OVERVIEW
This document describes a PIC16C57 based code hopping automotive security system. The security system implements all the basic features found on security systems and can be changed to modify or add features as required. The code can also be moved to a higher functionality PIC® microcontroller for more I/O or code space.

FEATURES
- Code hopping alarm system
- System can handle up to six transmitters
- Learning of new transmitters
- Arm/Disarm
- Trunk release
- Car finder
- Panic
- Locking/unlocking of doors
- Door and shock sensor trigger inputs

RECOMMENDED READING
If the reader is unfamiliar with KEELOQ® Code Hopping it would be helpful to read Introduction to KEELOQ® (DS91002). This and other KEELOQ literature can be found on Microchip's Web site or from a Microchip field application engineer. The software described in this application note is available on a diskette from Microchip by ordering DS40149. A complete list of KEELOQ literature can be found at the end of the application note.
MEMORY MAP EEPROM
(16 BIT WORDS)

<table>
<thead>
<tr>
<th>Address</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>00h</td>
<td>USER0</td>
</tr>
<tr>
<td>01h</td>
<td>LRN_PTR</td>
</tr>
<tr>
<td>02h</td>
<td>BSTATUS</td>
</tr>
<tr>
<td>03h</td>
<td>SSTATUS</td>
</tr>
<tr>
<td>04h</td>
<td>TMP/CNT</td>
</tr>
<tr>
<td>05h</td>
<td>USER1</td>
</tr>
<tr>
<td>06h</td>
<td>USER2</td>
</tr>
<tr>
<td>07h</td>
<td>USER3</td>
</tr>
<tr>
<td>08h</td>
<td>USER4</td>
</tr>
<tr>
<td>09h</td>
<td>USER5</td>
</tr>
<tr>
<td>0Ah</td>
<td>DIS0</td>
</tr>
<tr>
<td>0Bh</td>
<td>DIS1</td>
</tr>
<tr>
<td>0Ch</td>
<td>DIS2</td>
</tr>
<tr>
<td>0Dh</td>
<td>DIS3</td>
</tr>
<tr>
<td>0Eh</td>
<td>DIS4</td>
</tr>
<tr>
<td>0Fh</td>
<td>DIS5</td>
</tr>
<tr>
<td>10h</td>
<td>CNT0</td>
</tr>
<tr>
<td>11h</td>
<td>CNT1</td>
</tr>
<tr>
<td>12h</td>
<td>SER0</td>
</tr>
<tr>
<td>13h</td>
<td>SER1</td>
</tr>
<tr>
<td>14h</td>
<td>KEY0</td>
</tr>
<tr>
<td>15h</td>
<td>KEY1</td>
</tr>
<tr>
<td>16h</td>
<td>KEY2</td>
</tr>
<tr>
<td>17h</td>
<td>KEY3</td>
</tr>
<tr>
<td>18h</td>
<td>CNT10</td>
</tr>
<tr>
<td>19h</td>
<td>CNT11</td>
</tr>
<tr>
<td>1Ah</td>
<td>SER10</td>
</tr>
<tr>
<td>1Bh</td>
<td>SER11</td>
</tr>
<tr>
<td>1Ch</td>
<td>KEY10</td>
</tr>
<tr>
<td>1Dh</td>
<td>KEY11</td>
</tr>
<tr>
<td>1Eh</td>
<td>KEY12</td>
</tr>
<tr>
<td>1Fh</td>
<td>KEY13</td>
</tr>
<tr>
<td>20h</td>
<td>CNT20</td>
</tr>
<tr>
<td>21h</td>
<td>CNT21</td>
</tr>
<tr>
<td>22h</td>
<td>SER20</td>
</tr>
<tr>
<td>23h</td>
<td>SER21</td>
</tr>
<tr>
<td>24h</td>
<td>KEY20</td>
</tr>
<tr>
<td>25h</td>
<td>KEY21</td>
</tr>
<tr>
<td>26h</td>
<td>KEY22</td>
</tr>
<tr>
<td>27h</td>
<td>KEY23</td>
</tr>
<tr>
<td>28h</td>
<td>CNT30</td>
</tr>
<tr>
<td>29h</td>
<td>CNT31</td>
</tr>
<tr>
<td>2Ah</td>
<td>SER30</td>
</tr>
<tr>
<td>2Bh</td>
<td>SER31</td>
</tr>
<tr>
<td>2Ch</td>
<td>KEY30</td>
</tr>
<tr>
<td>2Dh</td>
<td>KEY31</td>
</tr>
<tr>
<td>2Eh</td>
<td>KEY32</td>
</tr>
<tr>
<td>2Fh</td>
<td>KEY33</td>
</tr>
<tr>
<td>30h</td>
<td>CNT40</td>
</tr>
<tr>
<td>31h</td>
<td>CNT41</td>
</tr>
<tr>
<td>32h</td>
<td>SER40</td>
</tr>
<tr>
<td>33h</td>
<td>SER41</td>
</tr>
<tr>
<td>34h</td>
<td>KEY40</td>
</tr>
<tr>
<td>35h</td>
<td>KEY41</td>
</tr>
<tr>
<td>36h</td>
<td>KEY42</td>
</tr>
<tr>
<td>37h</td>
<td>KEY43</td>
</tr>
<tr>
<td>38h</td>
<td>CNT50</td>
</tr>
<tr>
<td>39h</td>
<td>CNT51</td>
</tr>
<tr>
<td>3Ah</td>
<td>SER50</td>
</tr>
<tr>
<td>3Bh</td>
<td>SER51</td>
</tr>
<tr>
<td>3Ch</td>
<td>KEY50</td>
</tr>
<tr>
<td>3Dh</td>
<td>KEY51</td>
</tr>
<tr>
<td>3Eh</td>
<td>KEY52</td>
</tr>
<tr>
<td>3Fh</td>
<td>KEY53</td>
</tr>
</tbody>
</table>

