INTRODUCTION

As the number of photovoltaic systems and electric vehicles increases, so does the demand for intelligent, high-power and high-efficiency battery chargers. Most systems on the market today use either lead-acid or lithium type batteries, requiring constant current/constant voltage charging algorithms.

This application note contains the necessary information to build a 100W inverse SEPIC (also called Zeta converter) battery charger. The novelty consists in driving this topology synchronously using Microchip components, essentially pushing the efficiency over 95% at 8A. The Zeta converter has many advantages, such as input to output DC insulation, buck-boost capability and continuous output current, but it is difficult to control.

The control scheme is also interesting, as it uses the Numerically Controlled Oscillator (NCO) peripheral to implement a form of fixed on-time, variable frequency control that allows 15 bits of resolution for the control system. This opens up quite a few new possibilities in low-cost software controlled power supplies.

Finally, since this implementation allows the control of the output voltage and current with a high resolution, it is quite easy to attach multi-chemistry battery charging algorithms to the basic output regulation loop, greatly increasing its usefulness.

The complete implementation of the regulator and charger library uses only 1k words of program space and 55 bytes of RAM.

THE ZETA CONVERTER

Considered by many designers as an “exotic” topology, the ZETA converter (also known as the inverted SEPIC) offers certain advantages over the classical SEPIC. This topology has the same buck-boost functionality as the SEPIC, but the output current is continuous, providing a clean, low-ripple output voltage make. This low-noise output converter can be used to power certain types of loads, such as LEDs, which are sensitive to the voltage ripple. The ZETA converter offers the same DC isolation between the input and output as the SEPIC converter, and can be used in high-reliability systems.

This topology can also offer high efficiency, especially if the synchronous rectification is used. The synchronous rectification can be easily implemented here, because this topology, unlike the SEPIC converter, uses a low-side rectifier.

The ZETA converter power train is depicted in Figure 1.

FIGURE 1: THE ZETA CONVERTER POWER TRAIN

The two switches, Q1 and Q2, operate out of phase. As with the SEPIC converter, there are two switching cycles that are presented in Figure 2.

FIGURE 2: SWITCHING CYCLES OF THE ZETA CONVERTER

Cycle 1: Q1 closed, Q2 open
Cycle 2: Q1 open, Q2 closed
In the first cycle, Q1 is closed and the current begins to flow in the primary inductor L1 and through the load via the coupling capacitor C1 and inductor L2. In the second cycle, Q2 is closed and the energy stored in the L2 inductor is delivered to the load. The energy stored in the main inductor L1 will be reset to its initial value through the coupling capacitor C1.

The typical waveforms of the ZETA converter are presented in Figure 3. The continuous current flow on the load is maintained by the output inductor L2. The voltage across the main switch (Q1) is the sum of the input and output voltages as is the case with the SEPIC converter. The voltage stress across the main switch is higher and can increase the switching losses of Q1. The two inductors can be magnetically coupled, sharing the same magnetic core. This can greatly reduce the current ripple, as the mutual inductance will double the apparent value of the inductors.

FIGURE 3: TYPICAL WAVEFORMS FOR THE ZETA CONVERTER

If the converter operates in Continuous Current Mode (CCM) and reaches the steady state, the volt-second balance principle can be applied to determine the DC transfer function (transformation ratio).

EQUATION 1: STEADY STATE ANALYZE

| “On State” | \(V_{L1} = V_{IN} \)
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(V_{L2} = V_{IN} + V_{C1} - V_{OUT})</td>
</tr>
<tr>
<td>“Off State”</td>
<td>(V_{L1} = -V_{C1})</td>
</tr>
<tr>
<td></td>
<td>(V_{L2} = -V_{OUT})</td>
</tr>
</tbody>
</table>

EQUATION 2: VOLT-SECOND BALANCE

\[
D \times V_{IN} - (1 - D) \times V_{C1} = 0 \\
D \times (V_{IN} + V_{C1} - V_{OUT}) - (1 - D) \times V_{OUT} = 0
\]

The DC transfer function can be found by solving this system of equations.

