INTRODUCTION

X-10 is a communication protocol designed for sending signals over 120 VAC wiring. X-10 uses 120 kHz bursts timed with the power line zero-crossings to represent digital information. Plug-in modules available from various vendors enable users to create home automation systems by using the AC wiring already installed within a home. Readers who would like an overview of the X-10 signal format may refer to Appendix A.

PIC® microcontrollers can easily be used in conjunction with X-10 technology to create home automation applications. The specific PIC microcontroller (MCU) used should be selected based on RAM, ROM, operating frequency, peripheral, and cost requirements of the particular application. The PIC16F877A was selected for this application because of its versatility as a general purpose microcontroller, its Flash program memory (for ease of development), data EEPROM and ample I/O.

This application note discusses the implementation of X-10 on a PIC MCU to create a home controller that can both send and receive X-10 signals. The reader may implement the home controller as is, or adapt the circuits and firmware to other applications. A library of X-10 functions is provided to facilitate development of other X-10 applications using PIC MCUs (see Appendix E).

Operating instructions for the home controller are included in Appendix B.

HARDWARE OVERVIEW

The home controller application described in this application note allows the user to program on and off times for up to sixteen devices, using a 2 x 16 liquid crystal display and five push buttons. A built-in light sensor can be used to turn on lights at dusk, and turn them off at dawn.

The home controller is designed to facilitate experimentation with home automation using the PIC16F877A. In addition to the PIC16F877A, the board will accept any other PIC MCU that shares the same pinout, such as the PIC18F452. Therefore, experimenters may expand on the application using the higher performance of the PIC18 family of parts without changing the hardware.

With care, engineers and home control enthusiasts can experiment with home automation using the MPLAB ICD 3 development tool. However, proper circuit isolation precautions must be taken to avoid damage to your computer or development tools. See Figure 1 and the warning note!

WARNING: VSS or ground on the application circuit is tied to neutral of the 120 VAC. To safely connect your development tools or computer to the home controller, you must power it through an isolation transformer and leave wall ground (the green wire in most cases) disconnected. Any test instruments (such as an oscilloscope) that you hook up to the application circuit, should be powered through the isolation transformer as well, with wall ground disconnected. In addition, the entire circuit should be enclosed within a suitable case to prevent unintentional contact with the mains voltage!

FIGURE 1: TEST SETUP WHEN USING DEVELOPMENT TOOLS

![Test Setup Diagram](image-url)
HARDWARE DESCRIPTION

An overview of the home controller application hardware is shown in Figure 2.

The hardware functionality of X-10 circuitry can be divided into four functional blocks:
- Zero-crossing detector
- 120 kHz carrier detector
- 120 kHz signal generator
- Transformerless power supply

There are several application functions that are not directly associated with the X-10 interface. User interface functions are accomplished with an LCD display and five push buttons. A real-time clock is created using Timer1 and an external 32 kHz oscillator. User modified control data, such as unit on and off times, are stored in the PIC MCU’s built-in EEPROM. A light sensor and load switch are also used in this application.

FIGURE 2: APPLICATION BLOCK DIAGRAM
A summary of resource use can be seen in Table 1. Details of the functional sections are discussed below.

Table 1: Summary of Microcontroller Resource Use

<table>
<thead>
<tr>
<th>Resource</th>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>External interrupt on RB0</td>
<td>Zero-crossing Detect</td>
<td>Generates one interrupt every zero-crossing.</td>
</tr>
<tr>
<td>CCP1/Timer2 in PWM mode</td>
<td>120 kHz Modulation</td>
<td>TRISC is used to enable/disable 120 kHz output. Main oscillator is 7.680 MHz.</td>
</tr>
<tr>
<td>Timer2 interrupt through postscaler</td>
<td>Triac Dimmer Timing</td>
<td>Generates dimmer timing increments for controlling Triac.</td>
</tr>
<tr>
<td>Timer1 interrupt</td>
<td>Real-time Clock</td>
<td>Used as time keeping clock and key scan clock. One interrupt/25 ms, 40 interrupts/1 sec.</td>
</tr>
<tr>
<td>Timer0 interrupt</td>
<td>120 kHz Envelope Timing</td>
<td>Times duration of 1 ms bursts and onset of second and third phase bursts.</td>
</tr>
<tr>
<td>ADC</td>
<td>Key Sensor</td>
<td>Used to detect dawn and dusk.</td>
</tr>
<tr>
<td>PORTB<1:5></td>
<td>Reserved for ICD</td>
<td>Isolation precautions required. See warning note!</td>
</tr>
<tr>
<td>PORTD<0:7></td>
<td>LCD Data pins</td>
<td>8 data lines for LCD.</td>
</tr>
<tr>
<td>PORTE<0:2></td>
<td>LCD Control pins</td>
<td>3 control lines for LCD.</td>
</tr>
<tr>
<td>DATA EEPROM</td>
<td>Non-volatile Control Data Storage</td>
<td>Stores on and off times and other user programmable information.</td>
</tr>
</tbody>
</table>

Zero-Crossing Detector

In X-10, information is timed with the zero-crossings of the AC power. A zero-crossing detector is easily created by using the external interrupt on the RB0 pin and just one external component, a resistor, to limit the current into the PIC MCU (see Figure 3).

In the United States, Vrms = 117 VAC, and the peak line voltage is 165V. If we select a resistor of 5 MΩ, \(I_{peak} = 165V / 5 \text{ MΩ} = 33 \mu A \), which is well within the current capacity of a PIC MCU I/O pin.

