INTRODUCTION

The most widely measured phenomena in the process control environment is temperature. Common elements, such as Resistance Temperature Detectors (RTDs), thermistors, thermocouples or diodes are used to sense absolute temperatures, as well as changes in temperature. For an overview and comparison of these sensors, refer to Microchip’s AN679, “Temperature-Sensing Technologies”, DS00679.

Of these technologies, the platinum RTD temperature-sensing element is the most accurate and stable over time and temperature. RTD element technologies are constantly improving, further enhancing the quality of the temperature measurement (see Figure 1). Typically, a data acquisition system conditions the analog signal from the RTD sensor, making the analog translation of the temperature usable in the digital domain.

This application note focuses on circuit solutions that use platinum RTDs in their design. Initially, the RTD temperature-sensing element will be compared to the negative temperature coefficient (NTC) thermistor, which is also a resistive temperature-sensing element. In this forum, the linearity of the RTD will be presented along with calibration formulas that can be used to improve the off-the-shelf linearity of the element. For additional information concerning the thermistor temperature sensor, refer to Microchip’s AN685, “Thermistors in Single Supply Temperature Sensing Circuits”, DS00685. Finally, the signal-conditioning path for the RTD system will be covered with application circuits from sensor to microcontroller.

RTD OVERVIEW

The acronym “RTD” is derived from the term “Resistance Temperature Detector”. The most stable, linear and repeatable RTD is made of platinum metal. The temperature coefficient of the RTD element is positive. This is in contrast to the NTC thermistor, which has a negative temperature coefficient, as is shown graphically in Figure 2. An approximation of the platinum RTD resistance change over temperature can be calculated by using the constant 0.00385Ω/°C. This constant is easily used to calculate the absolute resistance of the RTD at temperature.

EQUATION

\[RTD(T) = RTD_0 + T \times RTD_0 \times 0.00385\Omega/°C \]

where:

- \(RTD(T)\) is the resistance value of the RTD element at temperature (Celsius),
- \(RTD_0\) is the specified resistance of the RTD element at 0°C and,
- \(T\) is the temperature environment that the RTD is placed (Celsius).
FIGURE 2: The temperature vs. resistance characteristics of the RTD sensing element is considerably different than the thermistor sensor element. The RTD sensing element has a positive temperature coefficient and is considerably more linear.

The RTD element resistance is extremely low when compared to the resistance of a NTC thermistor element, which ranges up to 1 MΩ at 25°C. Typical specified 0°C values for RTDs are 50, 100, 200, 500, 1000 or 2000Ω. Of these options, the 100Ω platinum RTD is the most stable over time and linear over temperature.

If the RTD element is excited with a current reference at a level that does not create an error due to self-heating, the accuracy can be ±4.3°C over its entire temperature range of -200°C to 800°C. If a higher accuracy temperature measurement is required, the linearity formula below (Calendar-Van Dusen Equation) can be used in a calculation in the controller engine or be used to generate a look-up table.

![FIGURE 3: The linearity error of the platinum RTD temperature sensor is small when compared to other sensors, such as the thermocouple and thermistor.](image)

The linearity performance of a typical RTD is shown in Figure 3.

The RTD element requires a current excitation. If the magnitude of the current source is too high, the element will dissipate power and start to self-heat. Consequently, care should be taken to insure that ≤1 mA of current is used to excite the RTD element.

The advantages and disadvantages of the RTD temperature sensing element is summarized in Table 1.

TABLE 1: RTD TEMPERATURE SENSING ELEMENT ADVANTAGES AND DISADVANTAGES

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Accurate and Stable</td>
<td>Expensive Solution</td>
</tr>
<tr>
<td>Fairly Linear to ±4%°C</td>
<td>Requires Current Excitation</td>
</tr>
<tr>
<td>Good Repeatability</td>
<td>Danger of Self-Heating</td>
</tr>
<tr>
<td></td>
<td>Low Resistive Element</td>
</tr>
</tbody>
</table>

RTD CURRENT EXCITATION CIRCUIT

For best linearity, the RTD sensing element requires a stable current reference for excitation. This can be implemented in a number of ways, one of which is shown in Figure 4. In this circuit, a voltage reference, along with two operational amplifiers, are used to generate a floating 1 mA current source.
A current source for the RTD element can be constructed in a single-supply environment from two operational amplifiers and a precision voltage reference.

This is accomplished by applying a 2.5V precision voltage reference to R_4 of the circuit. Since R_4 is equal to R_3, and the non-inverting input to A_1 is high-impedance, the voltage drop across these two resistors is equal. The voltage between R_3 and R_4 is applied to the non-inverting input of A_1. That voltage is gained by $(1 + R_2/R_1)$ to the output of the amplifier and the top of the reference resistor, R_{REF}. If $R_1 = R_2$, the voltage at the output of A_1 is equal to:

$$V_{OUTA1} = \left(1 + \frac{R_2}{R_1}\right) \times (V_{REF} - V_{R4})$$

where:

- V_{OUTA1} is the voltage at the output of A_1 and
- V_{R4} is the voltage drop across R_4.

The voltage at the output of A_2 is equal to:

$$V_{OUTA2} = 2 \times (V_{REF} - V_{R4})$$

This same voltage appears at the inverting input of A_2 and across to the non-inverting input of A_2.

