INTRODUCTION

For watch and timekeeping applications, 32.768 kHz crystals with an accuracy close to 20 ppm are common, but 20 ppm translates to a ±0.65536 Hz frequency deviation, or a whopping 51.8 seconds error per month. This error only accounts for variation in crystal properties. Other significant sources include temperature, aging, component selection and layout.

In this application note, we discuss errors associated with low-cost watch crystals used in Real-Time Clock and Calendar (RTCC) applications and methods to overcome these errors. We also discuss a unique built-in calibration feature in Microchip Technology’s Real-Time Clock and Calendar circuits, which minimizes these errors during run time.

SOURCES OF CRYSTAL ERROR

Cross cut (X-Cut) crystals are the most common type of crystal used in (RTCC) circuits. These crystals are inexpensive, readily available and reasonably accurate.

The following are the most common factors leading to oscillator errors in crystal sources:

- Mechanical Vibration
- Load Capacitor
- Temperature
- Age

Mechanical vibration should be avoided to minimize crystal errors. If possible, we need to move all vibration sources away from the crystal. Potential vibration sources include buzzers, speakers, motors and so on.

For resonance at the correct frequency, the crystal should be loaded with its specified load capacitance, which is the value of capacitance used in conjunction with the crystal unit. Load capacitance is a parameter specified by the crystal manufacturer; typically expressed in pF. A mismatched load capacitor can contribute to an error of up to almost 400 ppm, as shown in Figure 1. It is important to consider capacitor value due to parasitic capacitance of the PCB traces and other crystal leads. Determining an optimal capacitor value is beyond the scope of this application note, but additional information is available in AN826, “Crystal Oscillator Basics and Crystal Selection for rPIC™ and PICmicro® Devices”, AN849, “Basic PICmicro® Oscillator Design”, AN943, “Practical PICmicro® Oscillator Analysis and Design” and AN949, “Making Your Oscillator Work” on Microchip Technology’s web site (www.microchip.com).
Temperature affects crystal frequency and contributes significantly to crystal errors. Many crystals are designed to center the inflection in error near the room temperature. Figure 2 shows a typical 32.768 kHz X-Cut crystal error vs. temperature. From this figure, we can see that a typical crystal error doubles in as little as 20°C (degree Celsius) variation.

FIGURE 2: CRYSTAL ERROR vs. TEMPERATURE

![X-Cut Crystal Temp Curve](image)

All components’ characteristics change with their age. Although it is commonly overlooked, its effect can significantly contribute as much as 50 ppm to crystal errors.

The error due to temperature and aging presents a significant challenge to a system designer. Even though a high-quality crystal with properly matched capacitors may be used, along with the best layout practices, they do not account for temperature or aging. This is due to the fact that these factors are unknown during the design process, and hence, must be taken care of during its run-time execution.

Timing errors, due to aging or temperature variations, are typically very slow in nature and will not abruptly change the crystal frequency. By characterizing their effects, time could be adjusted in the software. This can, however, complicate the RTCC routines since large counters are needed to apply these adjustments at the correct time.

To counter the drift caused by the above sources, Microchip Technology’s PIC24F RTCC has an automatic calibration feature. It features a software writable register, capable of compensating for up to 260 ppm crystal error, which is sufficient to counter typical crystal error due to mismatched load capacitor, change in temperature, etc., without adding a significant software overhead during run time. This is a unique feature since most off-the-shelf RTCC solutions do not support run-time calibration.

The RTCC block diagram in Figure 3 depicts the various features of PIC24F RTCC peripheral.

The RTCC module is comprised of the following features:

- Hardware Real-Time Clock and Calendar
- Year 2000 to 2099 with Leap Year Correction
- Provides Time – Hours, Minutes and Seconds using 24-Hour Format
- Provides Calendar – Weekday, Date, Month and Year
- Optimized for a Long-Term Battery Operation
- Provides Configurable Alarm
- Alarm Configurable for Half a Second, 1 Second, 10 Seconds, 1 Minute, 10 Minutes, 1 Hour, 1 Day, 1 Week or 1 Month
 - Alarm repeat with decrementing counter
 - Alarm with indefinite repeat – chime
- Provides Seconds Pulse Output on an Output Port if Configured
- Provides Interrupt to the CPU on Every Alarm Event
- User Calibration for the 32.768 kHz Clock Crystal Frequency with a Periodic Auto-Adjust
 - Calibration within ±2.59 seconds and up to ±11.23 minutes error per month
 - Calibrates up to 260 ppm of crystal error