Input protection diodes (designed into the PIC MCU I/O pins) clamp any voltage higher than VDD or lower than VSS. Therefore, when the AC voltage is in the negative half of its cycle, the RB0 pin will be clamped to VSS - 0.6V. This will be interpreted as a logic zero. When the AC voltage rises above the input threshold, the logical value will become a ‘1’.

In this application, RB0 is configured for external interrupts, and the input buffer is a Schmitt trigger. This makes the input threshold 0.8 VDD = 4V on a rising edge and 0.2 VDD = 1V on a falling edge.

Upon each interrupt, the Interrupt Edge Select bit within the OPTION_REG register is toggled so that an interrupt occurs on every zero-crossing. Using the following equation, it is possible to calculate when the pin state will change relative to the zero-crossing:

\[V = V_{pk} \sin(2\pi f t) \]

where \(V_{pk} = 165V \) and \(f = 60 \text{ Hz} \)

On a rising edge, RB0 will go high about 64 \(\mu \)s after the zero-crossing, and on a falling edge, it will go low about 16 ms before the zero-crossing.

More information on interfacing PIC MCUs to AC power lines can be found in the application note AN521, “Interfacing to AC Power Lines”, which is available for download from the Microchip web site.

Figure 3: Zero-Crossing Detector

![Figure 3: Zero-Crossing Detector](image.png)
120 kHz Carrier Detector

To receive X-10 signals, it is necessary to detect the presence of the 120 kHz signal on the AC power line. This is accomplished with a decoupling capacitor, a high-pass filter, a tuned amplifier, and an envelope detector. The components of the carrier detector are illustrated in Figure 4.

Because the impedance of a capacitor is:
\[Z_c = \frac{1}{2\pi f C} \]

a 0.1 \(\mu \)F capacitor presents a low impedance (13 \(\Omega \)) to the 120 kHz carrier frequency, but a high impedance (26.5 k\(\Omega \)) to the 60 Hz power line frequency. This high-pass filter allows the 120 kHz signal to be safely coupled to the 60 Hz power line, and it doubles as the coupling stage of the 120 kHz carrier generator described in the next section.

Since the 120 kHz carrier frequency is much higher than the 60 Hz power line frequency, it is straightforward to design an RC filter that will pass the 120 kHz signal and completely attenuate the 60 Hz. A high-pass filter forms the first stage of the High-Pass Filter and Tuned Amplifier Block, shown on sheet 5 of the schematics in Appendix C.

For a simple high-pass filter, the -3 db breakpoint is:
\[f_{3 \, \text{db}} = \frac{1}{2\pi R C} \]

For \(C = 150 \text{ pF} \) and \(R = 33 \text{ k}\Omega \),
\[f_{3 \, \text{db}} = \frac{1}{2\pi \times 150 \text{ pF} \times 33 \text{ k}\Omega} = 32 \text{ kHz} \]

This \(f_{3 \, \text{db}} \) point assures that the 60 Hz signal is completely attenuated, while the 120 kHz signal is passed through to the amplifier stages. Next, the 120 kHz signal is amplified using a series of inverters configured as high gain amplifiers. The first two stages are tuned amplifiers with peak response at 120 kHz. The next two stages provide additional amplification. The amplified 120 kHz signal is passed through an envelope detector, formed with a diode, capacitor, and resistor. The envelope detector output is buffered through an inverter and presented to an input pin (RC3) of the PIC16F877A.

Upon each zero-crossing interrupt, RC3 is simply checked within the 1 ms transmission envelope to see whether or not the carrier is present. The presence or absence of the carrier represents the stream of ‘1’s and ‘0’s that form the X-10 messages described in Appendix A.

FIGURE 4: 120 kHz CARRIER DETECTOR

Note 1: See schematic in Appendix C.
120 kHz Carrier Generator

X-10 uses 120 kHz modulation to transmit information over 60 Hz power lines. It is possible to generate the 120 kHz carrier with an external oscillator circuit. A single I/O pin would be used to enable or disable the oscillator circuit output. However, an external oscillator circuit can be avoided by using one of the PIC MCU's CCP modules.

The CCP1 module is used in PWM mode to produce a 120 kHz square-wave with a duty cycle of 50%. Because X-10 specifies the carrier frequency at 120 kHz (+/- 2 kHz), the system oscillator is chosen to be 7.680 MHz, in order for the CCP to generate precisely 120 kHz. Calculations for setting the PWM period and duty cycle are shown in the code listing comments for the function `InitPWM`.

After initialization, CCP1 is continuously enabled, and the TRISC bit for the pin is used to gate the PWM output. When the TRISC bit is set, the pin is an input and the 120 kHz signal is not presented to the pin. When the TRISC bit is clear, the pin becomes an output and the 120 kHz signal is coupled to the AC power line through a transistor amplifier and capacitor, as depicted in Figure 5.

Since the impedance of a capacitor is \(Z_c = \frac{1}{(2\pi f C)} \), a 0.1 \(\mu \)F capacitor presents a low impedance to the 120 kHz carrier frequency, but a high impedance to the 60 Hz power line frequency. This high-pass filter allows the 120 kHz signal to be safely coupled to the 60 Hz power line, and it doubles as the first stage of the 120 kHz carrier detector, described in the previous section.

To be compatible with other X-10 receivers, the maximum delay from the zero-crossing to the beginning of the X-10 envelope should be about 300 ms. Since the zero-crossing detector has a maximum delay of approximately 64 ms, the firmware must take less than 236 ms after detection of the zero-crossing to begin transmission of the 120 kHz envelope.

