INTRODUCTION

This application note describes ways to reduce system current consumption with the use of the Ultra Low-Power Wake-up (ULPWU) module. Currently, the PIC16F684 has this module, but other low pin count parts will have it as well.

The primary use of this module is as an Ultra Low-Power Wake-up (ULPWU) timer, but its functionality can be expanded to function as a temperature sensor and/or a low-voltage detector. The main and expanded functions of this module are explained in this document.

Many low-power applications require that the microprocessor wake-up from a Sleep state on a periodic basis to check the status of some signal. It can then react based on a measurement of that signal and go back to Sleep until the next timed wake-up. This is a widely used method for reducing overall system current consumption.

These types of applications require a low-power periodic wake-up and can be accomplished by activating a low-power timer prior to placing the device in a Sleep mode. Upon rollover, the timer interrupt can then wake-up the part after some predefined period. A 32 kHz crystal timer used on one of the secondary clock sources is very popular if accuracy is required. Some parts also have dedicated internal low-power, low-frequency oscillators that can be used.

One solution for a lower current periodic wake-up timer is a simple RC timer that can be charged prior to Sleep and left to slowly discharge. A change in state event can be used to wake the part when the RC voltage reaches the digital input threshold voltage. This sounds ideal, but the problem is that a normal digital-input structure consumes high-crowbar currents when a slowly changing voltage is applied to it. The digital-input structure will consume a few hundred micro amps when driven by an analog voltage that is not close to the rail voltages (VSS and VDD). To combat these high-crowbar currents, Microchip has introduced an ULPWU module, which provides an analog input that can be used to implement a RC timer. The basic module block diagram is shown in Figure 1.

FIGURE 1: ULTRA LOW-POWER WAKE-UP PIN DIAGRAM

Note 1: RA0 cannot be read as a digital pin when ULPWU is enabled.
The module operates as a low-power analog comparator that compares the voltage on the external capacitor C to a reference V_{IL}. The module generates an event output when the analog comparator changes state. The change in state event can generate an interrupt-on-change. The module provides a very weak current source to discharge the external capacitor in a controlled manner. The code in Example 1 initializes the module; charges the capacitor, enables the module, and then goes to Sleep, waiting for an interrupt-on-change.

EXAMPLE 1:

```
BCF STATUS, RP0 ;Bank 0
BSF PORTA, 0 ;Set RA0 data latch
MOVLW H'7' ;Turn off
MOVWF CMCON0 ;comparators
BSF STATUS, RP0 ;Bank 1
BCF ANSEL, 0 ;RA0 to digital I/O
BCF TRISA, 0 ;Output high to
CALL CapDelay ;charge capacitor
BSF PCON, ULPWUE ;Enable ULP Wake-Up
BSF IOCA, 0 ;Select RA0 IOC
BSF TRISA, 0 ;RA0 to input
MOVLW E'10001000' ;Enable interrupt
MOVWF INTCON ;and clear flag
SLEEP ;Wait for IOC
```

The trip voltage V_{IL} and the sink current I_{SINK} are basically independent of V_{DD}, but are sensitive to temperature and process variations. Data for the module is given in Table 1.

From the data in Table 1, it becomes clear that the variation in module parameters would limit the overall accuracy of the timer, when used as in Figure 1. The wake-up period can vary by as much as 30% between modules. For a large number of applications, it is acceptable to have a large variation in the wake-up period and thus, the module's accuracy is acceptable.

TABLE 1: MODULE DATA

<table>
<thead>
<tr>
<th>Temperature</th>
<th>V_{IL} (Vdc)</th>
<th>I_{SINK} (nA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-40°C</td>
<td>Min 0.58</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>Typ 0.69</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>Max 0.81</td>
<td>131</td>
</tr>
<tr>
<td>25°C</td>
<td>Min 0.48</td>
<td>121</td>
</tr>
<tr>
<td></td>
<td>Typ 0.58</td>
<td>135</td>
</tr>
<tr>
<td></td>
<td>Max 0.69</td>
<td>158</td>
</tr>
<tr>
<td>85°C</td>
<td>Min 0.38</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>Typ 0.48</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td>Max 0.58</td>
<td>169</td>
</tr>
<tr>
<td>125°C</td>
<td>Min 0.30</td>
<td>142</td>
</tr>
<tr>
<td></td>
<td>Typ 0.40</td>
<td>157</td>
</tr>
<tr>
<td></td>
<td>Max 0.49</td>
<td>183</td>
</tr>
</tbody>
</table>

The module, when enabled, will add between 75 nA and 160 nA to the microprocessor's Sleep current, depending on process variations, temperature and voltage. The total expected Sleep current with the ULPWU module enabled should be only a few hundred nA for the PIC16F684, since the Sleep current is typically 1 nA with all peripherals disabled.