Note: Refer to the specific device data sheet for complete features.
Calculating Crystal Calibration Constant for PIC24F RTCC

To minimize timing errors, Microchip has introduced a novel idea of modifying the RTCC counter value automatically, based on error value loaded in the calibration register, RCFGCAL. The value of the register is made to auto-adjust the crystal errors every minute without software overhead.

To determine the correct calibration value, find the number of error clock pulses per minute and store this value in the lower half of the RCFGCAL register. This is stored in an 8-bit signed value format. The peripheral multiplies this value by four and will either add or subtract this from the RTCC timer, once in every minute.

Use Equation 1 to calculate the correction calibration value from the crystal error (ppm) rate.

In Equation 1, the Error Clocks/Min is a signed value, so the value of RCFGCAL is added when positive and subtracted when negative.

EQUATION 1: CALCULATING CRYSTAL ERROR RATE TO RCFGCAL VALUE

\[
\text{Error Clocks/Min} = (\text{Ideal Frequency} - \text{Actual Frequency}) \times \frac{60}{4}
\]

Note: The value is multiplied by 60 to get error clocks for minute and divided by 4 as a resolution of each count in the calibration register is 2^2.

FIGURE 3: BLOCK DIAGRAM OF MICROCHIP RTCC

Note 1: These are Special Function Registers which can be accessed by the CPU.
Methods to Determine Calibration Value for Crystal Error

To calibrate the Real-Time Clock counter, the first step is to determine the error associated with the oscillator. This can be done in various ways; this document focuses on two types of error estimation and calibration methods.

METHOD 1 – LOOK-UP TABLE-BASED APPROACH

As discussed earlier, temperature and load capacitors are major contributors for oscillator error. It can be assumed that the error contributed by the load capacitor is constant and the error from temperature is variable. With this assumption, we can generate a look-up table for temperature vs. crystal error. The RCFGCAL value can be then updated at a fixed interval or whenever there is a change in temperature.

EQUATION 2: TEMPERATURE vs. CRYSTAL ERROR

\[\Delta f/f_0 \ (\text{ppm}) = -0.038(T - T_0)^2 \pm 10 \]

Where \(T_0 = 20^\circ\text{C} \) and \(T \) is the Ambient Temperature

EQUATION 3: TOTAL CRYSTAL ERROR

\[\text{RCFGCAL} = -((\text{Total Crystal Error in ppm/1000000}) \times \text{(Clocks per Minute in 32.768 kHz)/4}) \]

EXAMPLE 1A: TO CALCULATE RCFGCAL VALUE FOR -30 ppm CRYSTAL ERROR

If the crystal has -30 ppm error at 40°C and 10 ppm error due to the load capacitor mismatch, the calibration value will be:

\[
\text{RCFGCAL Value} = -((-30 + 10)/1000000) \times 1966080/4)
= 9.8304
= 10
= 0x0A
\]

EXAMPLE 1B: TO CALCULATE RCFGCAL VALUE FOR -80 ppm CRYSTAL ERROR

If the crystal has -80 ppm error at -50°C and 10 ppm error due to the load capacitor mismatch, the calibration value will be:

\[
\text{RCFGCAL Value} = -((-80 + 10)/1000000) \times 1966080/4)
= 34.4064
= 34
= 0x22
\]

EXAMPLE 2: TO CALCULATE RFGCAL VALUE FOR +80 ppm CRYSTAL ERROR

If the crystal has -20 ppm error, and the error due to load capacitor mismatch is +100 ppm, then the total error of the clock source will be 80 ppm (-20 + 100); then the calibration value will be:

\[
\text{RCFGCAL Value} = -((80/1000000) \times 1966080/4)
= -39.3216
= -39
= 0xD9
\]
FIGURE 4: SAMPLE APPLICATION FLOWCHART FOR LOOK-UP TABLE-BASED CRYSTAL CALIBRATION

a) Main Program Flow

Main

Initialize RTCC Peripheral; Enable RTCC Alarm Interrupt to Generate a Tick Every Minute (or every 5 minutes)

Is alarm_tick?