Transformerless Power Supply

The PIC16F877A and other board circuits require a 5V supply. In this application, the X-10 controller must also transmit and receive its data over the AC line. Since X-10 components are intended to be plugged into a wall outlet and have a small form factor, a transformerless power supply is used. Two characteristics of transformerless supplies that should be kept in mind are limited current capacity, and lack of isolation from the AC mains (see the warning note).

FIGURE 5: **120 kHz CARRIER GENERATOR**

![120 kHz Carrier Generator Diagram](image)

WARNING: This circuit is not isolated from 120 VAC. Act with caution when constructing or using such a circuit, and ensure that it is contained within a suitable insulated enclosure. Follow isolation precautions to avoid personal injury or damage to test equipment and development tools.

Figure 6 illustrates the transformerless power supply used in this application. To protect the circuit from spikes on the AC power line, a 130V VDR (voltage dependent resistor) is connected between Line and Neutral. The 47\(\Omega \) resistor limits current into the circuit, and the 1 M\(\Omega \) resistor provides a discharge path for the voltage left on the capacitor when the circuit is unplugged from the wall. Two diodes rectify the voltage across the 1000 \(\mu \)F capacitor and 5.1V Zener diode to produce a 5V supply.

The reader may wish to refer to the application note AN954, "Transformerless Power Supplies: Resistive and Capacitive" (DS00954), available for download from the Microchip web site, for additional information on transformerless power supply design.

© 2010 Microchip Technology Inc.
DS00236B-page 5
Load Switch

A load switch is included on the home controller so that it may act as a lamp module, with its own house and unit address. A Triac was selected as the load switch, because its medium power switching capacity and rapid switching capability make it well-suited for lamp control and dimming.

A Triac is an inexpensive, three-terminal device that basically acts as a high-speed, bidirectional AC switch. Two terminals, MT1 and MT2, are wired in series with the load. A small trigger current between the gate and MT1 allow conduction to occur between MT1 and MT2. Current continues to flow after the gate current is removed, as long as the load current exceeds the latching value. Because of this, the Triac will automatically switch off near each zero-crossing as the AC voltage falls below the latching voltage.

A Teccor® L4008L6 Triac was selected because it has a sensitive gate that can be directly controlled from the logic level output of the PIC MCU I/O pin. The sensitive gate Triac can control AC current in both directions through the device, even though the PIC MCU can provide only positive voltages to the gate.

A variable dimmer is created by including a delay between the time of each zero-crossing and the time that the trigger current is provided to the Triac from the PIC MCU.

The design and control of a lamp dimmer using a PIC MCU is discussed in detail in PICREF-4 Reference Design, “PICDIM Lamp Dimmer for the PIC12C508”.

FIGURE 7: LOAD SWITCH/DIMMER (TRIAC)
LCD Module

The 2-line x 16-character display uses the HD44780U Display Controller. Eight data lines and three control lines are used to interface to the PIC MCU. If fewer I/O pins are available, the LCD can be operated in Nibble mode using only four data lines, with some additional software overhead. A basic LCD library is included in this application, which provides the necessary functions for controlling this type of LCD.

Real-Time Clock

A real-time clock is implemented using Timer1. The real-time clock keeps track of the present time using a routine called UpdateClock. It also determines the rate that the buttons are read by a routine called ScanKeys.

Timer1 is set to cause an interrupt each time it overflows. By adding a specific offset to Timer1 each time it overflows, the time before the next overflow can be precisely controlled. The button reading routine, ScanKeys, is called each time a Timer1 interrupt occurs. Since ScanKeys performs debouncing of the button presses, a suitable rate to check the buttons is once every 25 ms.

With a 32 kHz crystal, the counter increments once every 31.25 ms when the prescaler is set to 1:1. In order for Timer1 to generate an interrupt once every 25 ms, TMR1H:TMR1L are pre-loaded with 0xFCE0h. The Timer1 interrupt interval, or tick, can be seen in the following equation:

\[(FFFFh – FCE0h) * 1/32 kHz = 0.025 \text{ s} = 1 \text{ tick}\]

Each time ScanKeys is called (every 25 ms), it calls UpdateClock. UpdateClock keeps track of the time unit variables: ticks, seconds, minutes, and hours. Since every 25 ms equals one tick, seconds are incremented every 40 ticks. Minutes and hours are incremented in a similar fashion.

Push Buttons

Five push buttons, connected to RB1-RB5, are used for user interaction with the application. Each normally open push button will pull a port pin low when it is pressed.

Light Sensor

To detect the ambient light level, a CdS photoresistor is used in conjunction with an 820Ω resistor to create a voltage divider. The voltage on the divider varies with the intensity of ambient light and is connected to an analog channel (AN0) of the microcontroller.

In-Circuit Debugger

RB6 and RB7 have been reserved for In-Circuit Serial Programming™ (ICSP™) and the In-Circuit Debugger (ICD). However, do not connect the ICD or any other development tool, without taking first isolating the entire application from wall power (see the previous warning notes).

Control Data Storage

Certain control data that is programmable by the user must be stored in non-volatile memory. The PIC MCU’s built-in EEPROM is well-suited to this task.

To use EEPROM memory space most efficiently (by avoiding wasted bits), on/off times and light sensor control flags are stored using the format shown in Figure 8. Figure 9 shows the location of on/off times and other information within the data EEPROM. Using this data organization, only 48 bytes of EEPROM are required to store the on/off times and light sensor control flags for 16 units.