LRN_PTR – Learn indicator points to the next available learn position.

SSTATUS – Stores the system status.

BSTATUS – Backup copy of system status.

TMP/CNT – Stores the temporary counter for resynchronization.
FIGURE 1: ALARM STATE DIAGRAM

- State == Alarm
- State == Immob
- State == Drive
- Remote
- 30s Time-out
- Trigger
- Remote
- Learn request
- Remote
- 30s & IGN off
- Learn complete or 30s time-out return to previous
- IGN on
- Learn request
- Learn

Reset

Armed

Drive

Immob

Alarm
OPERATION

Reset
Reset initializes the I/O ports, variables, and flags. The system status is read from EEPROM and the status is restored.

Armed
When the system enters armed state, the doors are locked (activate LOCK) and the SIREN and PLIGHT are activated for 50 ms. The LED changes to a slow flash rate. If a trigger is detected (IGN, DOOR or TRIGGER) the system changes to the alarm state.

Actions upon entry:
1. Flash parking lights for 50 ms.
2. Chirp siren for 50 ms.
3. Lock doors for 500 ms.
4. Update system status.
5. LED flash.
6. Disable start.

TABLE 1: STATE CHANGE TABLE

<table>
<thead>
<tr>
<th>Condition</th>
<th>Next State</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGN high</td>
<td>Alarm</td>
</tr>
<tr>
<td>TRIG high</td>
<td>Alarm</td>
</tr>
<tr>
<td>DOOR high</td>
<td>Alarm</td>
</tr>
<tr>
<td>Panic (any button activated for 2 seconds)</td>
<td>Alarm</td>
</tr>
<tr>
<td>Remote function 1</td>
<td>Drive</td>
</tr>
<tr>
<td>Remote function 2 (trunk release)</td>
<td>Armed</td>
</tr>
<tr>
<td>Remote function 3 (car finder)</td>
<td>Armed</td>
</tr>
<tr>
<td>LEARN high</td>
<td>Learn</td>
</tr>
</tbody>
</table>

Alarm
Alarm state is entered whenever a trigger is detected in armed state. SIREN is activated and PLIGHT is turned on and off at a 1 Hz rate. If a remote is detected in this state, the system changes to drive state. After a 30-second delay, SIREN and PLIGHT will be deactivated and the system returned to armed state.

Actions upon entry:
1. Flash parking lights.
2. Siren on.
3. LED flash.
4. Update system status.
5. Disable start.

TABLE 2: STATE CHANGE TABLE

<table>
<thead>
<tr>
<th>Condition</th>
<th>Next State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panic (any button activated for 2 seconds)</td>
<td>Alarm</td>
</tr>
<tr>
<td>Remote function 1</td>
<td>Drive</td>
</tr>
<tr>
<td>Remote function 2 (trunk release)</td>
<td>Armed</td>
</tr>
<tr>
<td>30-second timeout</td>
<td>Drive</td>
</tr>
</tbody>
</table>

Drive
When the system enters drive state, the doors are unlocked (activate UNLOCK), and the SIREN and PLIGHT are activated twice for 50 ms. The IMMOB output is activated to enable the starting of the vehicle and LED is turned off. A remote signal will return the system to armed state.