Yes

Clear alarm_tick;
Read Temperature from Temperature Sensor

No

Is temperature value changed?

Yes

Read the RCFGCAL Value from the Look-up Table Corresponding to Temperature; Write the Value to the RCFGCAL Register

No

FIGURE 5: SAMPLE APPLICATION FLOWCHART FOR LOOK-UP TABLE-BASED CRYSTAL CALIBRATION

b) Interrupt Program Flow

Alarm Interrupt

Set the alarm_tick

Return
METHOD 2 – REFERENCE SYSTEM
CLOCK-BASED APPROACH

Method 1 uses a precomputed table given in Appendix A: “Look-up Table”. This table doesn’t consider factors like aging, part-to-part variations or environmental changes.

Most of the high-frequency crystals in embedded systems are AT-Cut crystals, which have better accuracy (0.1 ppm to 4 ppm) and less temperature drift as compared to X-Cut crystals. Effects/errors can be minimized by comparing the RTCC value with a timer value based on these high-frequency crystals, Equation 4 describes the error in one second for both clock sources.

EQUATION 4: ERROR IN ONE SECOND

\[
\text{Error in 1 Second} = \text{Error Clocks per Second} \times \text{Clock Period}
\]

EXAMPLE 3: CALCULATING ERROR IN TIME DUE TO 20 ppm AND 1 ppm ERROR IN CRYSTAL

Calculating the error/second for 32.768 kHz and 8.00 MHz crystal for one second having 20 ppm and 1 ppm error, respectively:

- Error in 1 second for 32.768 kHz crystal with 20 ppm is \(\frac{20 \times 32768}{1,000,000} \times \frac{1}{32768} = 0.00002 \) Seconds
- Error in 1 second for 8.00 MHz crystal with 1 ppm is \(\frac{1 \times 8,000,000}{1,000,000} \times \frac{1}{8,000,000} = 0.000001 \) Seconds
From the above calculation, it is evident that by comparing a low-frequency crystal oscillator with a high-frequency stable system oscillator, a software routine could improve the lower frequency crystal’s accuracy. Steps involved in calibrating the crystal using this method are given below:

1. Select system frequency as a multiple of RTCC timer frequency. This simplifies the calculations and reduces the error due to asynchronous operation of timers.
2. Configure an available timer to use the system clock as a clock source and select a prescaler for an overflow of approximately 2 seconds.
3. Initialize the RTCC.
4. Enable RTCC interrupt for every second.
5. In the first interrupt, clear the timer count.
6. In subsequent interrupts, clear the RTCC interrupt and read the timer value.
7. Calculate crystal frequency error using the following formula:
 \[
 \text{Error Counts} = 32768 - \text{Timer Counts Accumulated Over a Second}
 \]
8. Convert frequency error to calibration value using the following formula:
 \[
 \text{Calibration Value} = \frac{\text{Error Counts}}{4}
 \]
9. Compute average calibration value for 1 minute. Load the computed average calibration value to the RCGFCAL register every minute.
10. Repeat steps 5 to 10, as needed, to compensate for system temperature variation, typically between 1 to 5 minutes.

By this method, we can overcome all the limitations of method 1; however, this requires a highly stable and accurate system clock and a timer.

EQUATION 5: COMPUTING THE CALIBRATION VALUE

Let us assume that the frequency of the main oscillator is 16.777 MHz and the timer prescaler is 256:

\[
\begin{align*}
F_{\text{TMR}} &= \frac{F_{\text{CY}}}{\text{Prescaler Value}} \\
&= \frac{16.777}{\text{Prescaler Value}} \\
&= \frac{16.777/2}{\text{Prescaler Value}} \\
&= \frac{8.388608}{256} \\
F_{\text{TMR}} &= 32.768 \text{ kHz}
\end{align*}
\]

With this configuration, the timer should have 32,768 counts for every second. If the crystal has 0 ppm error, any variation in the counts will result in error counts.

\[
\text{Error Counts} = 32768 - \text{Timer Counts}
\]

\[
\text{RFGCAL Value} = \frac{\text{Error Counts}}{4}
\]

Figure 6 and Figure 7 depict the typical flowcharts to implement software using the reference system clock-based crystal calibration method.