FIGURE 8: ON/OFF TIME STORAGE

<table>
<thead>
<tr>
<th>Address</th>
<th>Unit</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x001</td>
<td>System</td>
<td>House Address</td>
</tr>
<tr>
<td>0x002</td>
<td>System</td>
<td>Unit Address</td>
</tr>
<tr>
<td>0x010</td>
<td>Unit 1</td>
<td>OnHour OffHour</td>
</tr>
<tr>
<td>0x011</td>
<td>Unit 2</td>
<td>OnHour OffHour</td>
</tr>
<tr>
<td>0x012</td>
<td>Unit 3</td>
<td>OnHour OffHour</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x020</td>
<td>Unit 1</td>
<td>AB OnMin</td>
</tr>
<tr>
<td>0x021</td>
<td>Unit 2</td>
<td>AB OnMin</td>
</tr>
<tr>
<td>0x022</td>
<td>Unit 3</td>
<td>AB OnMin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x030</td>
<td>Unit 1</td>
<td>AB OffMin</td>
</tr>
<tr>
<td>0x031</td>
<td>Unit 2</td>
<td>AB OffMin</td>
</tr>
<tr>
<td>0x032</td>
<td>Unit 3</td>
<td>AB OffMin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Each time that minutes are incremented within the UpdateClock routine, a flag is set that enables a routine called CheckOnOffTimes to be called from the main loop. CheckOnOffTimes compares the present time with the unit on and off times stored in EEPROM memory. If there is a match, then a flag is set to either turn the unit on or off, by sending it the appropriate X-10 command when the routine ControlX10Units is called.
APPLICATION Firmware Overview

The firmware is divided into several different files to facilitate adaptation of the code to other applications. Following is a summary of the files associated with this application note:

- **x10lib.asm**: Defines X-10 functions.
- **x10lib.inc**: Defines X-10 constants and macros.
- **x10hc.asm**: Main application code for the home controller.
- **x10demo.asm**: Example code that shows how to use the X-10 library macros.
- **lcd.asm**: Defines the routines necessary for driving the LCD.
- **p16f877A.lkr**: Standard linker file for PIC16F877A parts.
- **p16f877A.inc**: Standard include file for PIC16F877A parts.

Detailed descriptions of operation can be found in the comments within the code listing. The X-10 library functions and macros are described in the next section.

X-10 Library

A simple library of commands was developed and used for the home controller. It can be used with little or no modification in a user's application. The library consists of two files: x10lib.asm and x10lib.inc.

To use the library, a user need only understand the function of the macros defined in x10lib.inc. The macros greatly simplify the use of the library by eliminating the need for the user to understand every X-10 function in x10lib.asm. Examples of how the macros are used are included in the file x10demo.asm.

The macros are explained below:

InitX10

This macro is used to initialize the peripherals that provide X-10 functionality. It must be called in the application program before any of the below macros will work.

It is used as follows:

```
InitX10
```

SkipIfTxReady

Before sending an X-10 message, it is necessary to make sure that another message is not already being sent, which is signified by the X10TxFlag being set. This macro simply checks that flag and skips the next instruction if it is okay to begin a new transmission. Otherwise, there is a chance that a new transmission will interrupt an ongoing transmission.

It is used as follows:

```
SkipIfTxDone
GOTO $-1 ; loop until ready to transmit next message
```

SendX10Address (House, Unit)

This macro is used to send an X-10 address for a particular unit. It requires two arguments, a house address and unit address. The definitions for all house and unit addresses are defined in x10lib.inc. To use this macro to send the address for unit 16 at house P, one simply types:

```
SendX10Address HouseP, Unit16
```

SendX10AddressVar

This macro is used to send an X-10 address, defined by variables rather than constants. To send an address contained in the user variables MyHouse and MyUnit, the following sequence would be applied:

```
MOVF MyHouse, W ; contains a value from 0-16
MOVWF TxHouse
MOVF MyUnit, W ; contains a value from 0-16
MOVWF TxUnit
SendX10AddressVar
```
SendX10Command (House, Function)
This macro is used to send an X-10 command. It requires two arguments, the house address and function code. The definitions for all house addresses and function codes are defined in x10lib.inc. To use this macro to send the command 'All Lights On' to all units at house A, one types:

SendX10Command HouseA, AllLightsOn

SendX10CommandVar
This macro is used to send an X-10 command, defined by a variable rather than a constant. To use this macro to send the command stored in the user variable MyCommand to all units at MyHouse, one types:

MOVF MyHouse, W ;contains a value from 0-16
MOVWF TxHouse
MOVF MyCommand, W ;any X-10 function ;defined in ;x10lib.inc
MOVWF TxFunction
SendX10CommandVar

SkipIfRxDone
Before reading an X-10 message, it is necessary to make sure that a complete message has been received. This is signified by the X10RxFlag being set. This macro simply checks that flag and skips the next instruction if a new X-10 message has been received.

It is used as follows:

SkipIfRxDone
GOTO $-1 ;loop until message received

SkipIfAddressRcvd
It may be necessary to make sure that an address was received by using this macro, which checks to see if the RxCommandFlag is clear.

It is used as follows:

SkipIfAddressRcvd
GOTO $-1 ;loop until address received

SkipIfCommandRcvd
Or, it may be necessary to make sure that a command was received by using this macro, which checks to see if the RxCommandFlag is set.