Actions upon entry:
1. Flash parking lights for 50 ms.
2. Chirp siren for 50 ms.
3. Unlock doors for 500 ms.
4. Flash parking lights for 50 ms.
5. Chirp siren for 50 ms.
6. Update system status.
7. LED off.
8. Enable start.

TABLE 3: STATE CHANGE TABLE

<table>
<thead>
<tr>
<th>Condition</th>
<th>Next State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panic (any button activated for 2 seconds)</td>
<td>Alarm</td>
</tr>
<tr>
<td>Remote function 1 & IGN low</td>
<td>Armed</td>
</tr>
<tr>
<td>Remote function 1 & IGN high</td>
<td>Drive</td>
</tr>
<tr>
<td>Remote function 2 (trunk release)</td>
<td>Drive</td>
</tr>
<tr>
<td>Remote function 3 (car finder)</td>
<td>Drive</td>
</tr>
<tr>
<td>30-second timeout & IGN off</td>
<td>Immob</td>
</tr>
<tr>
<td>LEARN high</td>
<td>Learn</td>
</tr>
</tbody>
</table>

Immob
If the IGN is turned off for more than 30 seconds, the system will immobilize. The IMMOB output is turned off, and the LED is turned off. A remote signal only will change the state to armed, and a remote signal with the IGN on will return to drive state.

Actions upon entry:
1. Update system status.
2. LED off.
3. Disable start.

TABLE 4: STATE CHANGE TABLE

<table>
<thead>
<tr>
<th>Condition</th>
<th>Next State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panic (any button activated for 2 seconds)</td>
<td>Alarm</td>
</tr>
<tr>
<td>Remote function 1 & IGN low</td>
<td>Armed</td>
</tr>
<tr>
<td>Remote function 1 & IGN high</td>
<td>Drive</td>
</tr>
<tr>
<td>Remote function 2 (trunk release)</td>
<td>Immob</td>
</tr>
<tr>
<td>Remote function 3 (car finder)</td>
<td>Immob</td>
</tr>
<tr>
<td>LEARN high</td>
<td>Learn</td>
</tr>
</tbody>
</table>
Learn

A LEARN input in any state will put the system in learn mode. After learn is completed or timed out the system returns to the previous state.

Actions upon entry:
1. Update system status—set PASS1.
2. LED on.

After first transmission:
1. Update system status—set PASS2.
2. LED off.

After second transmission:
1. Update system status—set NORMAL.
2. LED on for 1 second.
3. Return to previous state.

TABLE 5: STATE CHANGE TABLE

<table>
<thead>
<tr>
<th>Condition</th>
<th>Next State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote first operation</td>
<td>Pass2</td>
</tr>
<tr>
<td>Remote second operation</td>
<td>Return to previous state</td>
</tr>
<tr>
<td>LEARN high for 8 seconds</td>
<td>Erase all transmitters</td>
</tr>
</tbody>
</table>

FUNCTIONAL MODULES

Reception

The reception routine is based on reliable algorithms used in previous implementations of KEELOQ decoders. Automatic baud rate detection is used to compensate for variations in baud rate from different encoders of a specific type as well as the difference in baud rate between different encoders (HCS200, HCS300, HCS301, HCS360, HCS361, and HCS410). The reception routine will be able to handle 56- and 66-bit transmissions. The reception routine will determine the type of transmission by the number of bits in the transmission. This routine will be the same for all implementations.

Key Generation and Decryption

Decryption is done in software in the implementation. The decryption and key generation algorithms is implemented in software. The manufacturer’s code is stored in program memory and code protected to securely store the key.

Validation

Validation consists of the following steps:
1. Checking the serial number (24 or 28 bits) against the stored transmitters.
2. Comparing the discrimination value (12 bits) against the stored discrimination value.
3. Checking that the synchronization counter falls within the first synchronization window.
4. Checking if the synchronization counter falls within the second synchronization window.
5. If found to be correct, updating the synchronization counter.

