INTRODUCTION

The most common filter found in a data acquisition system signal path is a low-pass filter. This type of filter is usually used to reduce A/D Converter (ADC) aliasing errors. If there is more than one signal that is applied to the A/D converter through a multiplexer, each signal source may have its own set of filter requirements (i.e., settling time, fast transition region, etc.). Consequently, a variety of filters may be required in the circuit prior to the multiplexer. Usually these filters are implemented with operational amplifiers (op amps) in combination with fixed resistors and capacitors.

An alternative filter design solution is to have one filter following the multiplexer. In this circuit, the low-pass filter would need to be programmable. The obvious advantage of having the filter serve many analog inputs is that there is a reduction in chip count. An example of this type of approach is shown in Figure 1.

FIGURE 1: If a programmable low-pass filter is used in the application circuit, it can be placed after the analog multiplexer. The programmability of the filter allows for a wide variety of input signals.

Programmable Low-Pass Filters

In this application note, a programmable, second-order, low-pass filter will be presented in four different scenarios. The first three scenarios will illustrate how a dual digital potentiometer and a single amplifier can be configured for low-pass second-order Butterworth, Bessel and Chebyshev responses with a programmable corner frequency range of 1:100. An example of the digital potentiometer setting for these designs is summarized in Tables 1, 2 and 3. The fourth scenario will show the same circuit design, where all three approximation methods (Butterworth, Bessel and Chebyshev) can coexist with a programmable corner frequency range of 1:10. An example of the digital potentiometer settings for this combination of approximation methods is summarized in Table 4.

Figure 2 shows the details of a single-supply, unity gain, second-order, programmable low-pass Sallen Key filter. This filter is implemented with two resistors and two capacitors. The two resistors in this circuit are replaced with the dual MCP42100, 100 kΩ, 8-bit, digital potentiometer.

FIGURE 2: The combination of a dual digital potentiometer and a single-supply, rail-to-rail amplifier can be used to construct a programmable, second-order, Sallen-Key, low-pass filter.

Digital potentiometers can be used to adjust system reference levels, gain errors and offset errors, while offering the added capability of digital adjustment control. Devices such as Microchip’s MCP41XXX and MCP42XXX digital potentiometer families have three resistive terminals for the single versions (MCP41010, MCP41050 and MCP41100) and six resistive terminals for the dual versions (MCP42010, MCP42050 and MCP42100) and are illustrated in Figure 3. The MCP41010 and MCP42010 are both 10 kΩ potentiometers. The MCP41050 and MCP42050 are both 50 kΩ potentiometers, while the MCP41100 and 42100 are both 100 kΩ potentiometers.
FIGURE 3: The operation of the digital potentiometer as compared to the mechanical potentiometer is functionally the same. The adjustment of the digital potentiometer is done with a serial code to the device. Although the mechanical potentiometer provides simplicity, the digital potentiometer provides flexibility and reliability.

The potentiometer can be configured for two modes: the Rheostat mode and Voltage Divider mode. In the Rheostat mode, the wiper (terminal PW) is shorted to either the PA or PB terminal of the device. This configuration is shown in Figure 4. When used in the Voltage Divider mode (Figure 4.b), all three terminals are connected to differing nodes in the circuit. For the analog filter example in this application note, the digital potentiometer will be configured in the Rheostat mode.

By adjusting the two digital potentiometers in Figure 2, the frequency cutoff and the filter approximation method of this second-order low-pass filter can be changed.

The design equation for this low-pass filter configuration is:

\[
\frac{V_{OUT}}{V_{IN}} = \frac{k(R_1 R_2 C_1 C_2)}{s^2 + \frac{1}{R_1 C_1} s + \frac{1}{R_2 C_2} - \frac{k}{R_1 R_2 C_1 C_2}}
\]

Where: \( k = 1 \)

With this formula, the appropriate resistance and capacitance can be calculated. An alternative to this tedious design exercise is to determine the capacitor and resistor values using the FilterLab® software, a filter design program that can be downloaded from Microchip's web site at www.microchip.com.

