generates PWM signals that alternate between the two outputs in even and odd cycles. This mode does not use dead-band delay or output steering control. The PWM outputs are only available on two of the six output pins. See Figure 10 for an example waveform of push-pull PWM operation.

FIGURE 10: PUSH-PULL PWM MODE

<table>
<thead>
<tr>
<th>PWM Cycle Number</th>
<th>Period Event</th>
<th>Rising Edge Event</th>
<th>Falling Edge Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A Output</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>B Output</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>A Output</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Push-Pull PWM with Complementary Outputs

The complementary push-pull PWM is used to drive transistor bridge circuits, as well as synchronous switches on the secondary side of the bridge. The PWM waveform outputs on four pins presented as two pairs of two-output signals with a primary and complementary output in each pair. This mode of operation uses dead-band delay control but not output steering control. See Figure 12 for an example waveform of push-pull PWM with complementary outputs operation.

FIGURE 11: PUSH-PULL WITH COMPLEMENTARY OUTPUTS PWM MODE

<table>
<thead>
<tr>
<th>PWM Cycle Number</th>
<th>Period Event</th>
<th>Rising Edge Event</th>
<th>Falling Edge Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Rising Edge Dead Band</td>
<td>Falling Edge Dead Band</td>
<td>Falling Edge Dead Band</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>PSMCxA</th>
<th>PSMCxE</th>
<th>PSMCxB</th>
<th>PSMCxF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Falling Edge Dead Band</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rising Edge Dead Band</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Push-Pull PWM with Four Full-Bridge Outputs

The full-bridge push-pull PWM is used for DC to AC inverters, Class D output drives and induction motor drive systems. This mode does not utilize dead-band delay or output PWM steering control and the output signals are only available on four of the six output pins. See Figure 12 for an example waveform of push-pull PWM with four full-bridge outputs operation.

FIGURE 12: PUSH-PULL WITH 4 FULL-BRIDGE OUTPUTS PWM MODE

<table>
<thead>
<tr>
<th>PWM Cycle Number</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period Event</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rising Edge Event</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Falling Edge Event</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSMCxA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSMCxC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSMCxB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSMCxD</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Push-Pull PWM with Four Full-Bridge and Complementary Outputs

The push-pull PWM with four full-bridge and complementary outputs is used for DC to AC inverters, Class D output drives and induction motor drive systems. This mode does not utilize PWM steering control, but it does use dead-band delay control and sends the primary PWM outputs to four pins and the complementary outputs to the remaining two of the six output pins. See Figure 13 for an example waveform of push-pull PWM with four full-bridge and complementary outputs operation.

FIGURE 13: PUSH-PULL WITH 4 FULL-BRIDGE AND COMPLEMENTARY OUTPUTS PWM MODE

Pulse-Skipping PWM

The pulse-skipping PWM is used to generate a series of fixed-length pulses that can be triggered at each period event. This type of PWM signal is useful for high efficiency and Voltage mode boost converters. In order for an output PWM signal to be asserted, an asynchronous rising edge event must be active (‘1’) and a synchronous rising edge event must occur within the same single/multiple set of period events, otherwise no output will be generated. This mode does not utilize dead-band delay or output steering control and the output signal is limited to one output pin. See Figure 14 for an example waveform of pulse-skipping PWM.

FIGURE 14: PULSE-SKIPPING PWM MODE
Pulse-Skipping PWM with Complementary Output

This Pulse-Skipping mode works exactly the same as the last mode, with one exception: a complementary output signal is generated. Thus, this mode utilizes dead-band delay control and the complementary output is available on a separate output pin. See Figure 15 for an example waveform of pulse-skipping with complementary output PWM.

FIGURE 15: PULSE-SKIPPING PWM MODE

<table>
<thead>
<tr>
<th>PWM Cycle Number</th>
<th>Period Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asynchronous</td>
<td>Rising Edge Event</td>
</tr>
<tr>
<td>Synchronous</td>
<td>Falling Edge Event</td>
</tr>
<tr>
<td>Falling Edge Event</td>
<td></td>
</tr>
</tbody>
</table>

PSMCxB

PSMCxA

Signal

PxA (Active-High) —
PxB (Active-High) —
PxC (Active-High) —
PxD (Active-High) —

Pulse Width

ECCP Compatible Full-Bridge PWM

This mode of operation is designed to match the Full-Bridge mode from the ECCP module. It is called ECCP compatible, because this mode replicates the PWM output signals needed to drive a full-bridge drive circuit in the forward and reverse directions, see Figure 16.

FIGURE 16: EXAMPLE OF PWM DIRECTION CHANGE

The Full-Bridge Compatible mode uses the same waveform events as the single-phase PWM mode to generate the output waveforms. There are both Forward and Reverse modes available for this operation, again to match the ECCP implementation. This mode utilizes dead-band delay control with respect to the forward and reverse direction changes. See Figure 17 for an example waveform of ECCP compatible full-bridge PWM.

Note 1: The direction bit PxM1 of the CCPxCON register is written any time during the PWM cycle.

