INTRODUCTION

There is a wealth of information written on the subject of designing and analyzing oscillator circuits. Sources range from academic and research papers to industry generated application guides. It is a daunting task for the embedded designer to work through all the available and sometimes conflicting information. All the designer is really interested in is a simple set of rules resulting in a reliable oscillator design that will work despite crystal aging, deviations between devices, temperature or voltage. The problem is the simple Crystal Pierce Gate Oscillator (Figure 1) has a “simplified” model (Figure 2) that is anything but simple. None of the values are fixed. Some vary with process, age, temperature and voltage. Some components have a nonlinear behavior with amplitude.

FIGURE 1: THE CRYSTAL PIERCE GATE OSCILLATOR

The purpose of this document is to explain the most critical aspects to designing and analyzing a reliable PICmicro MCU based oscillator.

Note: Reading application notes AN826, Crystal Oscillator Basics and Crystal Selection for rfPIC™ and PICmicro® Devices and AN849, Basic PICmicro® Oscillator Design prior to reading this application note is recommended. Concepts explained in the AN826 and AN849 are assumed to be prior knowledge.

The conditions for oscillation will be addressed in the first part of the document. The second part will look into the behavior of the crystal as part of a resonant tank and how the tank in turn, behaves when connected to the PICmicro device’s driver to form an oscillator. The third part of the document discusses the typical gain headroom that an oscillator circuit needs to ensure reliable operation. The last section of the document introduces the reader to Negative Resistance Testing (NRT); a very simple yet reliable test that can evaluate an oscillator’s performance.

Note: The analysis in section two is done as a simulation study, but could also be done in the lab with the correct setup as described in Section “Simulation Of The Oscillator’s Open-Loop Response”.

FIGURE 2: A SIMPLIFIED MODEL OF THE PRACTICAL OSCILLATOR
THE BARKHAUSEN CRITERIA

To achieve oscillation, the circuit must meet the Barkhausen criteria. The Barkhausen criteria states that the circuit must have a loop gain of unity or greater, and have a phase shift that is a multiple of 360°.

The driver portion of the oscillator circuit (Figure 3) is internal to the microprocessor. The external resonant tank consists of the crystal and the two load capacitors C_1 and C_2. The common reasoning is that the tank provides 180° of phase shift at the resonant frequency f_r with some signal attenuation. To meet the Barkhausen criteria, the driver must have sufficient voltage gain to ensure a total loop gain of unity or greater, and it must supply an additional 180° of phase shift. However, this common path of reasoning is not correct, especially at the higher frequencies in the megahertz ranges.

The reality of the design is that the driver provides power gain, not necessarily a voltage gain. At higher frequencies, the driver circuit has more than 180° of phase shift and can have a voltage gain less than unity when loaded. The passive resonant tank provides the missing voltage gain.

The rest of this document will use a generalized PICmicro MCU HS mode driver as an analysis example with a typical 10 MHz crystal. The load capacitors C_1 and C_2 are assumed to be equal to 18 pF.

Note: These are general models and a specific device will vary greatly, but the same analysis techniques can be used.

THE PASSIVE RESONANT TANK

The resonant tank, shown in Figure 4, uses the equivalent of a 10 MHz crystal driven by a source voltage with an output impedance R_{SOURCE}. The output is measured at C_1, which would be the input to the driver in a completed oscillator.
The response of the passive resonant tank is shown in Figure 5, where R_{SOURCE} is equal to 50Ω. It shows the crystal series resonant frequency, f_s, and anti-resonant frequency, f_a. It further shows the tank gain at 180° phase shift. At 180° of phase shift, the tank does attenuate the signal, but the passive gain increases as the frequency lowers towards f_s. It is important to point out that the maximum gain of the passive tank, at f_s, will reduce as the source impedance is increased. The reduction in gain is a result of lowering the Q or quality factor.

The maximum gain frequency will also move as the source resistance is increased, because C_2 is essentially shunted by a low-source impedance with little influence on the tank. The influence of the source impedance is shown in Figure 6 with the gray curve representing 50Ω and the black curve a 500Ω source impedance.
FIGURE 6: INFLUENCE OF SOURCE IMPEDANCE ON RESONANT TANK

AC Analysis

Gain [dB]

Phase [Deg]

Freq [MHz]

Gain [dB] vs. Frequency for different source impedances.