It is used as follows:

SkipIfCommandRcvd
GOTO $-1 ;loop until command received

ReadX10Message
This macro is called to read a received X-10 message, which may be either an address or a command. If the message was an address, then the received house and unit codes will be stored in the variables RxHouse and RxUnit, respectively. If the message was a command, then the received house address and function code will be stored in the variables RxHouse and RxFunction.

It is simply called as follows:

ReadX10Message

Please refer to the example code in x10demo.asm to see how each of these macros is used in a simple application.
Memory Usage

Memory usage for the X-10 portion of the application is summarized in Table 2.

TABLE 2: SUMMARY OF MEMORY USAGE FOR X-10 FUNCTIONALITY

<table>
<thead>
<tr>
<th>Memory Type</th>
<th>Used</th>
<th>Available on PIC16F877A</th>
<th>Percent Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flash Program Memory</td>
<td>437 words</td>
<td>8453 words</td>
<td>5%</td>
</tr>
<tr>
<td>Data Memory (RAM)</td>
<td>62 bytes</td>
<td>368 bytes</td>
<td>17%</td>
</tr>
<tr>
<td>EEPROM Data Memory</td>
<td>0 bytes</td>
<td>256 bytes</td>
<td>0%</td>
</tr>
</tbody>
</table>

Memory usage for the entire home controller application is summarized in Table 3.

TABLE 3: SUMMARY OF MEMORY USAGE FOR THE HOME CONTROLLER

<table>
<thead>
<tr>
<th>Memory Type</th>
<th>Used</th>
<th>Available on PIC16F877A</th>
<th>Percent Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flash Program Memory</td>
<td>3762 words</td>
<td>8453 words</td>
<td>44.5%</td>
</tr>
<tr>
<td>Data Memory (RAM)</td>
<td>168 bytes</td>
<td>368 bytes</td>
<td>45.6%</td>
</tr>
<tr>
<td>EEPROM Data Memory</td>
<td>51 bytes</td>
<td>256 bytes</td>
<td>20%</td>
</tr>
</tbody>
</table>
CONCLUSION

The PIC MCU is well-suited to X-10 applications. With its plethora of on-chip peripherals and a few external components, a PIC MCU can be used to implement an X-10 system that can transmit and receive messages over the AC power line wiring. The small code size of the X-10 library leaves ample space for the user to create application specific code. PIC MCUs, such as the PIC16F877A, have plenty of additional resources for creating more complex X-10 applications, while smaller PIC MCUs can be selected for economical use in simpler X-10 applications.

USEFUL WEB REFERENCES

 This web site describes how to build an appliance module that utilizes the PIC16C52 or PIC16F84. Parts of this project’s receiver circuit, designed by Phil Plunkett, were adapted to the home controller application.

- http://www.microchip.com
 The Microchip web site features data sheets, product information, and more. Helpful technical documentation available here include:
 AN521 “Interfacing to AC Power Lines”
 AN954, “Transformerless Power Supplies: Resistive and Capacitive”
 PICREF-4 “PICDIM Lamp Dimmer for the PIC12C508”

- http://www.x10.com/support
 The X10 Wireless Technology, Inc. web site features technical information and FAQs pertaining to the X-10 communication protocol.
APPENDIX A: HOW DOES THE X-10 PROTOCOL WORK?

X-10 transmissions are synchronized with the zero-crossings on the AC power line. By monitoring for the zero-crossings, X-10 devices know when to transmit or receive X-10 information. A binary ‘1’ is represented by a 1 ms long burst of 120 kHz, near the zero-crossing point of the AC. A binary zero is represented by the lack of the 120 kHz burst.

FIGURE A-1: X-10 TRANSMISSION TIMING

Note 1: These 120 kHz carrier bursts are timed to coincide with the zero-crossing of the other phases, when implemented.

A complete X-10 message is composed of a start code (1110), followed by a house code, followed by a key code. The key code may be either a unit address or a function code, depending on whether the message is an address or a command. Table A-1 and Table A-2 show the possible values of the house and key codes.
When transmitting the codes in Table A-1 and Table A-2, two zero-crossings are used to transmit each bit as complementary bit pairs (i.e., a zero is represented by 0-1, and a one is represented by 1-0). For example, in order to send the house code A, the four-bit code in Table A-1 is 0110, and the code transmitted as complimentary bit pairs is 01101001. Since house and key codes are sent using the complimentary format, the start code is the only place where the pattern 1110 will appear in an X-10 data stream.

The key code, which is 5-bits long in Table A-2, takes 10 bits to represent in the complimentary format. Because the last bit of the key code is always zero for a unit address and one for a function code, the last bit of the key code can be treated as a suffix that denotes whether the key code is a unit address or function code.

A complete block of data consists of the start code, house code, key code and suffix. Each data block is sent twice, with 3 power line cycles, or six zero-crossings, between each pair of data blocks.

For example, to turn on an X-10 module assigned to house code A, unit 2, the following data stream would be sent on the power line, one bit per zero-crossing.

First, send the address twice:

```
1110 01101001 10101001 01
START HOUSE A UNIT 2 Suffix
```

Next, wait for three cycles (six zero-crossings):

```
1110 01101001 10101001 01
START HOUSE A UNIT 2 Suffix
```

Then, send the command twice:

```
1110 01101001 01011001 10
START HOUSE A ON Suffix
```

Lastly, wait for three cycles (six zero-crossings) before sending the next block:

```
000000
```

There are exceptions to this format. For example, the bright and dim codes do not require the 3-cycle wait between consecutive dim commands or consecutive bright commands. For a complete discussion of all X-10 messages, please refer to the X10 Wireless Technology, Inc. web site (see the "USEFUL WEB REFERENCES" section).