Note 2: When changing directions, the PxA and PxC signals switch before the end of the current PWM cycle. The modulated PxB and PxD signals are inactive at this time. The length of this time is four Timer counts.
Variable Frequency – Fixed Duty Cycle PWM

This mode of operation is quite different from all of the other modes. It uses only the period event for waveform generation. At each period event, the PWM output is toggled, producing a fixed duty cycle PWM signal. The rising edge and falling edge events are unused in this mode. This mode is useful for resonant converters and fluorescent dimming ballasts. The dead-band delay and output steering controls are not utilized in this mode, however, fractional frequency adjust can be used for making fine period timing adjustments. See Figure 18 for an example waveform of Variable Frequency Fixed Duty Cycle PWM. The Fractional Frequency Adjust (FFA) is a method by which PWM resolution can be improved on 50% fixed duty cycle signals. Higher resolution is achieved by altering the PWM period by a single count for calculated intervals. This increased resolution is based upon the PWM frequency averaged over a large number of PWM periods. So, after every period event, the FFA adds the PSMCxFFA register value with the previously accumulated result. This addition causes an overflow and the period event time is increased by one. See Figure 19 for a simplified block diagram of the fraction frequency adjust.
Variable Frequency – Fixed Duty Cycle
PWM with Complementary Outputs

This mode is the same as the single output Fixed Duty Cycle mode above, except a complementary output with dead-band control is generated. See Figure 20 for an example waveform of Variable Frequency Fixed Duty Cycle with Complementary PWM.

FIGURE 20: VARIABLE FREQUENCY – FIXED DUTY CYCLE WITH COMPLEMENTARY PWM MODE

3-Phase PWM

The 3-Phase mode of operation is used in 3-phase power supply and motor drive applications configured half-bridges, see Figure 21.

FIGURE 21: 3-PHASE DRIVE APPLICATION

A half-bridge configuration consists of two power driver devices in series, between the positive power rail (high side) and negative power rail (low side). The three outputs come from the junctions between the two drivers in each half-bridge. When the steering control selects a phase drive, power flows from the positive rail through a high-side power device to the load and back to the power supply through a low-side power device. In this mode of operation, all six PSMC outputs are used, but only two are active at a time. The two active outputs consist of a high-side driver and low-side driver output. Now, in order for the motor to rotate forward, the PSMC steering control register values are selected. The timing speed at which these values are selected will determine the speed of the motor, likewise when the PSMC steering register values are selected in reverse. See Figure 22 for an example waveform of 3-phase PWM.
OTHER PSMC FEATURES

Auto-Shutdown

PSMC operation can be quickly terminated without software intervention by the auto-shutdown control. Auto-shutdown can be triggered by any combination of the comparator outputs, manually and/or externally to the microcontroller via an input pin. Auto-shutdown is a method to immediately override the PSMC output levels with specific overrides that allow for safe shutdown of the application. This feature also includes a mechanism (auto-restart) to allow the application to restart under different conditions manually or automatically.

PSMC Synchronization

It is possible to synchronize the periods of two or more PSMC modules together, provided that both modules are on the same device. Synchronization is achieved by sending a sync signal from the master PSMC module to the desired slave modules. This sync signal generates a period event in each slave module, thereby aligning all slaves with the master. This is useful when an application requires different PWM signal generation from each module, but the waveforms must be consistent within a PWM period.

PSMC Modulation

PSMC modulation is a method to stop/start PWM operation of the PSMC without having to disable the module. It also allows other modules to control the operational period of the PSMC. This is also referred to as Burst mode. This is a method to implement PWM dimming for use in LED lighting, and for start-up and shutdown in power supply design.

CONCLUSION

The Programmable Switch Mode Controller (PSMC) is a 16-bit PWM that is an ideal peripheral suited for power supply, lighting, and motor control applications, such as buck converters, boost converters, brushed DC, brushless, 3-phase, etc. This peripheral brief describes the basic function and modes of operation of the PSMC, which can be applied to many real-world applications. Currently, the PSMC peripheral is only available on the PIC16(L)F1782 and PIC16(L)F1783 devices, however, stay tuned to www.microchip.com for future devices that will have the PSMC on board.

Finally, keep in mind that, in order to take advantage of all the benefits of this peripheral, the user must utilize and/or optimize the other capabilities of the selected PIC MCU.
Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks
The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELoo, KEELoo logo, MPLAB, PIC, PICmicro, PICSTART, PIC32 logo, rPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, Hi-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rFLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. & KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2012, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 9781620766460

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV

ISO/TS 16949

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, dsPICDEM® and KEELoo® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
Worldwide Sales and Service

AMERICAS

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/support
Web Address:
www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260

Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9508

Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445

Toronto
Mississauga, Ontario, Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway Harbour City, Kowloon Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431

Australia - Sydney
Tel: 61-2-8868-6733
Fax: 61-2-8868-6755

China - Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9600

China - Hangzhou
Tel: 86-571-2819-3187
Fax: 86-571-2819-3189

China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431

China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130

China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513

Japan - Osaka
Tel: 81-66-152-7160
Fax: 81-66-152-9310

Japan - Yokohama
Tel: 81-45-471-6166
Fax: 81-45-471-6122

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955

Taiwan - Kaohsiung
Tel: 886-7-213-7828
Fax: 886-7-330-9305

Taiwan - Taipei
Tel: 886-2-2508-8600
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820