INTRODUCTION

It is often necessary to output a floating point number to a display. For example, to check calculations, one might want to output floating point numbers using the PICmicro® microcontrollers serial port, or use general purpose I/O to output to a liquid crystal display (LCD). Either way, the floating point number must be converted to its ASCII equivalent. This document shows a specific example of converting a 32-bit floating point number to ASCII. Application note AN575 contains 24-bit and 32-bit floating point routines. A subroutine is provided here that does the conversion and returns the ASCII equivalent in RAM. An example “main” program is provided to show how to use the subroutine.

FLOATING POINT FORMAT

OVERVIEW

Application note AN575 describes the Microchip format of 24 and 32-bit floating point numbers. We will use the 32-bit format for this example. Table 1 reviews the 32-bit floating point format.

Table 2 depicts Microchip’s 32-bit floating point register RAM usage. The bit labeled “S” is the sign bit. These registers are collectively called AARG. The floating point routines require that the arguments be put in AARG and BARG (BARG is the second argument, same format as AARG). The result of the floating point operation is stored in AARG.

Floating Point to ASCII base 10 Conversion

Floating point numbers generated by the AN575 subroutines sometimes need to be displayed. According to AN575, the number range for the floating point numbers is: \(\pm 1.17549435 \times 10^{-38} \) to \(\pm 6.80564693 \times 10^{+38} \). This application note will only show how to convert numbers between 0.000 to 9.999. With modification, this method can be extended to convert other ranges of numbers as well.

The calling program should ensure that the AARG registers are loaded with the correct 32-bit floating point number: either as a result of a previous floating point operation or by manually loading the AARG. The “main” routine that calls float_ascii is shown in Appendix A. For demonstration purposes, let’s take an approximation of \(\pi \) and load it into the AARG register. We’ll use the number 3.1415927. (A shortcut to determine the Microchip floating point numbers is to use fprep.exe. The program fprep.exe is provided with AN575 to convert a decimal number to Microchip floating point.) Then, the float_ascii subroutine is called. Upon return from the subroutine, the ASCII base 10 representation of the floating point number is stored in RAM registers: ones, tenths, hundredths, and thousandths. Each register (ones, tenths, etc.) has an ASCII character which represents a digit. The decimal point is not included in the register RAM. Since it is given that the number is between 0.000 and 9.999, the display routine should manually output a decimal point after it outputs the first digit. Table 3 shows the ASCII values of each digit. The numbers are 3.141.
TABLE 3: THE ASCII VALUES FOR 3.141
DECIMAL RETURNED FROM
ROUTINE float_ascii

<table>
<thead>
<tr>
<th>Register Name</th>
<th>ASCII</th>
</tr>
</thead>
<tbody>
<tr>
<td>ones</td>
<td>33h</td>
</tr>
<tr>
<td>tenths</td>
<td>31h</td>
</tr>
<tr>
<td>hundredths</td>
<td>34h</td>
</tr>
<tr>
<td>thousandths</td>
<td>31h</td>
</tr>
</tbody>
</table>

Customizing the Routine

There are several changes you can make to the float_ascii routine to customize it. First, the number of significant figures in the number is specified by the constant SIG_FIG. Suppose we wanted to display one more digit of accuracy, four digits to the right of the decimal point. It is easy to alter the floasc.inc assembly file to account for this change. The following steps illustrate how to change the source code to return a total of five digits.

1. Ensure that there is enough RAM registers allocated to hold each digit. In this case, we would change the cblock definition as in Figure 1.

 FIGURE 1: CHANGING CBLOCK TO HOLD FIVE DIGITS
   ```
cblock           ;reserve five bytes of
   ones         ;data RAM for each digit
   tenths       ;
   hundredths   ;
   thousandths  ;
   digit5       ;**** Add one more
               ;RAM register
   endc
   ```

2. The last_digit constant must be changed. This constant contains the address of the last variable in the cblock. In this case, the variable digit5 is the last location.