The average system current consumption will be higher due to the energy required to charge the capacitor and the energy consumed to execute code between Sleep periods. The time between Sleep periods and active duty cycle of use will largely dictate the overall current consumption. A typical smoke detector or Tire Pressure Monitoring (TPM) system with sub 1 μA current consumption can be achieved.
MODULE APPLICATIONS

The ULPWU module’s accuracy and functionality can be improved by using it as a programmable timer or using some additional external components. This includes a programmable low-voltage detect and/or a temperature sensor. The following sections will briefly explain these functions.

Basic Timer

Although the operation of the basic wake-up timer has been discussed, there are more aspects to consider. Figure 2 shows the addition of a serial resistor when compared to Figure 1. The resistor R_1 is added if C_1 is larger than 50 pF. This is done to reduce the peak current drawn from RA0 while charging C_1. For larger capacitors, Equation 1 gives the peak charge current drawn from RA0. The maximum allowable current drawn from pin 1 is 25 mA. A resistor of 200 ohm is sufficient for 5-volt supply voltages and large capacitors.

FIGURE 2: SERIAL RESISTOR

![Figure 2: Serial Resistor](image)

EQUATION 1:

$$I_{\text{PEAK}} = \frac{V_{\text{DD}}}{R_1} \quad \text{for} \quad C_1 >> 50 \, \text{pF}$$

$$I_{\text{PEAK}} = \text{peak charge current}$$

Equation 2 gives the discharge period. V_0 is the initial capacitor voltage and will be the same as V_{DD}, if the capacitor is allowed to fully charge prior to starting the discharge process.

EQUATION 2:

$$T_{\text{DISCHARGE}} = \left(\frac{(V_0 - V_{\text{IL}})}{I_{\text{SINK}} + I_{\text{LEAKAGE}}} \cdot C_{1R_2}\right)$$

$T_{\text{DISCHARGE}} = \text{discharge period}$

$V_0 = \text{initial capacitor voltage}$

$V_{\text{IL}} = \text{trip voltage}$

$I_{\text{SINK}} = \text{sink current}$

$I_{\text{LEAKAGE}} = \text{capacitors internal leakage current}$

The discharge period is about 30 ms for a 1 nF capacitor, a V_0 of 5 Vdc with a current sink of 140 nA, and V_{IL} of 0.6 Vdc. The internal current sink is fairly constant with voltage, assuming the voltage on the capacitor is V_{IL} or more. This results in a near linear voltage discharge of the capacitor over time. Keep in mind that the weak current sink is equivalent to very high-impedance of several tens of mega ohms. Such a high-impedance discharge system is very sensitive. Care must be given to layout, the influence of moisture, and the capacitor’s self-discharge impedance.

To minimize noise and moisture effects, it is advisable to keep trace lengths short by placing the discharge capacitor close to the AN0 pin. Also, note that capacitors have some internal leakage that will shorten the discharge period. Different capacitors have different self-discharge characteristics that will become important, especially if long discharge periods are required. Some electrolytic capacitors have fairly high self-discharge rates that are temperature sensitive.

Use of External Components

For harsh noise and moisture conditions, the stability of the ULPWU module can be improved by adding an additional discharge resistor, R_2, as in Figure 3. The voltage discharge on C_1, due to R_2, will follow Equation 3, if the current through R_2 is large compared to the discharge current I_{SINK}. Thus, the discharge period can be derived as in Equation 4.