TABLE A-1: HOUSE CODES

<table>
<thead>
<tr>
<th>House Addresses</th>
<th>House Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H1</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>1</td>
</tr>
<tr>
<td>G</td>
<td>0</td>
</tr>
<tr>
<td>H</td>
<td>1</td>
</tr>
<tr>
<td>I</td>
<td>0</td>
</tr>
<tr>
<td>J</td>
<td>1</td>
</tr>
<tr>
<td>K</td>
<td>0</td>
</tr>
<tr>
<td>L</td>
<td>1</td>
</tr>
<tr>
<td>M</td>
<td>0</td>
</tr>
<tr>
<td>N</td>
<td>1</td>
</tr>
<tr>
<td>O</td>
<td>0</td>
</tr>
<tr>
<td>P</td>
<td>1</td>
</tr>
</tbody>
</table>

TABLE A-2: KEY CODES

<table>
<thead>
<tr>
<th>Unit Addresses</th>
<th>Key Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function Codes</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Units Off</td>
<td>0</td>
</tr>
<tr>
<td>All Units On</td>
<td>0</td>
</tr>
<tr>
<td>On</td>
<td>0</td>
</tr>
<tr>
<td>Off</td>
<td>0</td>
</tr>
<tr>
<td>Dim</td>
<td>1</td>
</tr>
<tr>
<td>Bright</td>
<td>0</td>
</tr>
<tr>
<td>All Lights Off</td>
<td>0</td>
</tr>
<tr>
<td>Extended Code</td>
<td>0</td>
</tr>
<tr>
<td>Hail Request</td>
<td>1</td>
</tr>
<tr>
<td>Hail Acknowledge</td>
<td>1</td>
</tr>
<tr>
<td>Pre-set Dim</td>
<td>1</td>
</tr>
<tr>
<td>Extended Code (Analog)</td>
<td>1</td>
</tr>
<tr>
<td>Status = On</td>
<td>1</td>
</tr>
<tr>
<td>Status = Off</td>
<td>1</td>
</tr>
<tr>
<td>Status Request</td>
<td>1</td>
</tr>
</tbody>
</table>

When transmitting the codes in Table A-1 and Table A-2, two zero-crossings are used to transmit each bit as complementary bit pairs (i.e., a zero is represented by 0-1, and a one is represented by 1-0). For example, in order to send the house code A, the four-bit code in Table A-1 is 0110, and the code transmitted as complimentary bit pairs is 01101001. Since house and key codes are sent using the complimentary format, the start code is the only place where the pattern 1110 will appear in an X-10 data stream.

The key code, which is 5-bits long in Table A-2, takes 10 bits to represent in the complimentary format. Because the last bit of the key code is always zero for a unit address and one for a function code, the last bit of the key code can be treated as a suffix that denotes whether the key code is a unit address or function code.

A complete block of data consists of the start code, house code, key code and suffix. Each data block is sent twice, with 3 power line cycles, or six zero-crossings, between each pair of data blocks.

For example, to turn on an X-10 module assigned to house code A, unit 2, the following data stream would be sent on the power line, one bit per zero-crossing.

First, send the address twice:

```
1110 01101001 10101001 01
START HOUSE A UNIT 2 Suffix
```

Next, wait for three cycles (six zero-crossings):

```
1110 01101001 10101001 01
START HOUSE A UNIT 2 Suffix
```

Then, send the command twice:

```
1110 01101001 01011001 10
START HOUSE A ON Suffix
```

Lastly, wait for three cycles (six zero-crossings) before sending the next block:

```
000000
```

There are exceptions to this format. For example, the bright and dim codes do not require the 3-cycle wait between consecutive dim commands or consecutive bright commands. For a complete discussion of all X-10 messages, please refer to the X10 Wireless Technology, Inc. web site (see the "USEFUL WEB REFERENCES" section).
APPENDIX B: HOME CONTROLLER OPERATING INSTRUCTIONS

Welcome Screen
The home controller user interface consists of five buttons and a 2 x 16 LCD. Upon power-up, the Welcome screen is displayed. This screen displays a welcome message and the time. Immediately, the seconds begin incrementing and the PIC MCU begins keeping track of the time.

Figure B-1 shows the Welcome screen and the location and functionality of each button. Depending on the screen viewed, each of the five buttons performs a different function.

When the Welcome screen is displayed, the buttons enable access to the following functions:
• Press menu to enter the Select Function screen.
• Press up to brighten the lamp that is plugged into the home controller.
• Press down to dim the lamp.
• Press enter to turn the lamp on.
• Press exit to turn the lamp off.

Select Function Screen
When viewing the Welcome screen, the menu button enables access to the Select Function screen. Each successive press of the menu button cycles through the four main functions of the user interface: setting the system time, setting the system address, setting the light sensor, or programming the unit on and off times, as illustrated in Figure B-2.

Set System Time Screen
Use the Set System Time screen to set the time.

SETTING SYSTEM TIME
1. Starting from the Welcome screen, press menu until the Set System Time screen is displayed and press enter.
2. Press up/down to set the hours.
3. Press enter when the correct hour, including AM or PM, has been selected.
4. Repeat this process to set the minutes.
5. If the time is correct, select Y (the default) using the up/down buttons and press enter. This returns to the Welcome screen with the new time displayed.
6. If the time is not correct, select N and press enter. This will return the user to step 2 so the correct time can be entered.
7. Press exit at any time to return the user to the Welcome screen without saving the new time.
Select System Address Screen

Use the Set System Address screen to set the house address and unit address of the home controller.