   ```
last_digit set digit5
   ```

3. Now the constant, SIG_FIG should be equated to the number of digits desired. For example, if we desire four digits to the right of the decimal point, there are a total of five digits that must be obtained.

   ```
SIG_FIG equ   5
   ```

4. Load BARG with ten thousand. Use fprep.exe to find the floating point hexadecimal equivalent of 10,000.

   ```
movlw  0x8C    ;BARG = 10,000 decimal
movwf  BEXP    ;(floating point) fprep.exe
movlw  0x1C    ;was used to get this
movwf  BARGB0  ;floating point
movlw  0x40    ;representation
movwf  BARGB1
movlw  0x00
movwf  BARGB2
   ```

SUMMARY

This document demonstrated converting a limited range of the floating point numbers to ASCII. This is useful in order to display the results of some floating point operation. An example application of this code could be with the PIC14C000 microcontroller. Using the analog-to-digital converter module, one could read the voltage on a pin from 0.000 to 3.500 volts and output the decimal number to an LCD.
APPENDIX A:

list p=16c74a,st=off,mm=off

#define P16_MAP1 0
#define P16_MAP2 1

#include "p16c74a.inc"
nolist
#include "math16.inc" ;; constants and variable definitions
list
cblock 0x70 ;; set cblock start address for
endc
; float_ascii routine

org 0x000
goto start

org 0x005

start

movlw 0x80 ;; PI = 3.1415927
movwf AEXP
movlw 0x49
movwf AARGB0
movlw 0x0F
movwf AARGB1
movlw 0xDB
movwf AARGB2

; convert a 32-bit float to ASCII
; in this case
; ones = 3
; tenths = 1
; hundredths = 4
; thousandths = 1

; convert a 32-bit float to ASCII
; in this case
; ones = 3
; tenths = 1
; hundredths = 4
; thousandths = 1

call float_ascii

include "floasc.inc"

done goto done

#include "floasc.inc"

done
;**
;*Floating Point to ASCII
;*
;* OUTPUT: ones, tenths, hundredths, thousandths (ASCII digit in each)
;*
;* Used: INDF,FSR,AARG,BARG,REMB,digit_count
;*
;* Procedure: The floating point number in AARG is multiplied by 1000.
;* Then the product is divided by 10 three times. After each
;* divide, the remainder is kept.
;* After each digit is obtained, 30H is added to it to make it
;* an ASCII representation of that number. Then, the ASCII
;* value is stored in register RAM at the locations specified
;* in the “cblock.”
;*
;* Note: The ASCII decimal point is not generated by this routine.
;* You must output the decimal point in the correct decimal
;* position for your application. For this example, the
;* decimal point is after the first digit: ones.
;*
;* The following files are needed for this routine to function.
;* p16c74a.inc-- or any other midrange processor include file
;* include the processor file in your “main” file
;*
;* math16.inc -- constant and variable definitions for
;* AN575 floating point routines and
;* AN617 fixed point routines, both are used
;* in this float to ASCII routine
;* “include” this file in your “main” program
;*
;* fxd26.a16 -- fixed point 32/16 divide, included at the end
;* of this routine.
;*
;* fp32.a16-- 32 bit float to 32 bit integer conversion
;* included at the end of this program.
;*
;***