The Circuit screen in this program allows the user to adjust the capacitors to desired values (\( C_1 \) and \( C_2 \) per Figure 2). When these capacitors are set, the software changes the resistors in the circuit to appropriate values for the circuit implementation. There may be a corner frequency and stability error with low-pass filters that are designed at frequencies higher than 100 kHz. This error is introduced by the parasitic capacitance of the digital potentiometer. As a general guideline, \( C_1 \) and \( C_2 \) should be larger than 10 nF.

For more detailed information concerning anti-aliasing filters, please refer to Microchip’s Application Note 699, entitled “Anti-Aliasing, Analog Filters for Data Acquisition Systems” (DS00699).
Butterworth Second-Order Low-Pass Filters

When a Butterworth filter is required, the Sallen Key configuration shown in Figure 2 can have an adjustable frequency range of 1:100. The frequency behavior of the Butterworth filter is maximally flat in the magnitude response in pass band. The rate of attenuation in transition band is better than the Bessel filter, though not as good as the Chebyshev filter. There is no ringing in the stop band. The step response of the Butterworth filter has some overshoot and ringing in the time domain, though this is less than the Chebyshev filter.

The capacitor values in this circuit are kept constant while the resistive elements are adjusted. The two capacitors should be carefully selected to be constants in the FilterLab software so that the digital potentiometer resistances are the only values that are changing. These capacitive values can easily be found in the FilterLab software through experimentation.

As an example, a programmable second-order, low-pass Butterworth filter with a corner frequency that ranges from 100 Hz to 10 kHz can be designed by setting $C_1 = 0.047 \ \mu F$ and $C_2 = 0.018 \ \mu F$. The values calculated by the FilterLab software for this filter design are summarized in Table 1. Table 1 also includes the closest values for $R_1$ and $R_2$ from the digital potentiometer, along with the digital program code for the MCP42100.

Verification of the performance of the Butterworth filters that use 1% discrete resistors can be performed with the SPICE listing that is provided as an output from the FilterLab software. The SPICE simulations for the 100 Hz, 200 Hz, 300 Hz and 1,000 Hz filters using the values calculated by the FilterLab software are shown in Figure 5.

To validate the digital potentiometer design, SPICE simulations can be performed on the Butterworth filters using the digital potentiometer values. The 100 Hz, 200 Hz, 300 Hz and 1,000 Hz filters using the calculated nominal resistance values of the digital potentiometers, per Table 2, are shown in Figure 6.

From these two SPICE simulations, it is easy to see that the filters from Figure 5 behave fundamentally the same over frequency as compared to Figure 6.

<table>
<thead>
<tr>
<th>Cutoff Frequency, Hz</th>
<th>FilterLab Calculated 1% R1 Value, kΩ</th>
<th>Closest Nominal Digital Pot. R1 Value, kΩ</th>
<th>Digital Pot. R1 Code, decimal</th>
<th>FilterLab Calculated 1% R2 Value, kΩ</th>
<th>Closest Digital Pot. R2 Value, kΩ</th>
<th>Digital Pot. R2 Code, decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>32.2</td>
<td>32.031</td>
<td>82</td>
<td>92.8</td>
<td>92.969</td>
<td>238</td>
</tr>
<tr>
<td>200</td>
<td>16.1</td>
<td>16.016</td>
<td>41</td>
<td>46.4</td>
<td>46.484</td>
<td>119</td>
</tr>
<tr>
<td>300</td>
<td>10.7</td>
<td>10.156</td>
<td>26</td>
<td>30.9</td>
<td>30.859</td>
<td>79</td>
</tr>
<tr>
<td>1000</td>
<td>3.22</td>
<td>3.125</td>
<td>8</td>
<td>9.28</td>
<td>9.375</td>
<td>24</td>
</tr>
<tr>
<td>2000</td>
<td>1.61</td>
<td>1.563</td>
<td>4</td>
<td>4.64</td>
<td>4.688</td>
<td>12</td>
</tr>
<tr>
<td>3000</td>
<td>1.07</td>
<td>1.172</td>
<td>3</td>
<td>3.09</td>
<td>3.125</td>
<td>8</td>
</tr>
<tr>
<td>10000</td>
<td>322</td>
<td>0.391</td>
<td>1</td>
<td>928</td>
<td>0.781</td>
<td>2</td>
</tr>
</tbody>
</table>
FIGURE 5: SPICE simulation of four Butterworth, second-order low-pass filters with corner frequencies of 100 Hz, 200 Hz, 300 Hz and 1,000 Hz. In this simulation, 1% resistor values were used.