Phase [Deg] vs. Frequency for different source impedances.

Graphs show the influence of source impedance (50Ω and 500Ω) on the resonant tank at various frequencies.
AN943

ESR

An important, but often misunderstood subject, is referred to as the tank's Equivalent Series Resistance (ESR). The ESR is the resistance that the tank exhibits at the true series resonant frequency of the crystal or f_s. The ESR is translated to the motional resistance R_m of the crystal, as shown in Equation 1.

EQUATION 1:

$$ESR = R_m (1 + C_0/C_L)^2$$

The ESR is translated as a function of the tank load capacitance C_L and the shunt capacitance C_0 of the crystal. The load capacitance C_L, as shown in Equation 1, is the serial combination of C_1 and C_2, as shown in Equation 2.

EQUATION 2:

$$C_L = \frac{C_1 \times C_2}{C_1 + C_2}$$

ESR is often used in evaluations instead of the motional resistance R_m or R_1. The exact positioning of the ESR is shown in Figure 7. The crystal's motional resistance R_m and ESR are directly related to the Q of the tank. It is important to understand that an increasing Q (decreasing R_m) will increase the tank's passive gain and, therefore, gain headroom. Later in this document Negative Resistance Testing (NRT) is introduced where some test resistance, R_{TEST}, is deliberately placed in this position to evaluate the performance of the total resonator.

The ESR for the circuit in Figure 7 is calculated to be 74.25Ω at f_s using Equation 1. However, this is not the resistance that the driver circuit is loaded by at the resonant frequency f_r. The tank load at f_r is typically an order of magnitude larger than the ESR in this frequency range, as shown in Section “The Driver Circuit”.

THE DRIVER CIRCUIT

The PICmicro microcontroller's oscillator circuit typically has three separate gain or mode settings: LP, XT and HS. The LP mode is normally used with tuning fork crystals in the low frequency ranges such as 32 kHz watch crystals. The XT and HS modes have progressively more gain and are typically used for crystals in the megahertz ranges. The perception is that XT mode should be used in mid-frequency range, up to 4 MHz and HS, in the higher megahertz frequency ranges. This should be seen as a guideline and not as a hard-set rule. The data sheet for each device should be consulted for supply voltage and temperature ranges associated with each mode.

The small signal model for a typical HS oscillator is shown in Figure 8. It can be thought of as an inverting amplifier, not a logic gate, with a gain of -20 or 26 dB. It also has a low-pass filter in the output path that causes the output gain to drop with frequency. The output pole also causes a phase delay in the output voltage. The simulated output response of the driver (see Figure 9) is given when driven by a low-impedance source into OSC1 and the output is taken at OSC2.

FIGURE 7: PLACEMENT OF THE ESR AND THE MOTIONAL RESISTANCE

Note 1: This is only a typical model and the model changes between different types of PICmicro devices. The model also varies from part-to-part as a function of manufacturing, supply voltage, temperature, etc.

Note 2: Gain is expressed as either a dimensionless number such as “10” or in dB where $G[dB] = 20 \cdot \text{Log}(V_{IN}/V_{OUT})$.
The AC response and the model shown in Figure 8 and Figure 9 are for the small signal case only. The driver is based on a voltage amplifier with a low frequency gain of -20. The output gain of the driver is reduced with increasing frequency due to the output pole formed by a C_{D2}. The gain of the driver also falls off as the amplitude increases. This is an important aspect of the driver, because gain is needed under start-up conditions to increase the oscillation amplitude. The gain of the driver gradually decreases with increasing oscillation amplitude until the oscillator (driver and resonant tank) reaches unity gain. The large signal amplitude, where the oscillator reaches unity, is referred to as the Steady State Amplitude (SSA). The output pole results in a 3 dB cutoff frequency at 1.2 MHz. Any load that is connected to the output of the driver will change the impedance of the system and thus change its output characteristics. As an example, the unloaded gain at 10 MHz is about 7.5 dB, but is reduced to unity gain with a 550Ω load. The resistive load also reduces the phase shift relative to the open-loop phase response.
A typical XT driver's equivalent model is shown in Figure 10. It is interesting that the gain is lower than the HS driver's gain, but it has a higher 3 dB frequency of about 1.8 MHz. This leads into the next stage of the analysis, which is to connect the tank and the driver to study the open-loop response of the oscillator.

