INTRODUCTION

The PICmicro™ families of RISC microcontrollers are designed to provide advanced performance and a cost-effective solution for a variety of applications. To address these applications, there is the PIC16CXXX microcontroller family of products. This family has numerous peripheral and special features to better address user applications.

The feature this application note will focus on is the Interrupt on Change of the PORTB pins. This “interrupt on change” is triggered when any of the RB7:RB4 pins, configured as an input, changes level. When this interrupt is used in conjunction with the software programmable weak internal pull-ups, a direct interface to a keypad is possible. This is shown in application note AN552, Implementing Wake-up on Key Stroke. Another way to use the “interrupt on change” feature would be as additional external interrupt sources. This allows PIC16CXXX devices to support multiple external interrupts, in addition to the built-in external interrupt on the INT pin.

This application note will discuss some of the issues in using PORTB as additional external interrupt pins, and will show some examples. These examples can be easily modified to suit your particular needs.

USING A PORTB INPUT FOR AN EXTERNAL INTERRUPT

The interrupt source(s) cannot simply be directly connected to the PORTB pins, and expect an interrupt to occur the same as on the interrupt (INT) pin. To develop the microcontrollers hardware/software to act as an interrupt by an external signal, we must know the characteristics of the external signal. After we know this, we can determine the best way to structure the program to handle this signal. The characteristics that we need to consider when developing the interrupt include:

1. The rising edge and falling edges.
2. The pulse width of the interrupt trigger (high time / low time).

It is easy to understand the need of knowing about which edge triggers the interrupt service routine for the external interrupt. This allows one to ensure that the interrupt service routine is only entered for the desired edge, with all other edges ignored. Not so clear is the pulse width of the interrupt's trigger. This characteristic helps determine the amount of additional overhead that the software routine may need.
Figure 1 shows the two cases for the interrupt signal versus the time to complete the interrupt service routine. The first waveform is when the signal makes the low-to-high-to-low transitions before the interrupt service routine has completed (interrupt flag cleared). When the interrupt flag has been cleared, the interrupt signal has already returned to the inactive level. The next transition of the signal is due to another interrupt request. An interrupt signal with this characteristic will be called a small pulse width signal.

The second waveform is when the signal only makes the low-to-high transitions before the interrupt service routine has completed (interrupt flag cleared). The next transition (high-to-low) will return the interrupt signal to the inactive level. This will generate a “false” interrupt, that will need to be cleared. Then the following transition (low-to-high) will be a “true” interrupt. An interrupt signal with this characteristic will be called a wide pulse width signal.

An interrupt pulse with a small pulse width requires less overhead than a wide pulse width. A small pulse width signal must be less than the minimum execution time of the interrupt service routine, while a wide pulse width must be greater than the maximum time through the interrupt service routine.

Example 1 shows a single interrupt source on PORTB (RB7), which executes the interrupt service routine on a rising edge. The interrupt source has a small pulse width. In this case, since the interrupt pulse width is small, the pulse has gone high and then low again before PORTB is read to end the mismatch condition. So when PORTB is read it will read a low signal and will again be waiting for the rising edge transition.

EXAMPLE 1: SINGLE INTERRUPT WITH A SMALL PULSE WIDTH

PER_INT BTFSS INTCON, RBIF ; PortB interrupt?
 GOTO OTHER_INT ; Other interrupt
 : ; Do task for INT on RB?
 : ;
CLR_RBINTF MOVF PORTB, 1 ; Read PortB (to itself) to end
 BCF INTCON, RBIF ; mismatch condition
 ; Clear the RB interrupt flag.
 RETFI ; Return from interrupt
OTHER_INT : ; Do what you need to here
 : ;
 RETFI ; Return from interrupt
Example 2 shows a single interrupt source on PORTB (RB7), which executes the interrupt service routine on a rising edge. The interrupt source has a wide pulse width. In this case since the interrupt pulse width is large, the pulse is still high before PORTB is read to end the mismatch condition. So when PORTB is read it will read a high signal and will generate an interrupt on the next falling edge transition (which should be ignored).

EXAMPLE 2: SINGLE INTERRUPT WITH A WIDE PULSE WIDTH

```asm
PER_INT  BTFSS INTCON, RBIF   ; PortB interrupt?
       GOTO OTHER_INT          ; Other interrupt
BTFSC PORTB, RB7             ; Check for rising edge
       GOTO CLR_RBINTF        ; Falling edge, clear PortB int
                          ; flag
CLR_RBINTF MOVF PORTB, 1    ; Read PortB (to itself) to end
                          ; mismatch condition
                          ; Do task for INT on RB7
       BCF INTCON, RBIF       ; Clear the RB interrupt flag.
       RETFIE                ; Return from interrupt
OTHER_INT                   ; Do what you need to here
       RETFIE                ; Return from interrupt
```

Example 3 shows an interrupt on change with the interrupt source on PORTB (RB7). This executes the interrupt service routine on both edges. The interrupt source must have a minimum pulse width to ensure that both edges can be “seen”. The minimum pulse width is the maximum time from the interrupt edge to the reading of PORTB and clearing the interrupt flag.