FIGURE 6: SPICE simulation of four Butterworth, second-order low-pass filters with corner frequencies of 100 Hz, 200 Hz, 300 Hz and 1,000 Hz. In this simulation, nominal digital potentiometer resistor values, per Table 1, were used.

TABLE 2: A PROGRAMMABLE BESSEL FILTER DESIGN USING A DUAL 100 KΩ DIGITAL POTENTIOMETER.

Specifications: A programmable Bessel filter with a cutoff frequency range of 100 Hz to 10 kHz can be implemented with $C_1 = 0.033 \mu F$, $C_2 = 0.018 \mu F$ and a dual 100 kΩ digital potentiometer.

<table>
<thead>
<tr>
<th>Cutoff Frequency, Hz</th>
<th>FilterLab Calculated 1% $R_1$ Value, kΩ</th>
<th>Closest Nominal Digital Pot. $R_1$ Value, kΩ</th>
<th>Digital Pot. $R_1$ Code, decimal</th>
<th>FilterLab Calculated 1% $R_2$ Value, kΩ</th>
<th>Closest Digital Pot. $R_2$ Value, kΩ</th>
<th>Digital Pot. $R_2$ Code, decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>28.7</td>
<td>28.516</td>
<td>73</td>
<td>91.5</td>
<td>91.406</td>
<td>234</td>
</tr>
<tr>
<td>200</td>
<td>14.3</td>
<td>14.453</td>
<td>37</td>
<td>45.7</td>
<td>43.75</td>
<td>117</td>
</tr>
<tr>
<td>300</td>
<td>9.57</td>
<td>9.375</td>
<td>24</td>
<td>30.5</td>
<td>30.469</td>
<td>78</td>
</tr>
<tr>
<td>1000</td>
<td>2.87</td>
<td>2.734</td>
<td>7</td>
<td>9.15</td>
<td>8.984</td>
<td>23</td>
</tr>
<tr>
<td>2000</td>
<td>1.43</td>
<td>1.563</td>
<td>4</td>
<td>4.57</td>
<td>4.688</td>
<td>12</td>
</tr>
<tr>
<td>3000</td>
<td>0.957</td>
<td>0.781</td>
<td>2</td>
<td>3.05</td>
<td>3.125</td>
<td>8</td>
</tr>
<tr>
<td>10000</td>
<td>0.287</td>
<td>0.391</td>
<td>1</td>
<td>0.915</td>
<td>0.781</td>
<td>2</td>
</tr>
</tbody>
</table>
Bessel Second-Order Low-Pass Filters

When a Bessel filter is desired, the Sallen Key configuration, shown in Figure 2, can have an adjustable frequency range of 1:100. As with the Butterworth filter, the frequency response of the Bessel filter has a flat magnitude response in the pass band. Following the pass band, the rate of attenuation in the transition band is slower than the Butterworth or Chebyshev. Finally, there is no ringing in the stop band. This filter has the best step response of all of the filters mentioned in this application note, with very little overshoot or ringing.

In Table 3, a programmable Bessel filter is designed with a corner frequency range of 100 Hz to 10 kHz, by setting \( C_1 = 0.033 \, \mu F \) and \( C_2 = 0.018 \, \mu F \). Once again, in the FilterLab software, the capacitor values are kept constant, while the resistive elements are adjusted.