FIGURE 3: DISCHARGE RESISTOR

![Figure 3: Discharge Resistor](image)

EQUATION 3:

$$V(T) = V_0 \cdot e^{-\frac{T}{C_1R_2}}$$

$V(T) = \text{voltage across capacitor}$

$V_0 = \text{initial capacitor voltage}$

$T = \text{time}$
EQUATION 4:

\[
T_{\text{DISCHARGE}} = C_1R_2 \ln \left(\frac{V_O}{V_{IL}} \right)
\]

\[
T_{\text{DISCHARGE}} = \text{charge period}
V_O = \text{initial capacitor voltage}
V_{IL} = \text{trip voltage}
\]

Calibrated Timer

The following section explains how the accuracy of the basic timer can be improved by controlling the charge period. The discharge period for both implementations shown in Figures 2 and 3 are dependent on \(V_O\), \(C_1\), \(V_{IL}\) and \(I_{SINK}\) or \(R_2\). These parameters depend on process variations, temperature effects, usage and more. A software calibrated Sleep timer will compensate for some of these variations by controlling \(V_O\). Timing the charge period \(T_{\text{DISCHARGE}}\) is timed against the main clock source while the part is awake, then the charge period can be adjusted based on the \(T_{\text{DISCHARGE}}\) error. This process is repeated until the desired accuracy is obtained. Repeat the calibration process after a fixed amount of normal Sleep periods, to maintain accuracy over time.

Pay close attention to the residual charge across \(C_1\) at the start of the charge period. There may be charge left in \(C_1\), depending on \(V_{IL}\) and whether or not the ULPWU module was disabled, and whether RA0 turned into an analog input, digital input or digital output. One approach is to fully discharge \(C_1\) before starting the charge process. This approach increases accuracy, but will increase the overall current consumption.

The final capacitor voltage \(V_O\), when charging \(C_1\) through \(R_1\), is given by Equation 5. The residual voltage across \(C_1\) at the beginning of the charge period is represented by \(V_{RES}\) and the charge period is \(T_{\text{CHARGE}}\).

EQUATION 5:

\[
V_O = V_{RES} + (V_{DD} - V_{RES}) \left[1 - e^{-\frac{T_{\text{CHARGE}}}{C_1R_1}} \right]
\]

\[
T_{\text{CHARGE}} = \text{charge period}
V_O = \text{final capacitor voltage}
V_{RES} = \text{residual voltage}
\]

Temperature Sensor

This section explains how to implement a temperature sensor that gives a reading relative to the standard temperature at which calibration was completed. The module parameters \(V_{IL}\) and \(I_{SINK}\) are dependent on temperature and process variations. The process dependent component must be identified in order to calculate the temperature from later measurements of \(V_{IL}\) and \(I_{SINK}\). The process variation can be measured when the device is first turned on under controlled conditions such as at final product testing. These standard measured values can be stored in EEPROM and used for future reference.

To measure \(V_{IL}\), sample the voltage across \(C_1\) with the A/D converter after the output of the ULPWU module changes the status of bit ‘0’ on PORTA. The sampled voltage will be referenced to the A/D converter reference, which can be \(V_{DD}\) or an external voltage reference. \(V_{IL}\) has a negative temperature coefficient and is approximately -1.25 mV/°C. \(V_{IL}\) is calculated by using the method described in Section "Use of External Components".

The sink current, \(I_{SINK}\), is measured under standard conditions by using Equation 2 and has a positive temperature coefficient of approximately 140 pA/°C. The discharge time, \(T_{\text{DISCHARGE}}\), is a function of \(V_O\), \(V_{IL}\) and temperature. Under standard conditions, \(V_O\) and temperature are controlled and \(V_{IL}\) is measured. From this, calculate the standard process dependent value for \(I_{SINK}\).

Note: The accuracy of the measurements is dependent on \(V_O\), which can be \(V_{DD}\), and the source for the A/D converter, which may or may not be \(V_{DD}\). The method described in Section "Use of External Components" to calculate \(V_{IL}\) without an A/D is also dependent on a known value for \(V_O\) or \(V_{DD}\).
Equations 7 and 8 are used to calculate temperature variation from the standard temperature using the measured or calculated values for \(ISINK \) and \(VIL \).

Note 1: The result is dependent on \(VDD \) or \(VO \).

The temperature dependency of \(VIL \) is linear with temperature, but \(ISINK \) has a significant second order term that is not shown. The second order term for \(ISINK \) can be ignored if the temperature deviation is relatively small.

2: The data is preliminary and will be updated after full characterization is completed. The values \(ISTANDARD \) and \(VSTANDARD \) are the process dependent values for \(ISINK \) and \(VIL \), as measured under standard conditions and stored in EEPROM.