EXAMPLE 3: INTERRUPT ON CHANGE

```asm
PER_INT  BTFSS INTCON, RBIF   ; PortB interrupt?
       GOTO OTHER_INT          ; Other interrupt
CLR_RBINTF MOVF PORTB, 1    ; Read PortB (to itself) to end
                          ; mismatch condition
       BCF INTCON, RBIF       ; Clear the RB interrupt flag.
                          ; Do task for INT on RB7
       RETFIE                ; Return from interrupt
OTHER_INT                   ; Do what you need to here
       RETFIE                ; Return from interrupt
```
USING PORTB INPUTS FOR MULTIPLE INTERRUPTS

The previous examples have been for a single external interrupt on PORTB. This can be extended to support up to four external interrupts. To do this requires additional software overhead, to determine which of the PORTB pins (RB7:RB4) caused the interrupt. Care should be taken in the software to ensure that no interrupts are lost.

In this example, the interrupt sources on RB7, RB5, and RB4 have a small pulse width, while the interrupt source on pin RB6 is wide and should cause a trigger on the rising edge.

EXAMPLE 4: MULTIPLE INTERRUPTS WITH DIFFERENT PULSE WIDTHS

PER_INT BTFSS INTCON, RBIF ; PortB interrupt?
GOTO OTHER_INT ; Other interrupt
;
; PortB change interrupt has occurred. Must determine which pin caused
; interrupt and do appropriate action. That is service the interrupt,
; or clear flags due to other edge.
;
MOVF PORTB, 0 ; Move PortB value to the W register
; This ends mismatch conditions
MOVWF TEMP ; Need to save the PortB reading.
XORWF LASTPB, 1 ; XOR last PortB value with the new
; PortB value.

CK_RB7 BTFSC LASTPB, RB7 ; Did pin RB7 change
CALL RB7_CHG ; RB7 changed and caused the interrupt

CK_RB6 BTFSC LASTPB, RB6 ; Did pin RB6 change
CALL RB6_CHG ; RB6 changed and caused the interrupt

CK_RB5 BTFSC LASTPB, RB5 ; Did pin RB5 change
CALL RB5_CHG ; RB5 changed and caused the interrupt

CK_RB4 BTFSC LASTPB, RB4 ; Did pin RB4 change
GOTO RB4_CHG ; RB4 changed and caused the interrupt
;
RB7_CHG : ; Do task for INT on RB7
: ;
RETURN

RB6_CHG BTFSC PORTB, RB6 ; Check for rising edge
RETURN ; Falling edge, Ignore
: ; Do task for INT on RB6
:
RETURN

RB5_CHG : ; Do task for INT on RB5
: ;
RETURN

RB4_CHG : ; Do task for INT on RB4
: ;

CLR_RBINTF MOVF TEMP, 0 ; Move the PortB read value to the
MOVWF LASTPB ; register LASTPB
BCF INTCON, RBIF ; Clear the RB interrupt flag.
RETFIE ; Return from interrupt
;
OTHER_INT : ; Do what you need to here
: ;
RETFIE ; Return from interrupt

SUMMARY

The PORTB interrupt on change feature is both a very convenient method for direct interfacing to an external keypad, with no additional components, but is also versatile in its uses the ability to add up to four additional external interrupts. Of course hybrid solutions are also possible. That is, for example, using PORTB<6:1> as a 3x3 keypad, with PORTB<7> as an external interrupt and PORTB<0> as a general purpose I/O. The flexibility of this feature allows the user to implement a best fit design for the application.
Note the following details of the code protection feature on PICmicro® MCUs.

- The PICmicro family meets the specifications contained in the Microchip Data Sheet.
- Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet. The person doing so may be engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable".
- Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our product.

If you have any further questions about this matter, please contact the local sales office nearest to you.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip’s products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademark names and logos are the property of their respective companies, trademark holders and/or registrants.

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, dsPIC® code hopping devices, Serial EEPROMs and microperipheral products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001 certified.
Note the following details of the code protection feature on PICmicro® MCUs.

- The PICmicro family meets the specifications contained in the Microchip Data Sheet.
- Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet. The person doing so may be engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable”.
- Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our product.