Chebyshev 2nd Order Low-Pass Filters

The filter in Figure 2 can also be designed in the Chebyshev approximation for an adjustable range of 1:100. With the Chebyshev filter, the frequency behavior exhibits a ripple in the pass-band that is determined by the specific placement of the poles in the circuit design. With the design discussed in this application note, the ripple is 3 dB. In general, an increase in ripple magnitude will lessen the width of the transition band. The rate of attenuation in the transition band is steeper than Butterworth and Bessel filters. Although there is ringing in the pass-band region with this filter, the stop band is devoid of ringing. The step response has a fair degree of overshoot and ringing.

An example of the digital potentiometer settings for a 2nd order, low-pass Chebyshev filter is given in Table 3.

### TABLE 3: CHEBYSHEV FILTER DESIGN

<table>
<thead>
<tr>
<th>Cutoff Frequency, Hz</th>
<th>FilterLab Calculated 1% R1 Value, kΩ</th>
<th>Closest Nominal Digital Pot. R1 Value, kΩ</th>
<th>Digital Pot. R1 Code, decimal</th>
<th>FilterLab Calculated 1% R2 Value, kΩ</th>
<th>Closest Digital Pot. R2 Value, kΩ</th>
<th>Digital Pot. R2 Code, decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>21.0</td>
<td>21.094</td>
<td>54</td>
<td>75.6</td>
<td>75.781</td>
<td>194</td>
</tr>
<tr>
<td>200</td>
<td>10.5</td>
<td>10.547</td>
<td>27</td>
<td>37.8</td>
<td>37.891</td>
<td>97</td>
</tr>
<tr>
<td>300</td>
<td>7.01</td>
<td>7.031</td>
<td>18</td>
<td>25.2</td>
<td>25.391</td>
<td>65</td>
</tr>
<tr>
<td>1000</td>
<td>2.10</td>
<td>1.953</td>
<td>5</td>
<td>7.56</td>
<td>16.016</td>
<td>41</td>
</tr>
<tr>
<td>2000</td>
<td>1.05</td>
<td>1.563</td>
<td>4</td>
<td>3.78</td>
<td>3.9063</td>
<td>10</td>
</tr>
<tr>
<td>3000</td>
<td>0.701</td>
<td>0.781</td>
<td>2</td>
<td>2.52</td>
<td>2.344</td>
<td>6</td>
</tr>
<tr>
<td>10000</td>
<td>0.210</td>
<td>0.391</td>
<td>1</td>
<td>0.756</td>
<td>0.781</td>
<td>2</td>
</tr>
</tbody>
</table>