Note 1: This is only a typical model, and the model changes between different types of PICmicro devices. The model also varies from part-to-part as a function of manufacturing, supply voltage, temperature, etc.

SIMULATION OF THE OSCILLATOR'S OPEN-LOOP RESPONSE

Figure 11 shows the simulation model for analyzing the open-loop response of the oscillator under small signal start-up conditions. The loop is opened at load capacitor C_1, normally connected to the driver's input on pin OSC1. The input impedance of OSC1, consisting of C_{D1} and R_{D1}, is connected to C_1 from where the output is taken. The addition of the driver's input and output impedance needs to be taken into account as far as the ESR is concerned. The ESR recalculates to about 60Ω with a new C_L of 13 pF, that was previously 9 pF.

The response of the open-loop model is shown in Figure 12. The black curve is the output and the gray curve is the tank-input signal. The resonant frequency f_r at start-up, is greater where the phase is zero and the gain is unity or more, in accordance with the Barkhausen criteria. It is interesting to compare the output signal to the tank-input signal, as it shows the predicted low ESR at f_r, where the tank loads the output driver. Figure 12 shows that at f_r, the tank's input impedance is significantly higher than the ESR. From the simulation results, one can calculate the tank's input impedance at f_r to be in the order of 1 kΩ, which is significantly higher than the ESR at f_s of 60Ω.

The analysis can be performed in the lab to validate the simulation. It is important to realize that the circuit is very sensitive to any loading by measurement probes or sockets. Therefore, it is necessary to use either active probes or dedicated buffers when measurements are taken. Even very high input impedance buffers have 1 or 2 pF of input capacitance, and this must be taken into account by subtracting the buffer's impedance from C_1 and C_2, as is necessary. One solution is to use a TI Burr-Brown OPA655 or OPA354 operational amplifier as a unity gain buffer. The traces from the point of measurement to the input of the buffer should be kept as short as possible. Try to make the trace less than 1 cm.
Gain Headroom

The simulation in Figure 12 shows that there is about 20 dB of gain headroom at the resonant frequency. Any gain above unity will cause the oscillation amplitude to increase, or grow, and the higher the gain, the sooner one will reach the SSA where the gain is unity. The gain headroom of the oscillator will be affected if any part of the oscillator changes, that has an affect on gain. The resonant tank’s gain is reduced to 14 dB for a worst case part (from a typical 20 dB), if it is known that the worst case driver is 6 dB lower than the typical driver.

It would seem as if the goal of designing the oscillator is to get the maximum gain headroom, yet it is undesirable to have too much gain. Excessive gain may cause the crystal to resonate at one of the crystal’s overtone frequencies. It can also result in an excessively large SSA, exceeding the crystals drive level. A large SSA can further cause unwanted distortion, noise and radiation. The goal is to have just enough gain to ensure operation.
Limiting Gain Headroom And The Steady
State Amplitude

A very effective method to reduce the maximum gain, and/or the SSA, is to add a series resistor \(R_s \) between the output of the driver and the tank, as shown in Figure 13. Adding a voltage divider on the output reduces the SSA and the unwanted effects of over driving the crystal where this may be an issue. It also increases the drive impedance to the tank, reducing its Q and passive gain. The gain can again be increased if the requirement is only to reduce the SSA by impedance matching of the tank. The tank impedance matching is done by changing the size of \(C_2 \), and typically involves increasing the value of \(C_2 \), thus lowering the source impedance to the tank. Increasing the value of \(C_2 \) requires that the value of \(C_1 \) be decreased. This is to maintain \(C_L \), as specified by the crystal manufacturer. Increasing the size of \(C_2 \) beyond the ideal impedance will reduce the gain because it will overload the driver. A rule of thumb is to not make \(C_2 \) more than twice the size of \(C_1 \) while maintaining \(C_L \). With the addition of \(R_s \), one can ignore the influence of \(C_{D2} \) on \(C_L \), assuming that \(R_s > 1/(2\pi f_s C_L) \).