EQUATION 3: DC TRANSFER FUNCTION

\[V_{OUT} = \frac{D}{1 - D} \times V_{IN} \]
Figure 4 shows the typical application for the MCP14628 synchronous buck driver, while Figure 5 shows the modified schematic to drive the synchronous ZETA converter.

FIGURE 4: TYPICAL APPLICATION FOR THE MCP14628 SYNCHRONOUS BUCK DRIVER

![Typical Application Diagram](image1)

FIGURE 5: MCP14628 DRIVING THE SYNCHRONOUS ZETA CONVERTER

![Schematic Diagram](image2)

The PHASE pin remains connected to the drain of the synchronous rectifier MOSFET (QL), allowing the bootstrap capacitor (C_{BOOT}) to be charged during the synchronous rectification state. The gate of the main transistor MOSFET (QH) is now driven through the isolation capacitor CBLK. The gate and source of the main MOSFET can now safely swing below the ground level, without affecting the functionality of the MOSFET driver. Diode D1 and resistor R1 form a DC component restorer circuit, that will center again the drive signal to 2.5V. The loop for the driving current of the high-side MOSFET includes now the ZETA coupling capacitor, C1.
HARDWARE IMPLEMENTATION

FIGURE 6: ZETA CONVERTER BOARD SCHEMATIC
THE SOFTWARE CONTROL LOOP

EXAMPLE 1: THE VOLTAGE/CURRENT CONTROL LOOP

void main()
{
 Initialize_Hardware();

 while(1)
 {
 if(T0IF)
 {
 T0IF = 0;
 if(second) second--;
 read_ADC();
 cc_cv_mode();
 if(!cmode) pid(vout, vref); else pid(iout, iref);
 }

 if(!second)
 {
 second = SECOND_COUNT;
 Battery_State_Machine();
 }
 }
}

PIC16F1503 is one of the enhanced core devices, which benefit from the recent line of peripherals, such as the NCO (Numerically Controlled Oscillator), CWG (Complementary Wave Generator) or CLC (Configurable Logic Cell). To implement a software-controlled regulation loop, the user needs:

- 2 ADC inputs (10-bit or better recommended) for monitoring output voltage and current.
- 1 NCO output for the converter control signal
- 1 Timer for the main timer tick
- (optional) LED signaling, serial interface for logging and button

The main control loop is based on TIMER0, which is configured to overflow 4MHz/256/16 = 976.56 times per second, using the 1:16 prescaler. This is the timer tick used for the PI loop.

Every timer period, output voltage (VOUT) and current (IOUT) is read (4 samples each) and stored. Since there is only one regulation loop, the firmware must decide if it needs to regulate the current or voltage at a certain time. The decision is simple enough: if the read voltage is over the set voltage reference, the converter will limit the voltage; if the read current is over the set current reference, then the converter will limit the current.

The function cc_cv_mode() takes care of the transitions between the two working modes, and the variable cmode shows whether the current or voltage is currently regulated. This variable is also important for the topping stage of the battery charging algorithms.

The function also uses a fast debouncing counter, that prevents erratic jumping between the constant voltage and Constant Current mode in boundary conditions.

Regulating the voltage or current is very simple. Depending on the value of cmode, the PI function is called with different parameters:

- `pid(vout, vref)` for voltage or
- `pid(iout, iref)` for current

The variables vref and iref are the output voltage and current limits. The special macros `SET_VOLTAGE(x)` and `SET_CURRENT(x)`, which modify these variables, allow the state machine to change the charging parameters transparently.

The PI function operates on the NCO increment, practically varying the duty cycle by varying the frequency. The NCO operates in Pulse Frequency mode configured for a 2 µsec pulse. This means the converter operates using a fixed on-time, the duty cycle raises proportionally with the frequency, and the on-time value allows 15 bits of frequency resolution. At 500 kHz, we have 100% duty cycle, so the maximum increment value is clamped to 29500 (out of 32768), which gives 450 kHz or 90% duty.
THE CC/CV CHARGER LIBRARY

Except for Ni-MH (and Ni-Cd), all the popular battery chemistries on the market today use a form of constant current, followed by a constant voltage charging (or constant voltage with current limit) algorithm. Since the hardware presented in this application note is capable of regulating output voltage and current, using it for this purpose comes only naturally. Also, one of the biggest problems in synchronous chargers, the battery reversal current, is solved by the driver diode emulation feature.