EQUATION 6:

\[
\Delta T \approx \frac{VIL - VSTANDARD}{-1.25 \times 10^{-3}}
\]

\(\Delta T \) = temperature deviation
\(VSTANDARD \) = standard voltage
\(VIL \) = trip voltage

EQUATION 7:

\[
\Delta T \approx \frac{ISINK - ISTANDARD}{140 \times 10^{-12}}
\]

\(\Delta T \) = temperature deviation
\(ISINK \) = sink current
\(VSTANDARD \) = standard voltage

EQUATION 8:

\[
VDD \approx VO = VIL + \frac{TDISCHARGE \cdot ISINK}{C1}
\]

\(VO \) = total capacitor voltage
\(VIL \) = trip voltage
\(ISINK \) = sink current
\(TDISCHARGE \) = discharge period

Programmable Low-voltage Detect

\(VDD \) can be calculated using the ULPWU module in two basic ways; both methods are temperature dependent and based on the standard values for \(VIL \) and \(ISINK \), as discussed in Section "Temperature Sensor". The method is fairly accurate for applications where the system is subjected to small temperature variations. Refer to Section "Temperature Sensing and Programmable Low-voltage Detect" for applications where both \(VDD \) and temperature need to be measured across a large range.

INTERNAL CURRENT SINK DISCHARGE METHOD

This method uses the setup as in Figure 2 by measuring \(TDISCHARGE \), while keeping the part active and measuring it against the main clock source. Before measuring \(TDISCHARGE \), make sure that \(C1 \) is fully charged to \(VDD \) by allowing a long enough charge period. Then, use Equation 9 to calculate \(VO \) or \(VDD \).

EQUATION 9:

\[
VO = \left(TDISCHARGE \cdot \frac{ISINK}{C1} \right) + VIL
\]

\(VO \) = Total Capacitor Voltage
\(VIL \) = Trip Voltage
\(TDISCHARGE \) = Discharge Period
\(ISINK \) = Sink Current

The accuracy of the calculated \(VDD \) is dependent on \(VIL \), \(TDISCHARGE \), \(C1 \) and \(ISINK \). Interestingly, \(VIL \) has a negative temperature coefficient while \(ISINK \) has a positive temperature coefficient, which reduces the temperature dependency.

It is still possible to use this method if \(R2 \) is required, as shown in Figure 3. \(V0 \) or \(VDD \) is now calculated using Equation 10, as most of the discharge is through \(R2 \). Using this method, \(R2 \) is more accurate and, for the most part, independent of temperature and process variations.

Connecting \(R2 \) through an I/O controlled MOSFET provides a means for disconnecting \(R2 \) from ground, as shown in Figure 4. The additional I/O enables the MOSFET when \(R2 \) is needed.

EQUATION 10:

\[
VO = VIL \cdot e^{-\frac{TDISCHARGE}{C1 \cdot R2}}
\]

\(V0 \) = \(VIL \) \(e^{-TDISCHARGE/C1 \cdot R2} \)
FIGURE 4: \(R_2 \) TO I/O

VIL CHARGE METHOD

This method uses the same setup as illustrated in Figure 3. This method is applicable if \(R_1 \) is much smaller than \(R_2 \). Again, the capacitor fully charges to \(V_{DD} \) and the TDISCHARGE is measured while the part is still active. Equation 9 can be used to calculate \(V_O \) or \(V_{DD} \), but note that the result is a multiple of \(V_{IL} \), which is temperature sensitive.

TEMPERATURE SENSING AND PROGRAMMABLE LOW-VOLTAGE DETECT

Section "Temperature Sensor" of this application note explains a simple method to measure temperature. Clearly, the accuracy of the result is dependent on knowing the \(V_{DD} \) and the process dependent variation of the variable. Similarly, Section "Programmable Low-voltage Detect" explains how to calculate \(V_{DD} \), but the result depends on temperature and the process variation.

The accuracy of measuring the interdependent values \(V_{DD} \) and temperature is greatly improved by knowing the standard values \(I_{STANDARD} \) and \(V_{STANDARD} \), as explained in Section "Temperature Sensor". The deviation of the measured unit from the standard value can then be used in an iterative process to calculate \(V_{DD} \) and temperature. The following sequence can be followed (see Figure 5):