Function Interpretation

<table>
<thead>
<tr>
<th>Transmitter Button</th>
<th>Function Code</th>
<th>System Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0001</td>
<td>Arm/Disarm</td>
</tr>
<tr>
<td>2</td>
<td>0010</td>
<td>Trunk release</td>
</tr>
<tr>
<td>3</td>
<td>0011</td>
<td>Car finder</td>
</tr>
<tr>
<td>1, 2 or 3 for 2 seconds</td>
<td>00XX</td>
<td>Panic</td>
</tr>
</tbody>
</table>

Learn

The LEARN input is active high. Learning is initiated by momentarily pressing the LEARN button. The decoder uses the current learning position as a scratch pad area. This means that an unsuccessful learn will delete the information stored at that learn position. The learn indicator will not be incremented if the learn was unsuccessful. The flow chart (Figure 1) shows the learning operation.
FIGURE 2: LEARN OPERATION

1. Press Learn Button
2. LED on solid
3. Button still pressed?
 - YES
 - NO
 - Time greater than 33.6 sec.? NO
 - YES
4. First code received?
 - YES
 - NO
 - Time greater than 33.6 sec.? NO
 - YES
5. LED off
6. Time greater than 8.4 sec.?
 - YES
 - NO
7. Second code received?
 - YES
 - NO
 - Time greater than 33.6 sec.? NO
 - YES
8. Code Validated?
 - YES
 - NO
 - Learn new transmitter LED on solid for 1 second
9. LED on solid for 0.1 second
10. Exit Learn
 Turn LED off
11. END
The following checks will be performed on the received codes to determine if the transmitter is valid:

1. The first code that is received is checked for bit integrity.
2. The stored serial numbers are searched to check if a transmitter is relearned. If a relearn is taking place, that position is used. Otherwise, the position pointed to by the learn indicator will be used.
3. The serial number is stored in the current learn position and used to generate a key.
4. The hop code is decrypted and the result stored temporarily.
5. The serial number of the second code that is received will be compared to the first received serial number.
6. The second hop code is decrypted and the discrimination values compared.
7. The synchronization counters of the decrypted codes will be compared to check that they are sequential codes.
8. If all the checks pass the learn were successful, the learn indicator is incremented. Otherwise, the position is erased.

Operation

1. Press and release the LEARN button. Indicator LED will turn on to indicate learn mode.
2. Press transmitter button. The LED will turn off.
3. Press transmitter a second time. The LED will turn on for 1 second to indicate that the transmitter was learned successfully.
4. Repeat steps 1-3 to learn up to six transmitters. The seventh transmitter will overwrite the first transmitter that was learned.
5. Learn will be terminated if two nonsequential codes were received or if two acceptable codes were not decoded within 33.6 seconds. A valid learn will be indicated by the LED turning on solid for 1 second.
6. Erasing all the transmitters is accomplished by pressing and holding the LEARN button for 8.4 seconds. The LED will turn off at the end of the 8.4 seconds to indicate that the transmitters were erased. The learn indicator will be reset to the first position.
TABLE 6: DEVICE PINOUT

<table>
<thead>
<tr>
<th>PIN</th>
<th>PIC16C57 Function</th>
<th>Alarm Function</th>
<th>PIN</th>
<th>PIC16C57 Function</th>
<th>Alarm Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RTCC</td>
<td>APP select</td>
<td>28</td>
<td>MCLR</td>
<td>RESET</td>
</tr>
<tr>
<td>2</td>
<td>Vdd</td>
<td>+5V supply</td>
<td>27</td>
<td>Osc In</td>
<td>RC osc (4 MHz)</td>
</tr>
<tr>
<td>3</td>
<td>NC</td>
<td></td>
<td>26</td>
<td>Osc Out</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
<td>Ground</td>
<td>25</td>
<td>Port C Bit 7</td>
<td>NC</td>
</tr>
<tr>
<td>5</td>
<td>NC</td>
<td></td>
<td>24</td>
<td>Port C Bit 6</td>
<td>NC</td>
</tr>
<tr>
<td>6</td>
<td>Port A Bit 0</td>
<td>EEPROM DIO(3+4)</td>
<td>23</td>
<td>Port C Bit 5</td>
<td>NC</td>
</tr>
<tr>
<td>7</td>
<td>Port A Bit 1</td>
<td>EEPROM CLK (2)</td>
<td>22</td>
<td>Port C Bit 4</td>
<td>OVR</td>
</tr>
<tr>
<td>8</td>
<td>Port A Bit 2</td>
<td>EEPROM CS (1)</td>
<td>21</td>
<td>Port C Bit 3</td>
<td>LEARN</td>
</tr>
<tr>
<td>9</td>
<td>Port A Bit 3</td>
<td>RFIN</td>
<td>20</td>
<td>Port C Bit 2</td>
<td>DOOR</td>
</tr>
<tr>
<td>10</td>
<td>Port B Bit 0</td>
<td>IMMOB</td>
<td>19</td>
<td>Port C Bit 1</td>
<td>TRIG</td>
</tr>
<tr>
<td>11</td>
<td>Port B Bit 1</td>
<td>SIREN</td>
<td>18</td>
<td>Port C Bit 0</td>
<td>IGN</td>
</tr>
<tr>
<td>12</td>
<td>Port B Bit 2</td>
<td>PLIGHT</td>
<td>17</td>
<td>Port B Bit 7</td>
<td>LED</td>
</tr>
<tr>
<td>13</td>
<td>Port B Bit 3</td>
<td>NC</td>
<td>16</td>
<td>Port B Bit 6</td>
<td>TRUNK</td>
</tr>
<tr>
<td>14</td>
<td>Port B Bit 4</td>
<td>LOCK</td>
<td>15</td>
<td>Port B Bit 5</td>
<td>UNLOCK</td>
</tr>
</tbody>
</table>