;**
;* RAM Register Definitions
;*
;* Your “main” program must have a “cblock”
;* directive with a RAM address so the
;* following “cblock” will be located in RAM

cblock ;reserve four bytes of data RAM for
 ones ;each digit
tenths
hundredths
thousandths

digit_count ;counter used to cycle through each digit
cblock
endc

last_digit ;set thousandths
set thousandths

SIG_FIG equ 4 ;set SIG_FIG equal to the number of
;significant figures in your decimal number
;for example: ones, tenths, hundredths,
thousandths, requires 4 sig figs

float_ascii

 movlw 0x88 ;BARG= 1000 decimal (floating point)
 movwf BEXP ;fprep.exe was used to get this
 movlw 0x7A ;floating point representation of 1000
 movwf BARGB0
 movlw 0x00
 movwf BARGB1
 movlw 0x00
 movwf BARGB2
 call FPM32 ;AARG = AARG * 1000
 call INT3232 ;AARG <-- INT(AARG)

 movlw last_digit
 movwf FSR ;pointer = address of smallest digit
 movlw SIG_FIG ;load counter with the number of
 movwf digit_count ;significant figures the decimal number

flo_asclp

 clrf BARGB0 ;Make the divisor 10.
 movlw d’10’
 movwf BARGB1
 call FXD3216U ;divide (32-bit fixed) / 10 (to get remainder)
 movf REMB1,w ;put remainder in w register
 movwf INDF ;put number into appropriate digit position
 movlw 0x30
 addwf INDF,f ;add 30h to decimal number to convert to ASCII
 decf FSR,f ;move pointer to next digit
 decfsz digit_count,f
 goto flo_asclp

return

nolist

include “fxd26.a16” ;fixed point 32/16 divide from AN617

include “fp32.a16” ;32 bit float routines
;we are using FPM32 for 32-bit multiply
;and INT3232 for 32-bit float to 32-bit int conversion. Routines are in AN575
Note the following details of the code protection feature on PICmicro® MCUs.

- The PICmicro family meets the specifications contained in the Microchip Data Sheet.
- Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet. The person doing so may be engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable”.
- Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our product.

If you have any further questions about this matter, please contact the local sales office nearest to you.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip’s products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, PIC, PICmicro, PICMASTER, PICSTART, PRO MATE, KEELOG, SEEVAL, MPLAB and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

Total Endurance, ICSP, In-Circuit Serial Programming, FilterLab, MXDEV, microID, FlexROM, fuzzyLAB, MPASM, MPLINK, MPLIB, PICC, PICDEM, PICDEM.net, ICEPIC, Migratable Memory, FanSense, ECONOMONITOR, Select Mode, dsPIC, nPIC and microPort are trademarks of Microchip Technology Incorporated in the U.S.A.

Serialized Quick Term Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2001, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999. The Company’s quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, KEELOG® code hopping devices, Serial EEPROMs and microperipheral products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001 certified.
Note the following details of the code protection feature on PICmicro® MCUs.

- The PICmicro family meets the specifications contained in the Microchip Data Sheet.
- Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet. The person doing so may be engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable".
- Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our product.

If you have any further questions about this matter, please contact the local sales office nearest to you.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip’s products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, FilterLab, KEELOQ, microID, MPLAB, PIC, PICmicro, PICMASTER, PICSTART, PRO MATE, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, MXDEV, PICC, PICDEM, PICDEM.net, rPIC, Select Mode and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2002, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.
Note the following details of the code protection feature on PICmicro® MCUs.

- The PICmicro family meets the specifications contained in the Microchip Data Sheet.
- Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet. The person doing so may be engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable”.
- Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our product.

If you have any further questions about this matter, please contact the local sales office nearest to you.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip’s products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, FilterLab, KEELOQ, microID, MPLAB, PIC, PICmicro, PICMASTER, PICSTART, PRO MATE, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, MXDEV, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2002, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.
WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200 Fax: 480-792-7277
Technical Support: 480-792-7627
Web Address: http://www.microchip.com

Rocky Mountain
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7966 Fax: 480-792-7456

Atlanta
500 Sugar Mill Road, Suite 200B
Atlanta, GA 30350
Tel: 770-640-0034 Fax: 770-640-0307

Boston
2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848 Fax: 978-692-3821

Chicago
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071 Fax: 630-285-0075

Dallas
4570 Westgrove Drive, Suite 160
Addison, TX 75001
Tel: 972-818-7924 Fax: 972-818-2924