SETTING HOUSE/UNIT ADDRESS

1. From the Welcome screen, press menu until the Set System Addr screen is displayed and press enter.
2. Press up or down to set the house address (a letter from A - P).
3. Press enter when the house address has been selected.
4. Repeat steps 2 and 3 to set the unit address (a number from 1 - 16).
5. If the house and unit addresses are correct, select Y (the default) using the up/down buttons and press enter. This returns to the Welcome screen with the new address stored in non-volatile memory.
6. If the address is not correct, select N and press enter. This will return the user to step 2.
7. Press exit at any time to return the user to the Welcome screen without saving the new address.

FIGURE B-4: SET SYSTEM ADDRESS SCREENS

Set System Addr
A-01 Set House
menu up down enter exit

Set System Addr
A-01 Set Unit
menu up down enter exit

Set System Addr
A-01 Okay? Y
menu up down enter exit

Set Light Sensor Screen

Use the Set Light Sensor screen to select whether units turn on at dusk, or off at dawn.

SETTING THE LIGHT SENSOR

1. From the Welcome screen, press menu until the Set Light Sensor screen is displayed and press enter.
2. Press up or down to select the desired unit. The house address will already be set to the system house address.
3. Press enter when the desired unit address has been selected.
4. Press up or down to select whether or not the unit should turn on at dusk, and press enter.
5. Repeat this process to set other units as desired.
6. Press exit to return to the Welcome screen. Pressing exit while the “On at Dusk” or “Off at Dawn” prompt is displayed will return the user to the Welcome screen without modifying that parameter.

FIGURE B-5: SET LIGHT SENSOR SCREENS

Set Light Sensor
A-01 Set Unit

Set Light Sensor
On at Dusk? Y

Set Light Sensor
Off at Dawn? Y

Pressing exit while the “On at Dusk” or “Off at Dawn” prompt is displayed will return the user to the Welcome screen without modifying that parameter.
Program Unit Screen

Use the Program Unit screen to program on and off times for different units.

PROGRAMMING UNIT ON AND OFF TIMES

1. From the Welcome screen, press menu repeatedly until the Program Unit screen is displayed and press enter.
2. Press up or down to select the desired unit. The house address will already be set to the system house address.
3. Press enter when the unit address has been selected.
4. Press up or down to set the ‘on’ time hours. Hours set to ‘00’ means that the unit will not be turned on at any time.
5. Press enter when the correct hour, including AM or PM, has been selected.
6. Repeat this process to set the ‘on’ time minutes. If the hour has been set to ‘00’, then the minutes will be set to ‘00’ automatically.
7. If the time is correct, select Y (the default) using the up/down buttons and press enter. The user will be prompted to program the ‘off’ time in a similar fashion.
8. If the time is not correct, select N and press enter. This allows the user to re-enter the hour and minutes by returning to step 2.
9. Repeat this process to set the ‘on’ and ‘off’ time for other units as desired.
10. Press exit to return to the Welcome screen. Pressing exit while the “Set Hours” or “Set Min” prompt is displayed will return the user to the Welcome screen without modifying any parameters.
FIGURE C-1: SHEET 1 OF 5
APPENDIX D: PARTS LIST