TABLE 7: TIMING PARAMETERS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Typical</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Armed LED flash rate</td>
<td>1</td>
<td>per second</td>
</tr>
<tr>
<td>Siren time-out</td>
<td>33</td>
<td>second</td>
</tr>
<tr>
<td>Drive time-out</td>
<td>33</td>
<td>second</td>
</tr>
<tr>
<td>Learn time-out</td>
<td>33</td>
<td>second</td>
</tr>
<tr>
<td>All erase</td>
<td>8</td>
<td>second</td>
</tr>
<tr>
<td>LOCK, UNLOCK, TRUNK activation</td>
<td>500</td>
<td>ms</td>
</tr>
<tr>
<td>Siren chirp (arm & disarm)</td>
<td>50</td>
<td>ms</td>
</tr>
<tr>
<td>Parking light (arm & disarm)</td>
<td>50</td>
<td>ms</td>
</tr>
<tr>
<td>Parking light flash rate (siren)</td>
<td>1</td>
<td>per second</td>
</tr>
<tr>
<td>Panic</td>
<td>2</td>
<td>seconds</td>
</tr>
</tbody>
</table>
FIGURE 3: CIRCUIT DIAGRAM
ADDITIONAL INFORMATION

Microchip’s Secure Data Products are covered by some or all of the following:
Code hopping encoder patents issued in European countries and U.S.A.
Secure learning patents issued in European countries, U.S.A. and R.S.A.

REVISION HISTORY

Revision C (May 2011)

• Added new section Additional Information
• Minor formatting and text changes were incorporated throughout the document
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks
The Microchip name and logo, the Microchip logo, dsPIC, KEELOG, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC32 logo, rPIC and Uni/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.
Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICWorks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, tTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rLLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.
SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.
All other trademarks mentioned herein are property of their respective companies.
© 2011, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.
Printed on recycled paper.

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KezLocr® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
Worldwide Sales and Service

AMERICAS
- **Corporate Office**
 - 2355 West Chandler Blvd.
 - Chandler, AZ 85224-6199
 - Tel: 480-792-7200
 - Fax: 480-792-7277
 - Technical Support: http://www.microchip.com/support
- **Atlanta**
 - Duluth, GA
 - Tel: 678-957-9614
 - Fax: 678-957-1455
- **Boston**
 - Westborough, MA
 - Tel: 774-760-0087
 - Fax: 774-760-0088
- **Chicago**
 - Itasca, IL
 - Tel: 630-285-0071
 - Fax: 630-285-0075
- **Cleveland**
 - Independence, OH
 - Tel: 216-447-0464
 - Fax: 216-447-0643
- **Dallas**
 - Addison, TX
 - Tel: 972-818-7423
 - Fax: 972-818-2924
- **Detroit**
 - Farmington Hills, MI
 - Tel: 248-538-2250
 - Fax: 248-538-2260
- **Indianapolis**
 - Noblesville, IN
 - Tel: 317-773-8323
 - Fax: 317-773-5453
- **Los Angeles**
 - Mission Viejo, CA
 - Tel: 949-462-9523
 - Fax: 949-462-9608
- **Santa Clara**
 - Santa Clara, CA
 - Tel: 408-961-6444
 - Fax: 408-961-6445
- **Toronto**
 - Mississauga, Ontario, Canada
 - Tel: 905-673-0699
 - Fax: 905-673-6509