The converter’s maximum current is 8A, so it is somewhat impractical to use it for very small batteries (current shunt amplifier output for 50 mA or less is close to the noise floor of the ADC). Also, because this implementation has no burst mode at very low duty cycles, the output ripple increases. It is best used with lead-acid and lithium type batteries with capacities over 4 Ah (also probably not useful on batteries bigger than 80 Ah).

MULTI-STEP CHARGING

Properly charging the batteries requires multiple steps and specific mechanisms for each chemistry.

TABLE 1: BATTERY CHEMISTRIES

<table>
<thead>
<tr>
<th>Chemistry</th>
<th>Pre-charge</th>
<th>Charge</th>
<th>Float</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead-acid</td>
<td>No, if under 1.75V per cell for extended periods replace it.</td>
<td>2.4V/cell to C/40 current</td>
<td>Yes, 2.25V/cell</td>
</tr>
<tr>
<td>Li-Co</td>
<td>Yes. C/10 to 3.0V</td>
<td>4.2V/cell to C/33 (3%)</td>
<td>No</td>
</tr>
<tr>
<td>LiFePO4</td>
<td>Yes. C/10 to 2.7V (2.5V for some variants)</td>
<td>3.65V/cell to C/33 (3%)</td>
<td>No</td>
</tr>
<tr>
<td>Ni-Zn</td>
<td>Yes. C/10 to 1.3V</td>
<td>1.9V/cell to C/33 (3%)</td>
<td>No</td>
</tr>
</tbody>
</table>

Lead-acid batteries have generally a more sluggish behavior when charging, and the process will take longer. It is not recommended to charge using currents over C/5, or the topping charge portion may not be complete when the current threshold triggers the end of the charge. Also, lead-acid batteries may be placed in floating charge for extended periods of time.

Li-Ion chemistries have different charging requirements, in the sense that they will not absorb the overcharge, so the current flow must be cut as soon as the battery is full. The optimum charging current is C/2, for a good balance between the charge time and the battery life cycle. Deeply depleted cells have to be trickle-charged until the cut-off threshold is reached. Some Li-Ion chemistries are more resilient and forgiving to abuse than others. LiFePO4 is one such example.

Ni-Zn cells are similar to Li-Ion. No float charge should be applied, and deeply depleted cells need to be trickled back to life.

All these particularities need to be implemented in the charger state machine and a set of charging parameters written for each chemistry type.
FIRMWARE STRUCTURE

Because all the voltage and current regulating functions are in the main program loop, the battery charging state machine is only called every second and it only needs to make decisions based on the output voltage and current values. Depending on the current charging state and chemistry type, it will set the voltage and current limit.

Big (to huge) batteries or cells take a long time to relax from the charging voltage to the open circuit voltage, so it may be unfeasible to stop charging to read the OCV (open circuit voltage) from time to time. For example, even a small 3-cell 4Ah lead-acid battery takes 2-3 seconds to relax from 7.2V to 6.75V, when switching to float charge.

THE MAIN LOOP AND HARDWARE.H

All the output regulating functions should be placed here. Because the charger state machine itself is largely hardware independent, it does not matter how the output regulation is done (in this case, a simple PI software loop).

There are still some requirements that need to be met for the battery state machine to function properly.

Besides the obvious requirement to call the state machine every second, different parameters and macros need to be available to the state machine code. For this implementation, all values are 12 bits (4 x 10-bit ADC readings). Using a different type of ADC or more samples requires changing all the related parameters and each battery chemistry header file.

- VSENSE and ISENSE will contain updated values of the output voltage and current. They can be defined as macros or return functions.

#define VSENSE vout
#define ISENSE iout

- SET_VOLTAGE(x) and SET_CURRENT(x) will set the converter maximum output voltage and current. They can be defined as macros or functions.

#define SET_VOLTAGE(x) { vref = x; }
#define SET_CURRENT(x) { iref = x; }

- SET_LED_BLINK(x) sets the LED state and blink rate to show the current battery charging state.

#define SET_LED_BLINK(x) { led_state = x; }

CONSTANT_VOLTAGE should show whether the converter is regulating the output voltage or not. This is important for the state machine, because the minimum current and flat current charge termination should only be initiated in Constant Voltage mode.