FIGURE 6: SAMPLE APPLICATION FLOWCHART FOR REFERENCE SYSTEM CLOCK-BASED CRYSTAL CALIBRATION

a) Main Program Flow

1. **Main**
 - Initialize RTCC Peripheral
 - Initialize Timer: Select Timer Prescaler to Get Timer Clock as Close as Possible to RTCC Clock (32768 Hz)
 - Enable RTCC Interrupt for Every Second
 - OldTmrValu = 32768, TmrValu = 0

2. **End**
FIGURE 7: SAMPLE APPLICATION FLOWCHART FOR REFERENCE SYSTEM CLOCK-BASED CRYSTAL CALIBRATION

b) Interrupt Program Flow

RTCC Interrupt Routine

Is first RTCC interrupt?

Yes

Clear Timer Value

/* Read the Timer Count Accumulated Over 1 Sec. */
TmrValue = TMRCNT
Count Accumulated = TmrValue – OldTmrValu;
OldTmrValu = TmrValue

/* Compute the Error */
Error += (32768 – Count Accumulated);
/* Compute the Running Average for Error Value */
Error = Error/2;

Read the RTCC Minute Register

Is one minute elapsed after the previous configuration?

No

/* Update the Calibration Value to */
RCFGCAL = (Error >> 2)

Clear the RTCC Interrupt Flag

Return

Yes
CONCLUSION
Designing a Real-Time Clock and Calendar with inexpensive watch crystals is a challenge without run-time error calibration. Now, Microchip provides an easy and inexpensive solution to address this issue. Using Microchip’s RTCC you can implement Real-Time Clocks within ±2.59 seconds error/month.

REFERENCES
• Microchip’s “PIC24FJ128GA010 Family Data Sheet” (DS39747)
• Norman Bijano’s “Choosing the Right Crystal for Your Oscillator”, EDN, Feb., 1998 pp 66-70
APPENDIX A: LOOK-UP TABLE