Another advantage of adding \(R_s \) is that it forms a low-pass filter with \(C_1 \), reducing the chances of overtone oscillation. It can also reduce the start-up period of the tank because it adds thermal noise and increases the phase delay to the tank. Decreasing the start-up period with the addition of \(R_s \) will be more noticeable with lower frequency designs that operate below the 3 dB frequency of the driver’s output pole.

Choosing Gain Headroom

The preceding text explained the general behavior of the oscillator and how it is possible to change the oscillator’s gain, frequency, phase and amplitude response. The next part of the text will focus on choosing a typical gain headroom. The two variable factors that dictate the gain headroom requirement are the drivers gain \(G_d \) and the crystal’s motional resistance \(R_m \). Practical devices have fairly consistent values for \(G_d \) and \(R_m \), but some parts do deviate from the typical values within some limits. It is possible that some worst case oscillators have a driver with a lowest possible \(G_d \) and a crystal with the highest possible \(R_m \). The oscillator’s gain headroom, or \(G_{hO} \), should be high enough to ensure that the oscillator is able to operate and start-up reliably with worst case devices. The \(G_{hO} \) is the product of both the amplifier’s gain headroom requirement \(G_{hD} \) and the crystal’s gain headroom requirement \(G_{hC} \), as per Equation 3.

\[
G_{hO} = G_{hD} \times G_{hC}
\]
Driver Gain Headroom Guidelines

Microchip maintains matrix characterization parts for some devices that go through deliberately skewed processes to determine the extremes of product variation. One specific product’s matrix variation in amplifier trans conductance is shown in Table 1 below.

TABLE 1: EXAMPLE GAIN VARIATION AND GAIN HEADROOM OF A SPECIFIC HS DRIVER DATA AT 5 VDQ(1)

<table>
<thead>
<tr>
<th>Temp °C</th>
<th>Variation</th>
<th>Typical Gain Headroom GhD</th>
<th>Maximum Gain Headroom GhD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Minimum</td>
<td>Median</td>
<td>Maximum</td>
</tr>
<tr>
<td>-40</td>
<td>1.17</td>
<td>1.41</td>
<td>1.6</td>
</tr>
<tr>
<td>25</td>
<td>0.81</td>
<td>1</td>
<td>1.12</td>
</tr>
<tr>
<td>125</td>
<td>0.65</td>
<td>0.79</td>
<td>1</td>
</tr>
</tbody>
</table>

Note 1: The values given in this table are for example only.

One can make the generalized assumption that the typical driver in Figure 8 has a mean Gd at room temperature of -20. The worst case Gd at 125°C would be the typical Gd times the variation, or -20 x 0.65 = -13, and the best would be at -40°C being -20 x 1.6 = -32.

The driver's GhD, from a typical room temperature part to a worst case part at 125°C, is the inverse of the variation as 1/0.65 or 1.54. This means that if one ignores the variation of the crystal that a typical oscillator with gain headroom of 1.54 (3.75 dB) will still meet the Barkhausen criteria if replaced by a worst case part at 125°C. The “Typical Gain Headroom” values are to be used if one uses a couple of truly typical parts for analysis that have been randomly selected from different manufacturing lots. However, if one only has a small number of parts, then it is safer to use the “Maximum Gain Headroom” values that assume the analysis was done with maximum gain parts.

There are two methods to account for the gain reduction from the typical oscillator. The first is well suited for analysis, and that is to simply change Gd in the equivalent model. The second method is well suited for lab analysis, and that is to introduce RTEST. The gain of the tank is inversely proportional to ESR. One needs to add RTEST, as per Equation 4, which will reduce a typical oscillator’s gain by the appropriate value.

EQUATION 4: USED TO CALCULATE RTEST VALUE TO ADD A TYPICAL OSCILLATOR

\[
R_{TEST} = R_{MTYPICAL} (GhD - 1)(1 + C_O/C_L)^2
\]

RMTYPICAL – Typical motional resistance of crystal
GhD – Gain headroom from Table 1

Example: A typical oscillator, with a crystal that has a Rm = 33Ω, C_O = 4.5 pf and C_L = 13 pf. Calculate the RTEST value that will result in the same gain as a 125°C lowest gain device.