Detroit
Tri-Axia Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250 Fax: 248-538-2260

Kokomo
2717 S. Albright Road
Kokomo, Indiana 46902
Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888 Fax: 949-263-1338

New York
150 Motor Parkway, Suite 202
Hauppauge, NY 11788
Tel: 631-279-5305 Fax: 631-273-5305

San Jose
Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408-436-7850 Fax: 408-436-7955

Toronto
6285 Northave Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia
Microchip Technology Australia Pty Ltd
Suite 22, 41 Rawson Street
Epping 2121, NSW
Australia
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing
Microchip Technology Consulting (Shanghai) Co., Ltd., Beijing Liaison Office
Unit 915
Beijing, 100027, No. China
Tel: 86-10-85282100 Fax: 86-10-85282104

China - Chengdu
Microchip Technology Consulting (Shanghai) Co., Ltd., Chengdu Liaison Office
Rm. 2401, 24th Floor,
Ming Xing Financial Tower
No. 88 TIDU Street
Chengdu 610016, China
Tel: 86-28-6766200 Fax: 86-28-6766599

China - Fuzhou
Microchip Technology Consulting (Shanghai) Co., Ltd., Fuzhou Liaison Office
Unit 12F, World Trade Plaza
No. 71 Wus Road
Fuzhou 350001, China
Tel: 86-591-7503500 Fax: 86-591-7503521

China - Shanghai
Microchip Technology Consulting (Shanghai) Co., Ltd.
Room 701, Bldg. B
Far East International Plaza
No. 317 Xian Xia Road
Shanghai, 200005
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060

China - Shenzhen
Microchip Technology Consulting (Shanghai) Co., Ltd., Shenzhen Liaison Office
Rm. 1315, 13/F, Shenzhen Kerry Centre,
Shenneng Road
Shenzhen 518001, China
Tel: 86-755-2350361 Fax: 86-755-2366086

Hong Kong
Microchip Technology Hongkong Ltd.
Unit 901-6, Tower 2, Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2401-1200 Fax: 852-2401-3431

India
Microchip Technology Inc.
India Liaison Office
Divyabree Chambers
1 Floor, Wing A (A3/A4)
No. 11, O'Shaugnnessy Road
Bangalore, 560 025, India
Tel: 91-80-2290061 Fax: 91-80-2290062

Japan
Microchip Technology Japan K.K.
Benex S-1 6F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa, 222-0033, Japan
Tel: 81-45-471-6166 Fax: 81-45-471-6122

Korea
Microchip Technology Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea 135-882
Tel: 82-2-554-7200 Fax: 82-2-558-5934

Singapore
Microchip Technology Singapore Pte Ltd.
200 Middle Road
#07-02 Prime Centre
Singapore, 189880
Tel: 65-334-8870 Fax: 65-334-8850

Taiwan
Microchip Technology Taiwan
11F-3, No. 207
Tung Hua North Road
Taipei, 105, Taiwan
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE

Denmark
Microchip Technology Nordic ApS
Regus Business Centre
Lautrup høj 1-3
Ballup DK-2750 Denmark
Tel: 45 4420 9895 Fax: 45 4420 9910

France
Microchip Technology SARL
Parc d’Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - 1er Etage
91900 Massy, France
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany
Microchip Technology GmbH
Gustav-Heinemann Ring 125
D-81739 Munich, Germany
Tel: 49-89-6275-144 0 Fax: 49-89-6275-2366086

Italy
Microchip Technology SRL
Centro Direzionale Colleoni
Palazzo Taurus 1 V. Le Colleoni 1
20041 Agrate Brianza
Milan, Italy
Tel: 39-039-65791-1 Fax: 39-039-6899883

United Kingdom
Arizona Microchip Technology Ltd.
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44 118 921 5869 Fax: 44 118 921 5820

01/18/02

© 2002 Microchip Technology Inc.