#define CONSTANT_VOLTAGE (!cmode)

- I_BAT_DETECT is a minimum current reading that shows a missing battery/load. The value depends on the current shunt amplifier offset and amplification. It is useful for detecting that the battery has been removed during charge, since there is no OCV measurement.

#define I_BAT_DETECT 16
The Charger State Machine

Please note that the state machine has been designed with basic functionality and simplicity in mind, and it may be further improved depending on the final application.

There are 6 states:

- **PRECHARGE** – will charge using a low current setting (usually C/10) until the voltage exceeds the defined cut-off voltage. This is necessary for Li-Ion chemistries and for Ni-Zn. Lead-acid type batteries should not need this, and the trickle current may be the same as the full charge current. In this case, the battery will switch to CHARGE after one state machine update (1 second).

- **CHARGE** – will charge using the defined full current setting. Once the converter goes into Constant Voltage mode, the state machine starts monitoring output current. When the minimum output current threshold has been reached or the current does not decrease for a certain time (flat current), the state machine switches to either FLOAT (for lead-acid) or DONE for the rest of the chemistries. If the stop current was below the battery detection threshold, it will go directly to IDLE (battery removed). This is useful to quickly stop charging if there is no battery. If a time out occurs before any of these conditions are triggered, then the state machine will switch to FAULT.

- **DONE** – Stop converter

- **FLOAT** – SET_CURRENT(ILIM)
 SET_VOLTAGE(FLOATING_VOLTAGE)

- **IDLE** – Stop converter

- **FAULT** – Timeout

FIGURE 8: CHARGER STATE MACHINE
FLOAT – works in Constant Voltage mode (typically 2.25V/cell). It is necessary for lead-acid batteries to maintain full charge (counter battery self-discharge). This state has a time out, which switches to DONE when it expires. After a defined battery relaxation period, it checks the battery current and, if it is below the battery detection threshold, it switches to IDLE. The “relaxation” period is necessary after switching from the charging voltage to the lower, floating voltage. Until the battery voltage relaxes, there will be no current flowing to the battery and the state machine might incorrectly detect that the battery has been removed. The bigger the battery (capacity), the slower the relaxation.

DONE – is the final state for fully charged batteries. The converter is stopped, but, if a special STANDBY_MODE is enabled, then this state will monitor the OC voltage of the battery and jump back to CHARGE, when it drops too much. This way all types of batteries can be maintained near full charge for extended periods of time. This even works for Li-Ion, if the voltage threshold is chosen carefully. If STANDBY_MODE is not enabled, this state will switch automatically to IDLE.

IDLE – stops the converter and does not do anything, except wait for user input. A button press will re-initialize the state machine and start the charging process. To automate the process, it is simple enough to add output voltage monitoring that will start charging when a battery is connected.

FAULT – stops the converter and waits for the user input. A button press will change the state to IDLE.

One LED is used to signal the current charger state to the user. The LED on/off states and blinking rates are defined in Hardware.h (blinking rate depends on the timer tick period). Each charger state sets the LED behavior:

- LED off – IDLE state
- LED blinking 0.5Hz – PRECHARGE and CHARGE states
- LED on – FLOAT and DONE states
- LED blinking 2 Hz – FAULT state

Charger Variables and Functions

The charger needs a few variables to keep track of the battery parameters. Most of the variables are internal, but some of them are also available to the main program loop.