TABLE A-1: TEMPERATURE vs. CALIBRATION VALUE LOOK-UP TABLE FOR 32.768 kHz X-CUT WATCH CRYSTAL

<table>
<thead>
<tr>
<th>Temperature (in °C)</th>
<th>X-Cut Crystal Characteristic Curve (\frac{\Delta f}{f_0}) (ppm) = (-0.038(T - T_0)^2)</th>
<th>X-Cut Crystal Characteristic Curve with 10 ppm Load Capacitor Mismatch (\frac{\Delta f}{f_0}) (ppm) = (-0.038(T - T_0)^2) ±10</th>
<th>Cal Value = (-\frac{\text{(Total Crystal Error in ppm/1000000)} \times \text{(Clocks per Minute in 32.768 kHz)/4}}{4})</th>
<th>RCFGCAL Value Rounded Off to the Nearest Integer</th>
</tr>
</thead>
<tbody>
<tr>
<td>-25</td>
<td>-95</td>
<td>-85</td>
<td>41.78</td>
<td>42</td>
</tr>
<tr>
<td>-24</td>
<td>-91.238</td>
<td>-81.238</td>
<td>39.93</td>
<td>40</td>
</tr>
<tr>
<td>-23</td>
<td>-87.552</td>
<td>-77.552</td>
<td>38.12</td>
<td>38</td>
</tr>
<tr>
<td>-22</td>
<td>-83.942</td>
<td>-73.942</td>
<td>36.34</td>
<td>36</td>
</tr>
<tr>
<td>-21</td>
<td>-80.408</td>
<td>-70.408</td>
<td>34.61</td>
<td>35</td>
</tr>
<tr>
<td>-20</td>
<td>-76.95</td>
<td>-66.95</td>
<td>32.91</td>
<td>33</td>
</tr>
<tr>
<td>-19</td>
<td>-73.568</td>
<td>-63.568</td>
<td>31.24</td>
<td>31</td>
</tr>
<tr>
<td>-18</td>
<td>-70.262</td>
<td>-60.262</td>
<td>29.62</td>
<td>30</td>
</tr>
<tr>
<td>-17</td>
<td>-67.032</td>
<td>-57.032</td>
<td>28.03</td>
<td>28</td>
</tr>
<tr>
<td>-16</td>
<td>-63.878</td>
<td>-53.878</td>
<td>26.48</td>
<td>26</td>
</tr>
<tr>
<td>-15</td>
<td>-60.8</td>
<td>-50.8</td>
<td>24.97</td>
<td>25</td>
</tr>
<tr>
<td>-14</td>
<td>-57.798</td>
<td>-47.798</td>
<td>23.49</td>
<td>23</td>
</tr>
<tr>
<td>-13</td>
<td>-54.872</td>
<td>-44.872</td>
<td>22.06</td>
<td>22</td>
</tr>
<tr>
<td>-12</td>
<td>-52.022</td>
<td>-42.022</td>
<td>20.65</td>
<td>21</td>
</tr>
<tr>
<td>-11</td>
<td>-49.248</td>
<td>-39.248</td>
<td>19.29</td>
<td>19</td>
</tr>
<tr>
<td>-10</td>
<td>-46.55</td>
<td>-36.55</td>
<td>17.97</td>
<td>18</td>
</tr>
<tr>
<td>-9</td>
<td>-43.928</td>
<td>-33.928</td>
<td>16.68</td>
<td>17</td>
</tr>
<tr>
<td>-8</td>
<td>-41.382</td>
<td>-31.382</td>
<td>15.42</td>
<td>15</td>
</tr>
<tr>
<td>-7</td>
<td>-38.912</td>
<td>-28.912</td>
<td>14.21</td>
<td>14</td>
</tr>
<tr>
<td>-6</td>
<td>-36.518</td>
<td>-26.518</td>
<td>13.03</td>
<td>13</td>
</tr>
<tr>
<td>-5</td>
<td>-34.2</td>
<td>-24.2</td>
<td>11.89</td>
<td>12</td>
</tr>
<tr>
<td>-4</td>
<td>-31.958</td>
<td>-21.958</td>
<td>10.79</td>
<td>11</td>
</tr>
<tr>
<td>-3</td>
<td>-29.792</td>
<td>-19.792</td>
<td>9.73</td>
<td>10</td>
</tr>
<tr>
<td>-2</td>
<td>-27.702</td>
<td>-17.702</td>
<td>8.7</td>
<td>9</td>
</tr>
<tr>
<td>-1</td>
<td>-25.688</td>
<td>-15.688</td>
<td>7.71</td>
<td>8</td>
</tr>
<tr>
<td>0</td>
<td>-23.75</td>
<td>-13.75</td>
<td>6.76</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>-21.888</td>
<td>-11.888</td>
<td>5.84</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>-20.102</td>
<td>-10.102</td>
<td>4.97</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>-18.392</td>
<td>-8.392</td>
<td>4.12</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>-16.758</td>
<td>-6.758</td>
<td>3.32</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>-15.2</td>
<td>-5.2</td>
<td>2.56</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>-13.718</td>
<td>-3.718</td>
<td>1.83</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>-12.312</td>
<td>-2.312</td>
<td>1.14</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>-10.982</td>
<td>-0.982</td>
<td>0.48</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>-9.728</td>
<td>0.272</td>
<td>-0.13</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>-8.55</td>
<td>1.45</td>
<td>-0.71</td>
<td>-1</td>
</tr>
<tr>
<td>11</td>
<td>-7.448</td>
<td>2.552</td>
<td>-1.25</td>
<td>-1</td>
</tr>
<tr>
<td>12</td>
<td>-6.422</td>
<td>3.578</td>
<td>-1.76</td>
<td>-2</td>
</tr>
<tr>
<td>13</td>
<td>-5.472</td>
<td>4.528</td>
<td>-2.23</td>
<td>-2</td>
</tr>
<tr>
<td>14</td>
<td>-4.598</td>
<td>5.402</td>
<td>-2.66</td>
<td>-3</td>
</tr>
<tr>
<td>15</td>
<td>-3.8</td>
<td>6.2</td>
<td>-3.05</td>
<td>-3</td>
</tr>
<tr>
<td>16</td>
<td>-3.078</td>
<td>6.922</td>
<td>-3.4</td>
<td>-3</td>
</tr>
</tbody>
</table>
TABLE A-1: TEMPERATURE vs. CALIBRATION VALUE LOOK-UP TABLE FOR 32.768 kHz X-CUT WATCH CRYSTAL (CONTINUED)

