Pulse Width Modulation (PWM) modules, which produce basically digital waveforms, can be used as cheap Digital-to-Analog (D/A) converters only a few external components. A wide variety of microcontroller applications exist that need analog output but do not require high resolution D/A converters. Some speech applications (talk back units, speech synthesis systems in toys, etc.) also do not require high resolution D/A converters. For these applications, Pulse Width Modulated outputs may be converted to analog outputs.

Conversion of PWM waveforms to analog signals involves the use of analog low-pass filters. This application note describes the design criteria of the analog filters necessary and the requirements of the PWM frequency. Later in this application note, a simple RC low-pass filter is designed to convert PWM speech signals of 4 kHz bandwidth.

In a typical PWM signal, the base frequency is fixed, but the pulse width is a variable. The pulse width is directly proportional to the amplitude of the original unmodulated signal. In other words, in a PWM signal, the frequency of the waveform is a constant while the duty cycle varies (from 0% to 100%) according to the amplitude of the original signal. A typical PWM signal is shown in Figure 1.

FIGURE 1: A TYPICAL PWM WAVEFORM

A Fourier analysis of a typical PWM signal (such as the one depicted in Figure 1) shows that there is a strong peak at frequency $F_n = 1/T$. Other strong harmonics also exist at $F = K/T$, where K is an integer. These peaks are unwanted noise and should be eliminated. This requires that the PWM signal be low-pass filtered, thus eliminating these inherent noise components as shown in Figure 2.

The band-width of the desired signal should be

$$F_{bw} \ll (F_{PWM} = 1/T)$$

If F_{bw} is selected such that $F_{bw} = F_{PWM}$, then the external low-pass filter should be a brick-wall type filter. Brick-wall type analog filters are very difficult and expensive to build. So, for practical purpose, the external low-pass filter should be as shown in Figure 3.

FIGURE 2: FREQUENCY SPECTRUM OF A PWM SIGNAL

This means,

$$F_{bw} \ll F_{PWM}$$

or

$$F_{PWM} \gg F_{bw}$$

$$=> F_{PWM} = K \cdot F_{bw} \quad (1)$$

where, K is a constant such that $K \gg 1$

The value of K should be chosen dependant upon the number dB the inherent fundamental noise component of PWM will be rejected. An example follows:

Example: It is required to design a simple RC low-pass filter to obtain an analog output from a pulse width modulated speech signal of bandwidth 4 kHz.

From eqn (1), choosing arbitrarily $K = 5$,

$$F_{PWM} = K \cdot f_{bw} = 5 \times 4 kHz = 20 kHz.$$
FIGURE 4: RC FILTER CONNECTED TO PWM1 OF PIC17C42

Choosing, the -3 dB point at 4 kHz, and using the relation $RC = \frac{1}{2\pi f}$, we get $R = 4$ kΩ, if C is chosen as 0.01 µF:

- $R = 4.0$ kΩ
- $C = 0.01$ µF

Since the PWM frequency is selected as 20 kHz, the fundamental noise peak to be filtered is at 20 kHz. Now, let’s calculate by how many dB the main peak of PWM signal is cut-off at 20 kHz:

$$(dB) 20 \text{ kHz} = -10 \log[1 + (2\pi fRC)^2] = -14 \text{ dB}.$$
Note the following details of the code protection feature on PICmicro® MCUs.

- The PICmicro family meets the specifications contained in the Microchip Data Sheet.
- Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet. The person doing so may be engaged in theft of intellectual property.
- MicroChip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable”.
- Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our product.