If you have any further questions about this matter, please contact the local sales office nearest to you.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip’s products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks
The Microchip name and logo, the Microchip logo, FilterLab, KEELOQ, microID, MPLAB, PIC, PICmicro, PICMASTER, PICSTART, PRO MATE, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, MXDEV, PICC, PICDEM, PICDEM.net, rPIC, Select Mode and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2002, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.
WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office
2335 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200 Fax: 480-792-7277
Technical Support: 480-792-7627
Web Address: http://www.microchip.com

Rocky Mountain
2335 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7966 Fax: 480-792-7456

Atlanta
500 Sugar Mill Road, Suite 200B
Atlanta, GA 30350
Tel: 404-859-6417 Fax: 703-620-9529

Boston
2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848 Fax: 978-692-3821

Chicago
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071 Fax: 630-285-0075

Dallas
4570 Westgrove Drive, Suite 160
Addison, TX 75001
Tel: 972-818-7923 Fax: 972-818-7924

Detroit
Tri-Aria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250 Fax: 248-538-2260

Kokomo
2767 S. Albright Road
Kokomo, Indiana 46902
Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888 Fax: 949-263-1889

New York
150 Motor Parkway, Suite 202
Hauppauge, NY 11788
Tel: 631-273-5305 Fax: 631-273-5306

San Jose
Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408-436-7950 Fax: 408-436-7955

Toronto
6285 Northam Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia
Microchip Technology Australia Pty Ltd
Suite 22, 41 Rawson Street
Epping 2121, NSW
Australia
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing
Microchip Technology Consulting (Shanghai) Co., Ltd., Beijing Liaison Office
Unit 915
Beihai Wai Tai Bldg.
No. 6 Chaoyangmen Beidajie
Beijing, 100027, No. China
Tel: 86-10-85282100 Fax: 86-10-85282104

China - Chengdu
Microchip Technology Consulting (Shanghai) Co., Ltd., Chengdu Liaison Office
Rm. 2401, 24th Floor,
Ming Xing Financial Tower
No. 88 TIDU Street
Chengdu 610016, China
Tel: 86-28-6766200 Fax: 86-28-6766599

China - Fuzhou
Microchip Technology Consulting (Shanghai) Co., Ltd., Fuzhou Liaison Office
Unit 711 World Trade Plaza
Fuzhou 350001, China
Tel: 86-591-7503506 Fax: 86-591-7503521

China - Shanghai
Microchip Technology Consulting (Shanghai) Co., Ltd., Shanghai Liaison Office
Room 701, Bldg. B
Far East International Plaza
No. 317 Xian Xian Road
Shanghai, 200005
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060

China - Shenzhen
Microchip Technology Consulting (Shanghai) Co., Ltd., Shenzhen Liaison Office
Rm. 2401, 24th Floor,
Ming Xing Financial Tower
No. 88 TIDU Street
Shenzhen 518001, China
Tel: 86-755-2350361 Fax: 86-755-2356086

Hong Kong
Microchip Technology Hong Kong Ltd.
Unit 901-6, Tower 2, Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2401-1200 Fax: 852-2401-3431

India
Microchip Technology India Ltd.
India Liaison Office
Divyasree Chambers
1 Floor, Wing A (A3/A4)
No. 11, O’Shaughnessy Road
Bangalore, 560 025, India
Tel: 91-80-2290061 Fax: 91-80-2290062

Japan
Microchip Technology Japan K.K.
Benex S-1 6F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa, 222-0033, Japan
Tel: 81-45-471-6166 Fax: 81-45-471-6122

Korea
Microchip Technology Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea 135-882
Tel: 82-2-554-7200 Fax: 82-2-558-5934

Singapore
Microchip Technology Singapore Pte Ltd.
200 Middle Road
#07-02 Prime Centre
Singapore, 188980
Tel: 65-334-8870 Fax: 65-334-8850

Taiwan
Microchip Technology Taiwan
7F-3, No. 207
Tung Hua North Road
Taipei, 105, Taiwan
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE

Denmark
Microchip Technology Nordic ApS
Regus Business Centre
Lautrup høj 1-3
Ballerrup DK-2750 Denmark
Tel: 45 4420 9895 Fax: 45 4420 9910

France
Microchip Technology SARL
Parc d’Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - 1er Etage
91300 Massy, France
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany
Microchip Technology GmbH
Gustav-Heinemann Ring 125
D-81739 Munich, Germany
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44

Italy
Microchip Technology SRL
Centro Direzionale Colleoni
Palazzo Taurus 1 V. Le Colleoni 1
20041 Agrate Brianza
Milan, Italy
Tel: 39-039-65791-1 Fax: 39-039-65791-1

United Kingdom
Arizona Microchip Technology Ltd.
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44 118 921 5869 Fax: 44-118 921-5820

© 2002 Microchip Technology Inc.