<table>
<thead>
<tr>
<th>Temperature (in °C)</th>
<th>X-Cut Crystal Characteristic Curve $\Delta f/f_0 (\text{ppm}) = -0.038(T - T_0)^2$</th>
<th>X-Cut Crystal Characteristic Curve with 10 ppm Load Capacitor Mismatch $\Delta f/f_0 (\text{ppm}) = -0.038(T - T_0)^2 \pm 10$</th>
<th>Cal Value = $-((\text{Total Crystal Error in ppm}/1000000) \times (\text{Clocks per Minute in 32.768 kHz})/4)$</th>
<th>RCFGCAL Value Rounded Off to the Nearest Integer</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>-2.432</td>
<td>7.568</td>
<td>-3.72</td>
<td>-4</td>
</tr>
<tr>
<td>18</td>
<td>-1.862</td>
<td>8.138</td>
<td>-4.24</td>
<td>-4</td>
</tr>
<tr>
<td>19</td>
<td>-1.368</td>
<td>8.632</td>
<td>-4.24</td>
<td>-4</td>
</tr>
<tr>
<td>20</td>
<td>-0.95</td>
<td>9.05</td>
<td>-4.45</td>
<td>-4</td>
</tr>
<tr>
<td>21</td>
<td>-0.608</td>
<td>9.392</td>
<td>-4.62</td>
<td>-5</td>
</tr>
<tr>
<td>22</td>
<td>-0.342</td>
<td>9.658</td>
<td>-4.75</td>
<td>-5</td>
</tr>
<tr>
<td>23</td>
<td>-0.152</td>
<td>9.848</td>
<td>-4.84</td>
<td>-5</td>
</tr>
<tr>
<td>24</td>
<td>-0.038</td>
<td>9.962</td>
<td>-4.9</td>
<td>-5</td>
</tr>
<tr>
<td>25</td>
<td>0</td>
<td>10</td>
<td>-4.92</td>
<td>-5</td>
</tr>
<tr>
<td>26</td>
<td>-0.038</td>
<td>9.962</td>
<td>-4.9</td>
<td>-5</td>
</tr>
<tr>
<td>27</td>
<td>-0.152</td>
<td>9.848</td>
<td>-4.84</td>
<td>-5</td>
</tr>
<tr>
<td>28</td>
<td>-0.342</td>
<td>9.658</td>
<td>-4.75</td>
<td>-5</td>
</tr>
<tr>
<td>29</td>
<td>-0.608</td>
<td>9.392</td>
<td>-4.62</td>
<td>-5</td>
</tr>
<tr>
<td>30</td>
<td>-0.95</td>
<td>9.05</td>
<td>-4.45</td>
<td>-4</td>
</tr>
<tr>
<td>31</td>
<td>-1.368</td>
<td>8.632</td>
<td>-4.24</td>
<td>-4</td>
</tr>
<tr>
<td>32</td>
<td>-1.862</td>
<td>8.138</td>
<td>-4</td>
<td>-4</td>
</tr>
<tr>
<td>33</td>
<td>-2.432</td>
<td>7.568</td>
<td>-3.72</td>
<td>-4</td>
</tr>
<tr>
<td>34</td>
<td>-3.078</td>
<td>6.922</td>
<td>-3.4</td>
<td>-3</td>
</tr>
<tr>
<td>35</td>
<td>-3.8</td>
<td>6.2</td>
<td>-3.05</td>
<td>-3</td>
</tr>
<tr>
<td>36</td>
<td>-4.598</td>
<td>5.402</td>
<td>-2.66</td>
<td>-3</td>
</tr>
<tr>
<td>37</td>
<td>-5.472</td>
<td>4.528</td>
<td>-2.23</td>
<td>-2</td>
</tr>
<tr>
<td>38</td>
<td>-6.422</td>
<td>3.578</td>
<td>-1.76</td>
<td>-2</td>
</tr>
<tr>
<td>39</td>
<td>-7.448</td>
<td>2.552</td>
<td>-1.25</td>
<td>-1</td>
</tr>
<tr>
<td>40</td>
<td>-8.55</td>
<td>1.45</td>
<td>-0.71</td>
<td>-1</td>
</tr>
<tr>
<td>41</td>
<td>-9.728</td>
<td>0.272</td>
<td>-0.13</td>
<td>0</td>
</tr>
<tr>
<td>42</td>
<td>-10.982</td>
<td>-0.962</td>
<td>0.48</td>
<td>0</td>
</tr>
<tr>
<td>43</td>
<td>-12.312</td>
<td>-2.312</td>
<td>1.14</td>
<td>1</td>
</tr>
<tr>
<td>44</td>
<td>-13.718</td>
<td>-3.718</td>
<td>1.83</td>
<td>2</td>
</tr>
<tr>
<td>45</td>