### TABLE 4: THE BUTTERWORTH, BESSEL AND CHEBYSHEV APPROXIMATION METHODS

Specifications: The Butterworth, Bessel and Chebyshev approximation methods can be designed into the circuit in Figure 2 by using a dual potentiometer and capacitive values of \( C_1 = 0.015 \, \mu F \), \( C_2 = 0.0022 \, \mu F \). The adjustable cutoff frequency range of these filters is 1,000 Hz to 10 kHz.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1,000</td>
<td>Butterworth</td>
<td>8.203</td>
<td>21</td>
<td>94.141</td>
<td>241</td>
</tr>
<tr>
<td>1,000</td>
<td>Bessel</td>
<td>5.078</td>
<td>13</td>
<td>93.359</td>
<td>239</td>
</tr>
<tr>
<td>1,000</td>
<td>Chebyshev (3 dB Ripple)</td>
<td>3.516</td>
<td>9</td>
<td>33.984</td>
<td>87</td>
</tr>
<tr>
<td>2,000</td>
<td>Butterworth</td>
<td>3.906</td>
<td>10</td>
<td>47.266</td>
<td>121</td>
</tr>
<tr>
<td>2,000</td>
<td>Bessel</td>
<td>2.344</td>
<td>6</td>
<td>46.484</td>
<td>119</td>
</tr>
<tr>
<td>2,000</td>
<td>Chebyshev (3 dB Ripple)</td>
<td>15.625</td>
<td>40</td>
<td>17.188</td>
<td>44</td>
</tr>
<tr>
<td>3,000</td>
<td>Butterworth</td>
<td>2.734</td>
<td>7</td>
<td>31.250</td>
<td>80</td>
</tr>
<tr>
<td>3,000</td>
<td>Bessel</td>
<td>1.563</td>
<td>4</td>
<td>31.250</td>
<td>80</td>
</tr>
<tr>
<td>3,000</td>
<td>Chebyshev (3 dB Ripple)</td>
<td>10.547</td>
<td>27</td>
<td>11.328</td>
<td>29</td>
</tr>
<tr>
<td>10,000</td>
<td>Butterworth</td>
<td>0.781</td>
<td>2</td>
<td>9.375</td>
<td>24</td>
</tr>
<tr>
<td>10,000</td>
<td>Bessel</td>
<td>0.391</td>
<td>1</td>
<td>9.375</td>
<td>24</td>
</tr>
<tr>
<td>10,000</td>
<td>Chebyshev (3 dB Ripple)</td>
<td>3.125</td>
<td>8</td>
<td>3.516</td>
<td>9</td>
</tr>
</tbody>
</table>
Combining Butterworth, Bessel and Chebyshev Second-Order Low-Pass Filters

All three approximation methods can be combined, with some limitations, in this circuit. Since there is a large variety of pole locations, the cutoff frequency range is 1:10. An example of a programmable filter with a cutoff frequency range of 1,000 Hz to 10 kHz is shown in Table 4.

ERROR ANALYSIS OF PROGRAMMABLE FILTERS

Absolute Accuracy of Circuit Elements

The nominal resistance of a 100 kΩ digital potentiometer (MCP42100), per data sheet specifications, varies approximately ±30%. If the 10 kΩ digital potentiometer (MCP42010) is substituted for the MCP42100, the nominal resistance variance from part-to-part is specified at ±20% for the MCP42010. When the 10 kΩ potentiometer is substituted, the capacitive values should be increased by 10X. For instance, in the Butterworth example of Table 1, C1 should be changed to 0.47 µF and C2 changed to 0.18 µF. When this is done, the codes to the potentiometer that can stay the same, remain unchanged. The change of the potentiometer from the MPC42100 (100 kΩ) to the MCP42010 (10 kΩ) will, in fact, decrease the values, as stated in Table 1, by 10X.

In this application circuit, it is suggested that the dual version of the digital potentiometer be used because there can be part-to-part variation of the nominal resistance (±30% for the MCP42100 and ±20% for the MCP42010). With the dual potentiometer, resistor-to-resistor variation on chip is specified to a typical value of 0.2%. The resistance variation of these digital potentiometers is primarily dependent on the process variation of the sheet-rho of a diffused p-silicon layer and the on-resistance of the internal switches.

If 20% accurate capacitors are used, the variability of this filter in a manufacturing environment is dominated by the capacitors.

Wiper resistance

The wiper resistance of the MCP42100 digital potentiometer is approximately 125Ω (typ) when VDD = 5.5V. This wiper resistance appears as an error in the resistance value of the digital potentiometer only at lower programmed settings. For instance, with the MCP42100, the nominal resistance step for each code is equal to 100 kΩ/256, or 390.625Ω. With a digital code setting of ‘1’, the ideal nominal resistance is 390.625Ω. However, with the added wiper resistance, this resistance is nominally 515.625Ω.

CONCLUSION

It is possible to design second-order, low-pass, programmable filters with one dual digital potentiometer, one amplifier and two capacitors.