1. Calculate \(V_O \) or \(V_{DD} \) using Equation 8, assuming standard temperature, \(V_{IL} = V_{STANDARD} \) and \(I_{SINK} = I_{STANDARD} \). The discharge period, TDISCHARGE, is measured against the main clock source while the device is still active. Alternatively, using Equation 9 is less accurate.
2. Use the resulting \(V_{DD} \) to measure \(V_{IL} \) with the A/D converter, as explained in Section "Temperature Sensor". Alternatively, \(V_{IL} \) can be calculated using Equations 2 or 3.
3. Use the resulting \(V_{IL} \) to calculate the temperature with Equation 6.
4. Save the Step 1 iteration values for \(V_{DD} \) and temperature in \(V_{DDn} \) and \(\Delta T_n \), where \(n \) is the iteration step number.
5. Calculate \(I_{SINKn} \) using Equation 7 with \(\Delta T_n \).
6. Calculate \(V_{IL-n} \) using Equation 6 with \(\Delta T_n \).
7. Calculate \(V_{DDn} \) with Equation 8 using the discharge period, TDISCHARGE, from the Step 1, or use Equation 9.
8. Use \(V_{O,n} \) to measure \(V_{IL-n} \), with the A/D converter, or calculate \(V_{IL} \) using Equations 2 or 3.
9. With \(V_{IL-n} \), use Equation 6 to calculate the temperature \(\Delta T_n \).
10. Store the values for \(V_{DDn} \) and \(\Delta T_n \).
11. Increment \(n \) and go to Step 5, until desired \(n \) is reached.

The accuracy of the process can be evaluated by using the alternative methods for specific iterations. In addition, use the EEPROM write time as a temperature sensor for improving the accuracy of Step 1. The EEPROM write time is dependent on temperature and the variation from a standard-measured time can be used to calculate temperature.

CONCLUSION

The ULPWU module is a flexible module with unmatched current consumption that enables the designer to implement not only a wake-up timer, but also a low-cost PLVD (Programmable Low-voltage Detect) and temperature sensing functions. The PIC16F684 is the first low pin count PICmicro® device to feature this module, but other low pin and low-cost embedded controllers will also have this module in the future. The module is especially attractive in lithium and other battery applications where very low Sleep currents are required.
FIGURE 5: CALCULATING VDD AND TEMPERATURE BLOCK DIAGRAM

1. Use Equation 8, assuming standard temperature: VIL = VSTANDARD; ISINK = ISTANDARD.
2. Measure TDISCHARGE against the main clock source while device is still active. Using Equation 9 as an alternative is less accurate.
3. See Section "Temperature Sensor", using VDD from Step 1 to measure VIL with A/D converter. Alternatively, Equations 2 and 3 can be used.
4. Use Equation 6 w/VIL from Step 2.
5. Use iteration values for VDD and temperature from Step 1 as VDDn and ΔTn, where n is the iteration step number.
6. Use Equation 7 with ΔTn.
7. Calculate VILn using Equation 6 with ΔTn.
8. Use Equation 8, using TDISCHARGE from Step 1 or use Equation 9.
9. Use VDDn to measure VILn, with the A/D converter or calculate VIL using Equations 2 or 3.
10. With VILn, use Equation 6 to calculate the ΔTn.
11. Increment n and go to Step 5, until desired n is reached.
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip’s products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks
The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC, and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.
AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB, PICMASTER, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Microchip received ISO/TS-16949:2002 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona and Mountain View, California in October 2003. The Company’s quality system processes and procedures are for its PICmicro® 8-bit MCUs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
WORLDWIDE SALES AND SERVICE

AMERICAS
Corporative Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com

Atlanta
Alpharetta, GA
Tel: 770-640-0034
Fax: 770-640-0307

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260

Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

San Jose
Mountain View, CA
Tel: 650-215-1444
Fax: 650-961-0286

Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8676-6200
Fax: 86-28-8676-6599

China - Fuzhou
Tel: 86-591-8750-3506
Fax: 86-591-8750-3521

China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760

China - Shunde
Tel: 86-757-2839-5507
Fax: 86-757-2839-5571

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xian
Tel: 86-29-8833-7250
Fax: 86-29-8833-7256

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-2229-0061
Fax: 91-80-2229-0062

India - New Delhi
Tel: 91-11-5160-8631
Fax: 91-11-5160-8632

India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513

Japan - Yokohama
Tel: 81-45-471-6166
Fax: 81-45-471-6122

Korea - Gumi
Tel: 82-54-473-4301
Fax: 82-54-473-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Penang
Tel: 60-4-646-8870
Fax: 60-4-646-5086

Phulippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-572-9526
Fax: 886-3-572-6459

Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803

Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-399
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820