- battery_state – holds the current charging state of the battery charger. Since the charger accepts only one battery, there is no reason to differentiate between the state of the charger and the state of the battery. This variable is available to the main program loop.

```c
enum charge_states { IDLE = 0, FAULT = 1, DONE = 2, PRECHARGE = 3, CHARGE = 4, FLOAT = 5 };```

- state_counter – is used as a time-out counter for certain states:

  - PRECHARGE will switch to FAULT on time out
  - CHARGE will switch to FAULT on time out
  - FLOAT will switch to DONE on time out

- imin – is the minimum current value recorded during the constant voltage phase of the CHARGE state. When the value of this variable falls below the minimum current threshold (calculated as a fraction of the battery capacity), the topping charge is done.

- imin_db – is the minimum current debouncing counter. When the value of ISENSE is smaller than imin for IMIN_UPDATE times in a row, imin is updated with the value of ISENSE

- iflat_db – is the flat current debouncing counter. This counter is reset every time imin is updated. When it reaches zero, it triggers an end of charge condition.

The charger library has two functions:

1. Init_State_Machine() will initialize the state machine debouncing and time-out counters, set the charging voltage and current limits and start the converter. This function should be called when starting to charge from IDLE (basically, a new battery is inserted).

2. Battery_State_Machine() contains the code for each of the charger/battery state machine and will handle state transitions based on the measured current and voltage values. This function expects to be called every second, otherwise the time-out counters will measure a different interval.

THE BATTERY CHEMISTRY DEFINITION FILES

Lead-acid.h, LiCo.h, LiFePO.h and NiZn.h contain example definitions for charging these chemistries.

As mentioned before, the values in the definition files depend on the charger hardware implementation and the number of ADC samples taken on each measurement. In this case, we have a 10-bit ADC with a 5V reference, and 4 samples are taken for every measurement. The output current shunt is 5 mOhms, amplified 101 times. The output voltage divider is ¼.
EQUATION 4: VOLTAGE CALCULATION EXAMPLE FOR 7.2V

\[
Voltage_{\text{Counts}} = \frac{\text{Voltage}}{\text{Output Divider} \times \text{ADC Reference}} \times AD_{\text{max}}
\]

\[
\text{Counts} = \frac{7.2V}{4 / 5V} \times 4096 = 1474.56
\]

EQUATION 5: CURRENT CALCULATION EXAMPLE FOR 8000 MA

\[
Current_{\text{Counts}} = \frac{\text{Current} \times \text{Shunt Value} \times \text{Amplification}}{\text{ADC Reference}} \times AD_{\text{max}}
\]

\[
\text{Counts} = \frac{6A \times 0.005\Omega \times 101}{5V} \times 4096 = 2482.17
\]

The lead-acid and LiFePO4 headers are shown as an example for charging parameter calculation. The first is an automotive type 60 Ah battery, and the second is a 20 Ah LiFePO4 cell.

For smaller batteries, the current shunt and amplification should be sized accordingly. A small 1800 mAh 18650-type cells has an end-of-charge current of just 55 mA. Because of the battery current shunt value, which is sized for the 8A output limit, it is hard to work with low currents. The 55 mA threshold translates to 23 ADC counts (oversampled 4x), and is dangerously close to the noise floor.

EXAMPLE 2: LEAD-ACID BATTERY SPECIFIC PARAMETERS

```c
//Lead-acid battery specific parameters
#define PRESET1
// 1.75V per cell cutoff voltage
// 2.10V per cell charged OCV voltage
// 2.25V per cell floating voltage
// 2.40V per cell charging voltage
#ifdef PRESET1
 #define LA_3CELL
 #define CAPACITY 60000 //mAh
 #define CHARGING_VOLTAGE 1474 //7.20V
 #define FLOATING_VOLTAGE 1382 //6.75V
 #define TOPPING_VOLTAGE 1290 //6.30V
 #define CUTOFF_VOLTAGE 1075 //5.25V
 #define ILIM_PRECHARGE 2482 //only important for Li-Ion
 #define ILIM 2482 //6A, C/10
 #define IFLOAT 496 //1.2A, C/50 (2%) minimum charging current
#endif
#define BATTERY_STANDBY_MODE
#define PRECHARGE_TIME 600
#define CHARGE_TIME 57600 //16 hours
#define FLOAT_TIME 43200
#define FLOAT_RELAX_TIME (FLOAT_TIME - 60)
#define IFLAT_COUNT 600
```

Lead-acid batteries have a few parameters that are different:
- **LA_3CELL or LA6_CELL** is just a define that shows how many cells the battery has
- **FLOATING_VOLTAGE** is used for setting the float charge voltage
- **IFLOAT** is used instead of **ISTOP** to set the current threshold that will trigger the end of charge (and the switching to float charge). The value is in ADC counts (calculated using Equation 5)
- **FLOAT_TIME** is the floating charge state period in seconds.
- **FLOAT_RELAX_TIME** is a blanking time (in seconds) at the beginning of the floating charge state needed for the battery to relax from the previous, higher, voltage used in the charge state. Without this, the charger detects no current flowing through the battery and switches to IDLE immediately.

### EXAMPLE 3: **LiFePO₄ BATTERY PARAMETERS**