From Table 1, GhD = 1.54, Equation 4 is then calculated as in Equation 5.

EQUATION 5:

\[
R_{TEST} = 33(1.54 - 1)(1 + 4.5\ pF/13\ pF)^2 = 32.3\ \Omega
\]
Crystal Gain Headroom Guidelines

The crystal’s gain headroom requirement \(G_{hC} \) can be broken up into two parts; the first part is needed to compensate for \(R_m \) deterioration and the second is to ensure good start-up. Crystal manufacturers have different guidelines for variations in \(R_m \). One reputable manufacturer claims that the worst case values are no more than 30% higher than the typical value. The manufacturer also recommended that a total crystal, \(G_{hC} = 3 \), be used to compensate for the 30% \(R_m \) deterioration and start-up. This means that a gain headroom of about 2 is sufficient for crystal start-up with a comfortable safety margin, because it is not wise to operate on the filter to oscillator margin. Equation 4 is used in a similar manner to add \(R_{TEST} \) when analyzing the crystal performance. Just the \(R_m \) deterioration component can be studied by using \(G_{hC} = 1.3 \). Make sure that the oscillator still has a gain of 2 left over for start-up. The alternative is to use the full \(G_{hC} = 3 \) to calculate \(R_{TEST} \), but then the oscillator should have unity gain or greater.

The total oscillator \(G_{hO} \) would thus be about 4.6 when using typical parts and approximately 5.2 when using a small sample of parts. This would ensure proper operation at up to 125°C with a worst case driver and crystal. This guideline is on par with some other reputable crystal manufacturers’ guidelines to have a \(G_{hO} \) of 5 to account for temperature and worst case part deviations.

One problem is that most crystal manufacturers only specify the worst case value for \(R_m \), but the typical value can be measured, as shown in Figure 14. Place a known source resistor in series with a signal generator that can be swept in 1 or 2 hertz steps around the crystals operating frequency. A high-impedance probe is used to find the lowest output voltage, \(V_{OUT-MIN} \), at crystal’s serial resonant frequency \(f_s \). The value for \(R_{SOURCE} \) should have a similar value as the expected value for \(R_m \). Using Equation 5, the value for \(R_m \) can then be calculated from \(V_{SOURCE}, R_{SOURCE} \) and \(V_{OUT-MIN} \).

FIGURE 14: SETUP TO DETERMINE \(R_m \)

EQUATION 6:

\[
R_m = \frac{V_{OUT} \cdot R_{SOURCE}}{V_{IN} - V_{OUT}}
\]

NEGATIVE RESISTANCE TESTING (NRT)

Negative Resistance Testing (NRT) is a very simple and reliable test that can be performed without the need for specialist equipment. NRT is done to validate an oscillator design, or used as a design basis.

To evaluate if an existing design or product has enough gain headroom, one would add a resistor \(R_{TEST} \) in series with the crystal, as shown in Figure 13. It is not necessary to make special provisions for the resistor; one can lift a lead or the side of the crystal package and place a small 0603 surface mount resistor between the lead and the PCB pad. The resistor is then iteratively increased until the maximum value is reached where the oscillator starts up reliably. With \(R\text{TESTMAX} \), calculate \(G_{hO} \). To do this, one needs the ESR, the translated motional resistance \(R_m \) (see Equation 1). The calculation is summarized in Equation 7 by the reordering of Equation 5.

Note: A tuning pot is not recommended as it has too much parasitic capacitive and inductive loading. However, it can be used to get within the right range.

EQUATION 7:

\[
G_{hO} = \frac{R_{TEST}}{ESR} + \frac{1}{1 + \frac{R_{TEST}}{R_{MTYPICAL} \left(1 + C_d/C_L \right)^2}}
\]

\(R_{MTYPICAL} \) – Typical motional resistance of crystal
\(G_{hO} \) – Oscillator gain headroom

The load capacitance calculation should also include the board capacitance (about 2-3 pF) and the driver’s capacitance, as shown in Equation 8.

Note: One can ignore the influence of \(C_{D2} \) on \(C_L \) assuming that \(R_S > 1/(2\pi f_s \cdot C_L) \).