REFERENCES


Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ  85224-6199
Tel:  480-792-7200
Fax:  480-792-7277
Technical Support:  480-792-7627
Web Address:  http://www.microchip.com

Atlanta
3780 Mansell Road, Suite 130
Alpharetta, GA  30022
Tel:  770-640-0034
Fax:  770-640-0307

Boston
2 Lan Drive, Suite 120
Westford, MA  01886
Tel:  978-692-3848
Fax:  978-692-3821

Chicago
333 Pierce Road, Suite 180
Itasca, IL  60143
Tel:  630-285-0071
Fax:  630-285-0075

Dallas
4570 Westgrove Drive, Suite 160
Addison, TX  75001
Tel:  972-818-7423
Fax:  972-818-2924

Detroit
Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI  48334
Tel:  248-538-2250
Fax:  248-538-2260

Kokomo
2767 S. Albright Road
Kokomo, IN  46902
Tel:  765-494-8888
Fax:  765-494-8886

Los Angeles
18201 Von Karman, Suite 1090
Irvine, CA  92612
Tel:  949-263-1888
Fax:  949-263-1338

San Jose
1300 Terra Bella Avenue
Mountain View, CA  94043
Tel:  650-215-1444
Fax:  650-961-0286

Worldwide Sales and Service

ASIA/PACIFIC

Australia
Suite 22, 41 Rawson Street
Epping 2121, NSW
Tel:  61-2-9868-6733
Fax:  61-2-9868-6755

China - Beijing
Unit 706B
Wan Tai Bei Hai Bldg.,
No. 6 Chaoyangmen Ben Str.
Beijing, 100027, China
Tel:  86-10-85282100
Fax:  86-10-85282104

China - Chengdu
Rm. 2401-2402, 24th Floor,
Ming Xing Financial Tower
No. 88 TIDU Street
Chengdu 610016, China
Tel:  86-28-86766200
Fax:  86-28-86766599

China - Fuzhou
Unit 28F, World Trade Plaza
No. 71 Wusi Road
Fuzhou 350001, China
Tel:  86-591-7503506
Fax:  86-591-7503521

China - Hong Kong SAR
Unit 901-6, Tower 2, Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel:  852-2401-1200
Fax:  852-2401-3431

China - Shenzhen
Rm. 1812, 18/F, Building A, United Plaza
No. 5022 Binhe Road
Shenzhen 518033, China
Tel:  86-755-82901380
Fax:  86-755-82951393

Europe

Austria
Duraoalstrasse 2
A-4600 Wiels
Austria
Tel:  43-7242-2244-399
Fax:  43-7242-2244-393

Denmark
Regus Business Centre
Lautrup høj 1-3
Ballereup DK-2750 Denmark
Tel:  45-4420-9895 Fax:  45-4420-9910

France
Parc d’Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - 1er Etage
91300 Massy, France
Tel:  33-1-69-53-63-20
Fax:  33-1-69-53-60-97

Germany
Steinhilistraße 10
D-85737 Ismaning, Germany
Tel:  49-89-627-144-0
Fax:  49-89-627-144-44

Italy
Via Quasimodo, 12
20025 Legnano (MI)
Tel:  39-0331-742611
Fax:  39-0331-466781

Korea
188-1, Youngbo Bldg., 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea 135-852
Tel:  82-2-554-7200 Fax:  82-2-558-5932 or
82-2-558-5934

Singapore
200 Middle Road
#07-02 Prime Centre
Singapore, 18980
Tel:  65-6334-8870 Fax:  65-6334-8850

Taiwan
Kaohsing Branch
30F - 1 No, 5
Min Chuan 2nd Road
Kaohsuing 806, Taiwan
Tel:  886-7-536-4818
Fax:  886-7-536-4803

Taiwan
Taiwan Branch
11F-3, No. 207
Tung Hua North Road
Taipei, 105, Taiwan
Tel:  886-2-2717-7175 Fax:  886-2-2545-0139

United Kingdom

505 Eskdale Road
Winnersh Triangle
Wokingham
The Berkshire, England RG41 5TU
Tel:  44-118-921-5869
Fax:  44-118-921-5820

01/26/04