<td>-15.2</td>
<td>-5.2</td>
<td>2.56</td>
<td>3</td>
</tr>
<tr>
<td>46</td>
<td>-16.758</td>
<td>-6.758</td>
<td>3.32</td>
<td>3</td>
</tr>
<tr>
<td>47</td>
<td>-18.392</td>
<td>-8.392</td>
<td>4.12</td>
<td>4</td>
</tr>
<tr>
<td>48</td>
<td>-20.102</td>
<td>-10.102</td>
<td>4.97</td>
<td>5</td>
</tr>
<tr>
<td>49</td>
<td>-21.888</td>
<td>-11.888</td>
<td>5.84</td>
<td>6</td>
</tr>
<tr>
<td>50</td>
<td>-23.75</td>
<td>-13.75</td>
<td>6.76</td>
<td>7</td>
</tr>
<tr>
<td>51</td>
<td>-25.688</td>
<td>-15.688</td>
<td>7.71</td>
<td>8</td>
</tr>
<tr>
<td>52</td>
<td>-27.702</td>
<td>-17.702</td>
<td>8.7</td>
<td>9</td>
</tr>
<tr>
<td>53</td>
<td>-29.792</td>
<td>-19.792</td>
<td>9.73</td>
<td>10</td>
</tr>
<tr>
<td>54</td>
<td>-31.958</td>
<td>-21.958</td>
<td>10.79</td>
<td>11</td>
</tr>
<tr>
<td>55</td>
<td>-34.2</td>
<td>-24.2</td>
<td>11.89</td>
<td>12</td>
</tr>
<tr>
<td>56</td>
<td>-36.518</td>
<td>-26.518</td>
<td>13.03</td>
<td>13</td>
</tr>
<tr>
<td>58</td>
<td>-41.382</td>
<td>-31.382</td>
<td>15.42</td>
<td>15</td>
</tr>
<tr>
<td>59</td>
<td>-43.928</td>
<td>-33.928</td>
<td>16.68</td>
<td>17</td>
</tr>
<tr>
<td>60</td>
<td>-46.55</td>
<td>-36.55</td>
<td>17.97</td>
<td>18</td>
</tr>
<tr>
<td>61</td>
<td>-49.248</td>
<td>-39.248</td>
<td>19.29</td>
<td>19</td>
</tr>
<tr>
<td>Temperature (in °C)</td>
<td>X-Cut Crystal Characteristic Curve [\Delta f/f_0 (\text{ppm}) = -0.038(T - T_0)^2]</td>
<td>X-Cut Crystal Characteristic Curve with 10 ppm Load Capacitor Mismatch [\Delta f/f_0 (\text{ppm}) = -0.038(T - T_0)^2 \pm 10]</td>
<td>Cal Value = -(Total Crystal Error in ppm/1000000) x (Clocks per Minute in 32.768 kHz)/4</td>
<td>RCFGCAL Value Rounded Off to the Nearest Integer</td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>62</td>
<td>-52.022</td>
<td>-42.022</td>
<td>20.65</td>
<td>21</td>
</tr>
<tr>
<td>63</td>
<td>-54.872</td>
<td>-44.872</td>
<td>22.06</td>
<td>22</td>
</tr>
<tr>
<td>64</td>
<td>-57.798</td>
<td>-47.798</td>
<td>23.49</td>
<td>23</td>
</tr>
<tr>
<td>65</td>
<td>-60.8</td>
<td>-50.8</td>
<td>24.97</td>
<td>25</td>
</tr>
<tr>
<td>66</td>
<td>-63.878</td>
<td>-53.878</td>
<td>26.48</td>
<td>26</td>
</tr>
<tr>
<td>67</td>
<td>-67.032</td>
<td>-57.032</td>
<td>28.03</td>
<td>28</td>
</tr>
<tr>
<td>68</td>
<td>-70.262</td>
<td>-60.262</td>
<td>29.62</td>
<td>29</td>
</tr>
<tr>
<td>69</td>
<td>-73.568</td>
<td>-63.568</td>
<td>31.24</td>
<td>31</td>
</tr>
<tr>
<td>70</td>
<td>-76.95</td>
<td>-66.95</td>
<td>32.91</td>
<td>33</td>
</tr>
<tr>
<td>71</td>
<td>-80.408</td>
<td>-70.408</td>
<td>34.61</td>
<td>35</td>
</tr>
<tr>
<td>72</td>
<td>-83.942</td>
<td>-73.942</td>
<td>36.34</td>
<td>36</td>
</tr>
<tr>
<td>73</td>
<td>-87.552</td>
<td>-77.552</td>
<td>38.12</td>
<td>38</td>
</tr>