EQUATION 8:

\[
C_L = \frac{(C_1 + C_{D1}) \cdot (C_2 + C_{D2})}{C_1 + C_{D1} + C_2 + C_{D2} + C_B}
\]
The test can then be repeated with a number of different parts and the results averaged to get typical results. The tests should be conducted with the lowest expected supply voltage because the driver's gain is supply voltage dependent. The tests can be done at room temperature or at the highest expected temperature, noting that the high temperature gain headroom will be affected, as was discussed in the Section “Driver Gain Headroom Guidelines”. One can further consider simulating other environmental conditions, such as humidity or radiation that the circuitry may be exposed to.

To test proper start-up, it is best to write a firmware routine that periodically puts the part in Sleep mode and then uses an interrupt, via a button push or Watchdog Time-out, to reset the part and go through a start-up routine. Make sure that there is enough Sleep time to have the oscillator completely stop. Do not simply switch the whole circuit off and on because this introduces a sharp transient that helps the start-up process. Another practical tip is to not use sockets unless the final product uses a socket for the PICmicro device.

Some crystal manufacturers use the following terminology with NRT:

- R_{TESTMAX} is referred to as the “safety margin”
- “Oscillation allowance” is referred to as the “safety margin” plus ESR

A ratio is specified between oscillation allowance and ESR, which is the same as the definition for gain headroom or Gh_0 in this document.

Negative Resistance Testing (NRT) as a Design Tool

NRT can be used very effectively during the design process. The first step is to choose a specific frequency crystal from a reputable crystal manufacturer. Choose a Gh_C based on the crystal manufacturer's specifications in R_m and start-up requirements, that also incorporate some safety buffer. Next, choose a Gh_D based on the driver variations for the specific PICmicro MCU used. The values in Table 1 are good guideline values. With a total target gain headroom, one can calculate R_{TEST}, a rule of thumb: $Gh_D = 5$. Capacitors C_1 and C_2 are calculated using Equation 7, based on the crystal manufacturers recommended C_L value. Make C_1 and C_2 equal in value, but do not include C_{D2} in the calculation because R_S will be used. With the calculated values for R_{TEST}, C_1 and C_2 and the data sheet recommended Oscillator mode, find the maximum R_S resistor value with R_{TEST} in place where the oscillator starts up reliably. If $R_{\text{S MAX}} > 1/(2\pi f_s C_L)$, then the process design is done. If not, use the impedance matching guidelines under the Section “Limiting Gain Headroom And The Steady State Amplitude” to increase the gain. Also, try a higher gain mode if possible, as an example try using HS instead of XT.