```c
// LiFePO4 battery parameters
#define PRESET1

// 2.7V per cell cutoff voltage (2.5V under heavy load)
// 3.4V+ per cell charged OCV voltage
// 3.65V per cell charging voltage
#if defined PRESET1
#define CAPACITY 20000
#define CHARGING_VOLTAGE 748 //3.65V
#define TOPPING_VOLTAGE 696 //3.40V
#define CUTOFF_VOLTAGE 553 //2.70V
#define ILIM_PRECHARGE 827 //2A, C/10
#define ILIM 3310 //8A, C/2.5, hardware limit
#define ISTOP 251 //606mA, C/33 (3%) minimum charging current
#endif

#define BATTERY_STANDBY_MODE
#define PRECHARGE_TIME 600
#define CHARGE_TIME 14400
#define IFLAT_COUNT 600
```

Lithium type cells and Ni-Zn will not accept overcharge, so the floating charge-related parameters are removed. Also, *IFLOAT* is replaced by *ISTOP* as the end of charge minimum current threshold.

The rest of the parameters are common to all types of cells/batteries.

- **CAPACITY** is the battery capacity in mAh. It is useful to calculate the charge current limit and end-of-charge current limit.
- **CHARGING_VOLTAGE** is the charging voltage limit in ADC counts, calculated with the formula in **Equation 4**.
- **TOPPING_VOLTAGE** is the open circuit voltage below which the charger will start charging again if **BATTERY_STANDBY_MODE** is defined. The value is the number of ADC counts (the same as the charging voltage).
- **CUTOFF_VOLTAGE** is the low voltage limit of the battery. If battery is below this value when connected to charge, it will be trickle-charged with a low current setting.
- **ILIM** is the charging current limit in ADC counts, calculated with the formula in **Equation 5**.
- **ILIM_PRECHARGE** is the trickle charge current for **PRECHARGE** (calculated the same way as the charging current).
- **IFLOAT/ISTOP** is the minimum current limit for the charging phase. It is also calculated using **Equation 5**.
- **BATTERY_STANDBY_MODE** is a parameter that alters the behavior of the charger state machine after the charging process is finished. Normally, at the end of the floating charge phase (for lead-acid) and or charge phase (for lithium and Ni-Zn), the charger goes to IDLE. If Standby mode is defined, then the charger stays in the DONE state and monitors the OC voltage of the battery. If the voltage drops below **TOPOFF_VOLTAGE**, it starts charging again from the **CHARGE** state.
- **PRECHARGE_TIME** is the maximum pre-charge time in seconds. When the timer expires, the charge goes into Fault mode.
- **CHARGE_TIME** is the maximum charging time in seconds. When the timer expires, the charger goes into Fault mode. Both timers should be approximated using the battery capacity, charge current and specific chemistry behavior.

- **IFLAT_COUNT** is a flat current counter used to end charge in case the battery has higher leakage than normal, and the charging current will not go below the normal end-of-charge current limit. The counter is re-initialized every time a new current minimum is recorded, otherwise it is decremented. When the counter reaches zero, it means that, for a number of seconds equal to the initialization value, no new minimum has been recorded. Basically, the battery charge current has not decreased for a long time.

Please note that, even though the charging algorithm is correct for many types of batteries, it is impossible to account for all variants and particularities. While this application note, hardware and firmware provide a nice starting point for high-power, intelligent charger applications, it is the user’s responsibility to work with the battery manufacturer to get the optimum charging algorithms and parameters.

**CONCLUSION**

The SEPIC/inverse SEPIC (Zeta) converters are very attractive because of the input to output DC insulation, and the ability to generate output voltages, either lower or higher than the input. Unfortunately, it is quite complicated to drive these topologies synchronously, generally limiting their use in high-power applications. Using the MCP14628 and a few extra components, a 100W synchronous Zeta converter was designed and built with an achieved efficiency of 95%. The phase lag between the input and output denies the use of pulse-by-pulse control techniques, but the new NCO peripheral available on the PIC16 family has opened some new options, previously available only to DSP type controllers.

The CC/CV charger library makes use of this hardware to easily implement robust charging algorithms for a number of popular battery types, such as lead-acid, lithium-cobalt, lithium-manganese, lithium iron phosphate, and nickel-zinc, thus making it a must-have in all battery operated devices.
REFERENCES

- PIC16(L)F1503 14-Pin Flash, 8-Bit MCU Data Sheet:
- 2A Synchronous Buck Power MOSFET Driver:
- MCP6V01/2/3 Data Sheet:
- MCP1790/MCP1791 Data Sheet:
APPENDIX A: REVISION HISTORY

Revision A (10/2012)

Initial Release.