<tr>
<td>74</td>
<td>-91.238</td>
<td>-81.238</td>
<td>39.93</td>
<td>40</td>
</tr>
<tr>
<td>75</td>
<td>-95</td>
<td>-85</td>
<td>41.78</td>
<td>42</td>
</tr>
<tr>
<td>76</td>
<td>-98.838</td>
<td>-88.838</td>
<td>43.67</td>
<td>44</td>
</tr>
<tr>
<td>77</td>
<td>-102.752</td>
<td>-92.752</td>
<td>45.59</td>
<td>46</td>
</tr>
<tr>
<td>78</td>
<td>-106.742</td>
<td>-96.742</td>
<td>47.55</td>
<td>48</td>
</tr>
<tr>
<td>79</td>
<td>-110.808</td>
<td>-100.808</td>
<td>49.55</td>
<td>50</td>
</tr>
<tr>
<td>80</td>
<td>-114.95</td>
<td>-104.95</td>
<td>51.59</td>
<td>52</td>
</tr>
<tr>
<td>81</td>
<td>-119.168</td>
<td>-109.168</td>
<td>53.66</td>
<td>54</td>
</tr>
<tr>
<td>82</td>
<td>-123.462</td>
<td>-113.462</td>
<td>55.77</td>
<td>56</td>
</tr>
<tr>
<td>83</td>
<td>-127.832</td>
<td>-117.832</td>
<td>57.92</td>
<td>58</td>
</tr>
<tr>
<td>84</td>
<td>-132.278</td>
<td>-122.278</td>
<td>60.1</td>
<td>60</td>
</tr>
<tr>
<td>85</td>
<td>-136.8</td>
<td>-126.8</td>
<td>62.32</td>
<td>62</td>
</tr>
</tbody>
</table>
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Trademark

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KeeLoQ, KeeLoQ logo, MPLAB, PIC, PICmicro, PICSTART, rPIC and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, PICkit, PICDEM, PICDEM.net, PICtail, PIC18® logo, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, rLAB, Select Mode, Total Endurance, UNI/O, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2008, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV

ISO/TS 16949:2002

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KeeLoq® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
WORLDWIDE SALES AND SERVICE

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support: http://support.microchip.com
Web Address: www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260

Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445

Toronto
Mississauga, Ontario, Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Asia Pacific Office
Suits 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431

Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Hong Kong SAR
Tel: 852-25201-1200
Fax: 852-2401-3431

China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xiamen
Tel: 86-592-238138
Fax: 86-592-238130

China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-4182-8400
Fax: 91-80-4182-8422

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513

Japan - Yokohama
Tel: 81-45-471-6166
Fax: 81-45-471-6122

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-572-9526
Fax: 886-3-572-6459

Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803

Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-09-01

UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820