CONCLUSION

It is possible to analyze in simulation and in the lab what the small signal gain or gain headroom of an oscillator is. It is important that the oscillator have enough gain to ensure reliable start-up and operation even with worst case devices. A method is given to choose a safe gain headroom and how one can simulate the effects of worst case devices by introducing a test resistor in the resonant tank. The design can be verified by a simple but effective negative resistance test, which can also be used during the design of the oscillator tank.
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip’s products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Microchip received ISO/TS-16949:2002 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona and Mountain View, California in October 2003. The Company’s quality system processes and procedures are for its PICmicro® 8-bit MCUs, dsPIC® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
<table>
<thead>
<tr>
<th>City</th>
<th>Address</th>
<th>Phone</th>
<th>Fax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beijing</td>
<td>Unit 706B, Wan Tai Bei Hai Bldg., No. 10 Chaoyangmen Bei Str. Beijing, 100027, China</td>
<td>86-10-85282100</td>
<td>86-10-85282104</td>
</tr>
<tr>
<td>Chengdu</td>
<td>Rm. 2401-2402, 24th Floor, Ming Xing Financial Tower No. 88 TIDU Street, Chengdu 610016, China</td>
<td>86-28-86766200</td>
<td>86-28-86766599</td>
</tr>
<tr>
<td>Saratoga</td>
<td>Unit 28F, World Trade Plaza No. 71 Wusi Road, Fuzhou 350001, China</td>
<td>86-591-7503506</td>
<td>86-591-7503521</td>
</tr>
<tr>
<td>Hong Kong</td>
<td>Unit 901-6, Tower 2, Metropolis 233 Hing Fong Road, Kwai Fong, N.T., Hong Kong</td>
<td>852-2401-1200</td>
<td>852-2401-3431</td>
</tr>
<tr>
<td>Shanghai</td>
<td>Room 701, Bldg. B Fer East International Plaza No. 317 Xian Xia Road, Shanghai, 200051</td>
<td>86-21-6275-5700</td>
<td>86-21-6275-5060</td>
</tr>
<tr>
<td>Shenzhen</td>
<td>Rm. 1812, 18/F, Building A, United Plaza No. 5022 Binhe Road, Futian District Shenzhen 518033, China</td>
<td>86-755-82901380</td>
<td>86-755-8295-1393</td>
</tr>
<tr>
<td>Shunde</td>
<td>Room 401, Hongjian Building, No. 2 Fengxiangnan Road, Ronggui Town, Shunde District, Foshan City, Guangdong 52803, China</td>
<td>86-757-28395270</td>
<td>86-757-28395271</td>
</tr>
<tr>
<td>Qingdao</td>
<td>Rm. 8505A, Fullhope Plaza, No. 12 Hong Kong Central Rd. Qingdao 266071, China</td>
<td>86-532-5027355</td>
<td>86-532-5027205</td>
</tr>
<tr>
<td>India</td>
<td>Divyasree Chambers 1 Floor, Wing A (A3/A4) No. 11, O’Shaughnessy Road Bangalore, 560 025, India</td>
<td>91-90-22290061</td>
<td>91-90-22290062</td>
</tr>
<tr>
<td>Japan</td>
<td>Yuten Shin Yokohama Building 10F 3-17-2, Shin Yokohama, Kohoku-ku, Yokohama, Kanagawa, 222-0033, Japan</td>
<td>81-45-471-6166</td>
<td>81-45-471-6122</td>
</tr>
<tr>
<td>Korea</td>
<td>1681-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Seoul, Korea 135-882</td>
<td>82-2-554-7200</td>
<td>82-2-558-5932 or 82-2-558-5934</td>
</tr>
<tr>
<td>Singapore</td>
<td>200 Middle Road #07-02 Prime Centre Singapore, 188980</td>
<td>65-6334-8870</td>
<td>65-6334-8850</td>
</tr>
<tr>
<td>Taiwan</td>
<td>Kaohsiung Branch 30F - 1 No. 8 Min Chuan 2nd Road Kaohsiung 806, Taiwan</td>
<td>886-7-536-4818</td>
<td>886-7-536-4817</td>
</tr>
<tr>
<td>Taiwan</td>
<td>Taiwan Branch 11F-3, No. 207 Tung Hua North Road Taipei, 105, Taiwan</td>
<td>886-2-2717-7175</td>
<td>886-2-2545-0139</td>
</tr>
<tr>
<td>(continued)</td>
<td>13F-3, No. 295, Sec. 2, Kung Fu Road Hsinchu City 300, Taiwan</td>
<td>886-3-572-9526</td>
<td>886-3-572-6459</td>
</tr>
<tr>
<td>Austria</td>
<td>Durisolistrasse 2 A-4600 Wels Austria Tel: 43-7242-2244-399</td>
<td>43-7242-2244-393</td>
<td></td>
</tr>
<tr>
<td>Denmark</td>
<td>Regus Business Centre Lautrup hoj 1-3 Ballerup DK-2750 Denmark Tel: 45-4420-9895 Fax: 45-4420-9910</td>
<td></td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>Parc d’Activite du Moulin de Massy 43 Rue du Saule Trapu Batiment A - 1er Etage 91300 Massy, France Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>Kehnheilstraatse 10 D-65727 Ismaning, Germany Tel: 49-89-627-144-0 Fax: 49-89-627-144-44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td>Via Salvatore Quasimodo, 12 20025 Legnano (MI) Milan, Italy Tel: 39-0331-742611 Fax: 39-0331-466781</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Netherlands</td>
<td>Waegenburghtplein 4 NL-5152 JR, Drunen, Netherlands Tel: 31-416-690399 Fax: 31-416-690340</td>
<td></td>
<td></td>
</tr>
<tr>
<td>United Kingdom</td>
<td>505 Eskdale Road Winnersh Triangle Wokingham Berkshire, England RG41 5TU Tel: 44-118-921-5869 Fax: 44-118-921-5820</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>