<table>
<thead>
<tr>
<th>Count</th>
<th>Reference</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>D7, D8</td>
<td>6.8V</td>
<td>Zener Diode</td>
</tr>
<tr>
<td>2</td>
<td>D4, D5</td>
<td>1N4005</td>
<td>Diode</td>
</tr>
<tr>
<td>2</td>
<td>D3, D9</td>
<td>1N4148</td>
<td>Diode</td>
</tr>
<tr>
<td>1</td>
<td>D6</td>
<td>5.1V</td>
<td>Zener Diode</td>
</tr>
<tr>
<td>1</td>
<td>Q2</td>
<td>2N2222</td>
<td>NPN Transistor</td>
</tr>
<tr>
<td>1</td>
<td>J2</td>
<td>Power In</td>
<td>Connector</td>
</tr>
<tr>
<td>2</td>
<td>J1</td>
<td>Power Out</td>
<td>Connector</td>
</tr>
<tr>
<td>1</td>
<td>U2</td>
<td>CD4069</td>
<td>HEX Inverters</td>
</tr>
<tr>
<td>8</td>
<td>C1, C2, C3, C8, C9, C10, C11, C12</td>
<td>0.1 μF</td>
<td>Capacitor</td>
</tr>
<tr>
<td>4</td>
<td>C4, C5, C6, C7</td>
<td>15 pF</td>
<td>Capacitor</td>
</tr>
<tr>
<td>1</td>
<td>C13</td>
<td>0.1 μF</td>
<td>Capacitor</td>
</tr>
<tr>
<td>2</td>
<td>C14, C15</td>
<td>2.25 μF, 250V x2</td>
<td>Capacitor</td>
</tr>
<tr>
<td>2</td>
<td>C21, C22</td>
<td>3.3 nF</td>
<td>Capacitor</td>
</tr>
<tr>
<td>2</td>
<td>C25, C26</td>
<td>4.7 nF</td>
<td>Capacitor</td>
</tr>
<tr>
<td>1</td>
<td>C20</td>
<td>10 nF</td>
<td>Capacitor</td>
</tr>
<tr>
<td>2</td>
<td>C23, C24</td>
<td>10 pF</td>
<td>Capacitor</td>
</tr>
<tr>
<td>1</td>
<td>C27</td>
<td>100 pF</td>
<td>Capacitor</td>
</tr>
<tr>
<td>2</td>
<td>C18, C19</td>
<td>150 pF</td>
<td>Capacitor</td>
</tr>
<tr>
<td>1</td>
<td>C16</td>
<td>1000 μF, 25V</td>
<td>Capacitor</td>
</tr>
<tr>
<td>1</td>
<td>C17</td>
<td>0.1 μF, 275 VAC x2</td>
<td>Capacitor</td>
</tr>
<tr>
<td>1</td>
<td>Y2</td>
<td>7.680 MHz</td>
<td>Crystal</td>
</tr>
<tr>
<td>1</td>
<td>Y1</td>
<td>32 kHz</td>
<td>Crystal</td>
</tr>
<tr>
<td>2</td>
<td>L1, L2</td>
<td>220 mH</td>
<td>Axial Lead Inductor</td>
</tr>
<tr>
<td>1</td>
<td>LCD1</td>
<td>CG161</td>
<td>HD44780-based 2x16 Liquid Crystal Display</td>
</tr>
<tr>
<td>2</td>
<td>D1, D2</td>
<td>LTL-94PEKTA</td>
<td>LEDs</td>
</tr>
<tr>
<td>1</td>
<td>U1</td>
<td>PIC16F877A</td>
<td>Microcontroller</td>
</tr>
<tr>
<td>1</td>
<td>R6</td>
<td>20 kΩ</td>
<td>Potentiometer</td>
</tr>
<tr>
<td>1</td>
<td>PTC1</td>
<td></td>
<td>CdS Cell</td>
</tr>
<tr>
<td>1</td>
<td>R18</td>
<td>1 MΩ</td>
<td>Resistor</td>
</tr>
<tr>
<td>1</td>
<td>R14</td>
<td>1.1 MΩ</td>
<td>Resistor</td>
</tr>
<tr>
<td>1</td>
<td>R13</td>
<td>2 MΩ</td>
<td>Resistor</td>
</tr>
<tr>
<td>1</td>
<td>R17</td>
<td>5 MΩ</td>
<td>Resistor</td>
</tr>
<tr>
<td>7</td>
<td>R1, R4, R5, R7, R8, R9, R21</td>
<td>10 kΩ</td>
<td>Resistor</td>
</tr>
<tr>
<td>1</td>
<td>R22</td>
<td>33 kΩ</td>
<td>Resistor</td>
</tr>
<tr>
<td>1</td>
<td>R25</td>
<td>47 kΩ</td>
<td>Resistor</td>
</tr>
<tr>
<td>1</td>
<td>R19</td>
<td>50 kΩ</td>
<td>Resistor</td>
</tr>
<tr>
<td>1</td>
<td>R16</td>
<td>100 kΩ</td>
<td>Resistor</td>
</tr>
<tr>
<td>2</td>
<td>R15, R23</td>
<td>100 kΩ</td>
<td>Resistor</td>
</tr>
<tr>
<td>1</td>
<td>R20</td>
<td>200Ω</td>
<td>Resistor</td>
</tr>
<tr>
<td>1</td>
<td>R24</td>
<td>220 kΩ</td>
<td>Resistor</td>
</tr>
<tr>
<td>2</td>
<td>R2, R3</td>
<td>680Ω</td>
<td>Resistor</td>
</tr>
<tr>
<td>1</td>
<td>R10</td>
<td>820Ω</td>
<td>Resistor</td>
</tr>
<tr>
<td>1</td>
<td>R11</td>
<td>470Ω</td>
<td>Resistor</td>
</tr>
<tr>
<td>1</td>
<td>R12</td>
<td>470 kΩ</td>
<td>Resistor</td>
</tr>
<tr>
<td>1</td>
<td>R26</td>
<td>10 MΩ</td>
<td>Resistor</td>
</tr>
<tr>
<td>6</td>
<td>S1, S2, S3, S4, S5, S6</td>
<td>Push Button Switches</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>P1, P2, P3, P4, P5, P6, P7</td>
<td>Test Points</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Q1</td>
<td>TIC206D</td>
<td>Sensitive Gate Triac</td>
</tr>
<tr>
<td>1</td>
<td>VDR1</td>
<td>130V</td>
<td>Varistor (Voltage Dependent Resistor)</td>
</tr>
</tbody>
</table>
APPENDIX E: SOURCE CODE

Due to size considerations, the complete source code for this application note is not included in the text. A complete version of the source code, with all required support files, is available for download as a Zip archive from the Microchip web site, at:

www.microchip.com
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOG, KEELOG logo, MPLAB, PIC, PICmicro, PICSTART, PIC® logo, rPIC and Uni/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rICLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2010, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
AMERICAS

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277

Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Cleveland
Independence, OH
Tel: 216-447-0087
Fax: 216-447-0088

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260

Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445

Toronto
Mississauga, Ontario, Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office
Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431

Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500

China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431

China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130

China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513

Japan - Yokohama
Tel: 81-45-471-6166
Fax: 81-45-471-6122

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932
or 82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-6578-300
Fax: 886-3-6578-370

Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803

Taiwan - Taipei
Tel: 886-2-2508-0102
Fax: 886-2-2500-6610

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

01/05/10