Solving these equations, the voltage drop across the reference resistor, R_{REF}, is equal to:

$$V_{RREF} = V_{OUTA1} - V_{OUTA2}$$

$$V_{RREF} = 2 \times (V_{REF} - V_{R4}) - (V_{REF} - V_{R4} - V_{R3})$$

where:

- V_{RREF} is the voltage across the reference resistor, R_{REF} and,
- V_{R3} is the voltage drop across R_3.

The current through R_{REF} is equal to:

$$I_{RTD} = \frac{V_{REF}}{R_{REF}}$$

This circuit generates a current source that is ratio metric to the voltage reference. The same voltage reference can be used in other portions of the circuit, such as the analog-to-digital (A/D) converter reference.

Absolute errors in the circuit will occur as a consequence of the absolute voltage of the reference, the initial offset voltages of the operational amplifiers, the output swing of A_1, mismatches between the resistors, the absolute resistance value of R_{REF} and the RTD element. Errors due to temperature changes in the circuit will occur as a consequence of the temperature drift of the same elements listed above. The primary error sources over temperature are the voltage reference, offset drift of the operational amplifiers and the RTD element.

RTD SIGNAL-CONDITIONING PATH

Changes in resistance of the RTD element over temperature are usually digitized through an A/D conversion, as shown in Figure 5. The current excitation circuit, shown in Figure 4, is used to excite the RTD element. With this style of excitation, the magnitude of the current source can be tuned to 1 mA or less by adjusting R_{REF}. The voltage drop across the RTD element is sensed by A_3, then gained and filtered by A_4. With this circuit, a 3-wire RTD element is selected. This configuration minimizes errors due to wire resistance and wire resistance drift over temperature.
FIGURE 5: This circuit uses a RTD temperature-sensitive element to measure temperatures from -200°C to 600°C. The current generator circuit from Figure 4 excites the sensor. An operational amplifier (A3) is used to zero wire resistance error. A fourth amplifier (A4) is used to gain the signal and filter possible alias interference. A 12-bit converter (MCP3201) converts the voltage across the RTD to digital code for the 8-pin controller (PIC12C508).
In this circuit, the RTD element equals 100Ω at 0°C. If the RTD is used to sense temperature over its entire range of -200°C to 600°C, the range of resistance produced by the RTD would be nominally 23Ω to 331Ω. Since the resistance range is relatively low, wire resistance and wire resistance change over temperature can skew the measurement of the RTD element. Consequently, a 3-wire RTD device is used to reduce these errors.

The errors contributed by the wire resistances, \(R_{W1} \) and \(R_{W3} \), are subtracted from the circuit with \(A_3 \), the operational amplifier circuit. In this configuration, \(R_1 \) and \(R_2 \) are equal and are relatively high. The value of \(R_3 \) is selected to ensure that the leakage currents through the resistor do not introduce errors to the current in the RTD element. The transfer function of this portion of the circuit is:

\[
V_{OUTA3} = (V_{IN} - V_{W1})(1 + R_2/R_1) - V_{IN}(R_2/R_1)
\]

where:
- \(V_{IN} = V_{W1} + V_{RTD} + V_{W3} \)
- \(V_{Wx} \) is the voltage drop across the wires to and from the RTD and
- \(V_{OUTA3} \) is the voltage at the output of \(A_3 \).

If it is assumed that
- \(R_1 = R_2 \) and \(R_{W1} = R_{W3} \)

the transfer function above reduces to:

\[
V_{OUTA3} = V_{RTD}
\]

The voltage signal at the output of \(A_3 \) is filtered with a 2\(^{nd}\) order, low pass filter created with \(A_4, R_3, C_3, R_4 \) and \(C_4 \). This same signal is also gained by the resistors \(R_5 \) and \(R_6 \).

CONCLUSION

Although the RTD requires more circuitry in the signal-conditioning path than the thermistor or the silicon temperature sensor, it ultimately provides a high-precision, relatively linear result over a wider temperature range. If further linearization is performed in the controller, the RTD circuit can achieve ±0.01°C accuracy.

REFERENCES

“Practical Temperature Measurements”, OMEGA CATALOG, pg Z-11

“Evaluating Thin Film RTD Stability”, SENSORS, Hyde, Darrell, OCT. 1997, pg 79

“Refresher on Resistance Temperature Devices”, Madden, J.R., SENSORS, Sept., 1997, pg 66

“Producing Higher Accuracy From SPRTs (Standard Platinum Resistance Thermometer)”, MEASUREMENT & CONTROL, Li, Xumo, June, 1996, pg118
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip’s products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELoo, MPLAB, PIC, PICmicro, PICSTART, PRO MATE and PowerSmart are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, microID, MXDEV, MXLAB, PICMASTER, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Accuron, Application Maestro, dsPICDEM, dsPICDEM.net, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, PICC, PICKit, PICDEM, PICDEM.net, PowerCal, PowerInfo, PowerMate, PowerTool, rLAB, rPIC, Select Mode, SmartSensor, SmartShunt, SmartTel and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2003, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999 and Mountain View, California in March 2002. The Company’s quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, dsPIC® code hopping devices, Serial EEPROMs, microperipherals, non-volatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001 certified.