If you have any further questions about this matter, please contact the local sales office nearest to you.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, FilterLab, KEELOQ, microID, MPLAB, PIC, PICmicro, PICMASTER, PICSTART, PRO MATE, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, MXDEV, PICC, PICDEM, PICDEM.net, rFIC, Select Mode and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2002, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.
AMERICAS

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200 Fax: 480-792-7277
Technical Support: 480-792-7627
Web Address: http://www.microchip.com

Rocky Mountain
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7966 Fax: 480-792-7456

Atlanta
500 Sugar Mill Road, Suite 2008
Atlanta, GA 30350
Tel: 770-640-0034 Fax: 770-640-0307

Boston
2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848 Fax: 978-692-3821

Chicago
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071 Fax: 630-285-0075

Dallas
4570 Westgrove Drive, Suite 160
Addison, TX 75001
Tel: 972-818-7924 Fax: 972-818-2924

Detroit
Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250 Fax: 248-538-2260

Kokomo
2767 S. Albright Road
Kokomo, Indiana 46902
Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888 Fax: 949-263-1338

New York
150 Motor Parkway, Suite 202
Hauppauge, NY 11788
Tel: 631-273-5305 Fax: 631-273-5335

San Jose
Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408-436-7950 Fax: 408-436-7955

Toronto
6285 Northam Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia
Microchip Technology Australia Pty Ltd
Suite 22, 41 Rawson Street
Epping 2121, NSW
Australia
Tel: 61-2-9886-6733 Fax: 61-2-9886-6755

China - Beijing
Microchip Technology Consulting (Shanghai) Co., Ltd., Beijing Liaison Office
Unit 915
Bei Hui Wan Tai Bldg.
No. 6 Chaoyangmen Beidajie
Beijing, 100027, No. China
Tel: 86-10-85282100 Fax: 86-10-85282104

China - Chengdu
Microchip Technology Consulting (Shanghai) Co., Ltd., Chengdu Liaison Office
Rm. 2401, 24th Floor,
Ming Xing Financial Tower
No. 88 TIDU Street
Chengdu 610016, China
Tel: 86-28-6766200 Fax: 86-28-6766599

China - Fuzhou
Microchip Technology Consulting (Shanghai) Co., Ltd., Fuzhou Liaison Office
No. 71 Wusi Road
Fuzhou 350001, China
Tel: 86-591-7503506 Fax: 86-591-7503521

China - Shanghai
Microchip Technology Consulting (Shanghai) Co., Ltd., World Trade Plaza
No. 787 Waiyuan Road
Shanghai 200001, China
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060

Hong Kong
Microchip Technology Hong Kong Ltd.
Unit 901-6, Tower 2, Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2401-1200 Fax: 852-2401-3431

India
Microchip Technology Inc.
India Liaison Office
Divyacore Chambers
1 Floor, Wing A (A3/A4)
No. 11, O’Shaughnessy Road
Bangalore, 560 025, India
Tel: 91-80-2290061 Fax: 91-80-2290062

Japan
Microchip Technology Japan K.K.
Benex S-1 6F
3-18-20, Shinoyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa, 222-0033, Japan
Tel: 81-45-471-6166 Fax: 81-45-471-6122

Korea
Microchip Technology Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea 135-882
Tel: 82-2-554-7200 Fax: 82-2-558-5934

Singapore
Microchip Technology Singapore Pte Ltd.
200 Middle Road
#07-02 Prime Centre
Singapore, 189890
Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan
Microchip Technology Taiwan
11F-3, No. 207
Tung Hua North Road
Taipei, 105, Taiwan
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE

Denmark
Microchip Technology Nordic ApS
Lautrup høj 1-3
Ballup DK-2750 Denmark
Tel: 45 4420 9895 Fax: 45 4420 9910

France
Microchip Technology SARL
Parc d’Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - l\'er Etage
91300 Massy, France
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany
Microchip Technology GmbH
Gustav-Heinemann Ring 125
D-81739 Munich, Germany
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44

Italy
Microchip Technology SRL
Centro Direzionale Colleoni
Palazzo Tauro 1 V. Le Colleoni 1
20041 Agrate Brianza
Milan, Italy
Tel: 39-039-65791-1 Fax: 39-039-689983

United Kingdom
Microchip Technology Ltd.
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44 118 921 5869 Fax: 44-118 921-5820

© 2002 Microchip Technology Inc.