ASIA/PACIFIC
- **Asia Pacific Office**
 - Suites 3707-14, 37th Floor
 - Tower 6, The Gateway
 - Harbour City, Kowloon
 - Hong Kong
 - Tel: 852-2401-1200
 - Fax: 852-2401-3431
- **Australia - Sydney**
 - Tel: 61-2-9868-6733
 - Fax: 61-2-9868-6755
- **China - Beijing**
 - Tel: 86-10-8569-7000
 - Fax: 86-10-8528-2104
- **China - Chengdu**
 - Tel: 86-28-8665-5511
 - Fax: 86-28-8665-7889
- **China - Chongqing**
 - Tel: 86-23-8980-9588
 - Fax: 86-23-8980-9500
- **China - Hangzhou**
 - Tel: 86-571-2819-3180
 - Fax: 86-571-2819-3189
- **China - Hong Kong SAR**
 - Tel: 852-2401-1200
 - Fax: 852-2401-3431
- **China - Nanjing**
 - Tel: 86-25-8473-2460
 - Fax: 86-25-8473-2470
- **China - Qingdao**
 - Tel: 86-532-8502-7355
 - Fax: 86-532-8502-7205
- **China - Shanghai**
 - Tel: 86-21-5407-5533
 - Fax: 86-21-5407-5066
- **China - Shenyang**
 - Tel: 86-24-2334-2829
 - Fax: 86-24-2334-2393
- **China - Shenzhen**
 - Tel: 86-755-8203-2660
 - Fax: 86-755-8203-1760
- **China - Wuhan**
 - Tel: 86-27-5980-5300
 - Fax: 86-27-5980-5118
- **China - Xian**
 - Tel: 86-29-8833-7252
 - Fax: 86-29-8833-7256
- **China - Xiamen**
 - Tel: 86-352-2388138
 - Fax: 86-352-2388130
- **China - Zhuhai**
 - Tel: 86-756-3210040
 - Fax: 86-756-3210049

ASIA/PACIFIC
- **India - Bangalore**
 - Tel: 91-80-3090-4444
 - Fax: 91-80-3090-4123
- **India - New Delhi**
 - Tel: 91-11-4160-8631
 - Fax: 91-11-4160-8632
- **India - Pune**
 - Tel: 91-20-2566-1512
 - Fax: 91-20-2566-1513
- **Japan - Yokohama**
 - Tel: 81-45-741-6166
 - Fax: 81-45-741-6122
- **Korea - Daegu**
 - Tel: 82-53-744-4301
 - Fax: 82-53-744-4302
- **Korea - Seoul**
 - Tel: 82-2-554-7200
 - Fax: 82-2-558-5932 or 82-2-558-5934
- **Malaysia - Kuala Lumpur**
 - Tel: 60-3-6201-9857
 - Fax: 60-3-6201-9859
- **Malaysia - Penang**
 - Tel: 60-4-227-8870
 - Fax: 60-4-227-4068
- **Philippines - Manila**
 - Tel: 63-2-634-9065
 - Fax: 63-2-634-9069
- **Singapore**
 - Tel: 65-6334-8870
 - Fax: 65-6334-8850
- **Taiwan - Hsin Chu**
 - Tel: 886-3-6578-300
 - Fax: 886-3-6578-370
- **Taiwan - Kaohsiung**
 - Tel: 886-7-213-7830
 - Fax: 886-7-330-9305
- **Taiwan - Taipei**
 - Tel: 886-2-2500-6610
 - Fax: 886-2-2508-0102
- **Thailand - Bangkok**
 - Tel: 66-2-694-1351
 - Fax: 66-2-694-1350

EUROPE
- **Austria - Wels**
 - Tel: 43-7242-2244-39
 - Fax: 43-7242-2244-393
- **Denmark - Copenhagen**
 - Tel: 45-4450-2828
 - Fax: 45-4485-2829
- **France - Paris**
 - Tel: 33-1-69-53-63-20
 - Fax: 33-1-69-30-90-79
- **Germany - Munich**
 - Tel: 49-89-627-144-0
 - Fax: 49-89-627-144-44
- **Italy - Milan**
 - Tel: 39-0331-742611
 - Fax: 39-0331-466781
- **Netherlands - Drunen**
 - Tel: 31-416-690399
 - Fax: 31-416-690340
- **Spain - Madrid**
 - Tel: 34-91-708-08-90
 - Fax: 34-91-708-08-91
- **UK - Wokingham**
 - Tel: 44-118-921-5869
 - Fax: 44-118-921-5820

05/02/11