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks
The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC32 logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.
Silicon Storage Technology is a registered trademark of Microchip Technology Incorporated in other countries.
Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MFP, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rflAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.
SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.
GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. & KG, a subsidiary of Microchip Technology Inc., in other countries.
All other trademarks mentioned herein are property of their respective companies.
© 2012, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.
Printed on recycled paper.
ISBN: 9781620766088

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV
ISO/TS 16949

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
# Worldwide Sales and Service

## AMERICAS

**Corporate Office**  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/support  
Web Address:  
www.microchip.com

**Atlanta**  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455

**Boston**  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088

**Chicago**  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075

**Cleveland**  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643

**Dallas**  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924

**Detroit**  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260

**Indianapolis**  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453

**Los Angeles**  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608

**Santa Clara**  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445

**Toronto**  
Mississauga, Ontario, Canada  
Tel: 905-673-0699  
Fax: 905-673-6509

## ASIA/PACIFIC

**Asia Pacific Office**  
Suits 3707-14, 37th Floor  
Tower 6, The Gateway Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431

**Australia - Sydney**  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755

**China - Beijing**  
Tel: 86-10-8569-7000  
Fax: 86-10-8528-2104

**China - Chengdu**  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889

**China - Chongqing**  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500

**China - Hangzhou**  
Tel: 86-571-2819-3187  
Fax: 86-571-2819-3189

**China - Hong Kong SAR**  
Tel: 852-2401-1200  
Fax: 852-2401-3431

**China - Nanjing**  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470

**China - Qingdao**  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205

**China - Shanghai**  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066

**China - Shenyang**  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393

**China - Shenzhen**  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760

**China - Wuhan**  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118

**China - Xian**  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256

**China - Xiamen**  
Tel: 86-592-2388138  
Fax: 86-592-2308130

**China - Zhuhai**  
Tel: 86-756-3210040  
Fax: 86-756-3210049

## ASIA/PACIFIC

**India - Bangalore**  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123

**India - New Delhi**  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632

**India - Pune**  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513

**Japan - Osaka**  
Tel: 81-66-152-7160  
Fax: 81-66-152-9310

**Japan - Yokohama**  
Tel: 81-45-471-6166  
Fax: 81-45-471-6122

**Korea - Daegu**  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302

**Korea - Seoul**  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or 82-2-558-5934

**Malaysia - Kuala Lumpur**  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859

**Malaysia - Penang**  
Tel: 60-4-227-8850  
Fax: 60-4-227-8870

**Philippines - Manila**  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069

**Singapore**  
Tel: 65-6334-8870  
Fax: 65-6334-8850

**Taiwan - Hsin Chu**  
Tel: 886-3-5778-366  
Fax: 886-3-5770-955

**Taiwan - Kaohsiung**  
Tel: 886-7-536-4818  
Fax: 886-7-330-9305

**Taiwan - Taipei**  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102

**Thailand - Bangkok**  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350

## EUROPE

**Austria - Wels**  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393

**Denmark - Copenhagen**  
Tel: 45-4450-2828  
Fax: 45-4485-2829

**France - Paris**  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79

**Germany - Munich**  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44

**Italy - Milan**  
Tel: 39-0331-742611  
Fax: 39-0331-466781

**Netherlands - Drunen**  
Tel: 31-416-690399  
Fax: 31-416-690340

**Spain - Madrid**  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91

**UK - Wokingham**  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820

11/29/11