INTRODUCTION

Buck Switch-Mode Power Supplies are popular solutions for today’s customer POL applications. The main control mode architecture types are: voltage-mode, current-mode and Constant On-Time (COT) control mode.

The ripple-based COT control architecture is more and more popular among customers due to its very simple control loop design, fast transient response (due to wide bandwidth), while achieving a relatively constant switching frequency and high efficiency at light loads, and implemented with little additional design effort.

CONSTANT ON-TIME CONTROL ARCHITECTURE

COT is a ripple-based control mode. The output regulation is achieved by comparing the falling slope of the output voltage to a threshold. As illustrated in Figure 1, when the output voltage waveform \( V_O \) is crossing the regulation threshold \( V_{REF} \), switch HS is activated (the SR latch is set).

At the same time, an internal I/C timer starts and generates a RESET pulse to the latch after a certain time, \( T_{ON} \). Therefore, the high-side switch will be activated for a fixed time, equal to \( T_{ON} \), which is fixed by the \( I/T \times C_{TON} \) slope across the timing capacitor \( C_{TON} \), and by the value of threshold \( V_{TH} \). Since all the parameters determining \( T_{ON} \) are constant, the ON-time of HS is also constant, which is why the basic form of this type of control is called “Constant ON-Time”. It should be noted that the duration of the RESET pulse to the SR latch might be stretched as needed by the "Min. T_OFF" one-shot to enforce a minimum duration of the OFF time. This is needed, for example, to replenish the bootstrap capacitor for the high-side driver (if the HS switch is an N-channel MOSFET driven by a bootstrapped driver), or for measuring the current across the \( R_{DS(on)} \) of the low-side switch LS, as in the case of many regulators listed below.

Indeed, if the output voltage waveform is still below the regulation threshold \( V_{REF} \) after the minimum T_OFF has expired, the COT regulator immediately reacts by triggering another \( T_{ON} \) pulse. This fast reaction to a sagging output voltage, a key factor in load transient response, is the main benefit of COT control.

FIGURE 1: Constant On-Time Control Architecture.
Despite its uncontestable advantages, this control scheme has an important drawback. The output voltage ripple must be large enough to reliably trigger the comparator and, most importantly, the phase of the output ripple must closely match the inductor current ripple component, meaning that the output voltage capacitor ESR must be quite large.

Many authors have performed a detailed analysis of the stability constraints for COT due to the output capacitor ESR [Redl, Sun, Lee]. They all conclude that the stability constraint is:

\[
\frac{T_{ON}}{2} < ESR \times C_o
\]

Since large output ripple is not desirable in most customer applications, two main solutions can be implemented to provide a large enough ripple on the feedback path without increasing the output voltage ripple: ripple injection and Emulated Ripple Mode (ERM). For a detailed description of COT architecture and ripple injection techniques, refer to the documents and the tutorial presentations available on the Microchip website.

RIPPLE INJECTION TECHNIQUES

There are various techniques for feedback ripple injection in COT regulators, listed below.

LARGE ESR OUTPUT CAPACITOR (OR A RESISTOR IN SERIES WITH THE OUTPUT CAPACITOR)

This solution is not usually desirable, since low output voltage ripple is one of the most frequent constraints in customer applications. In addition, this method is sensitive to output noise, since it is translated into feedback ripple. Usually, low ESR ceramic output capacitors are recommended for this type of regulator because of their good high-frequency characteristics and output ripple attenuation performance.

A FEED-FORWARD CAPACITOR IN PARALLEL WITH THE TOP RESISTOR OF THE FEEDBACK DIVIDER

This solution can be applied if the time constant of the output capacitor is still adequate for stable operation, but its amplitude at the FB pin is too shallow for jitter-free operation. In this case the full amplitude of the output ripple can be recovered by feeding it directly to the feedback path. The feed forward capacitor bypasses high-frequency ripple directly to the FB pin and ensures a phase boost around the middle of the relevant bandwidth.

RIPPLE INJECTION TECHNIQUES

There are various techniques for feedback ripple injection in COT regulators, listed below.

LARGE ESR OUTPUT CAPACITOR (OR A RESISTOR IN SERIES WITH THE OUTPUT CAPACITOR)

This solution is not usually desirable, since low output voltage ripple is one of the most frequent constraints in customer applications. In addition, this method is sensitive to output noise, since it is translated into feedback ripple. Usually, low ESR ceramic output capacitors are recommended for this type of regulator because of their good high-frequency characteristics and output ripple attenuation performance.

A FEED-FORWARD CAPACITOR IN PARALLEL WITH THE TOP RESISTOR OF THE FEEDBACK DIVIDER

This solution can be applied if the time constant of the output capacitor is still adequate for stable operation, but its amplitude at the FB pin is too shallow for jitter-free operation. In this case the full amplitude of the output ripple can be recovered by feeding it directly to the feedback path. The feed forward capacitor bypasses high-frequency ripple directly to the FB pin and ensures a phase boost around the middle of the relevant bandwidth.

RIPPLE INJECTION TECHNIQUES

There are various techniques for feedback ripple injection in COT regulators, listed below.

LARGE ESR OUTPUT CAPACITOR (OR A RESISTOR IN SERIES WITH THE OUTPUT CAPACITOR)

This solution is not usually desirable, since low output voltage ripple is one of the most frequent constraints in customer applications. In addition, this method is sensitive to output noise, since it is translated into feedback ripple. Usually, low ESR ceramic output capacitors are recommended for this type of regulator because of their good high-frequency characteristics and output ripple attenuation performance.

A FEED-FORWARD CAPACITOR IN PARALLEL WITH THE TOP RESISTOR OF THE FEEDBACK DIVIDER

This solution can be applied if the time constant of the output capacitor is still adequate for stable operation, but its amplitude at the FB pin is too shallow for jitter-free operation. In this case the full amplitude of the output ripple can be recovered by feeding it directly to the feedback path. The feed forward capacitor bypasses high-frequency ripple directly to the FB pin and ensures a phase boost around the middle of the relevant bandwidth.
INTERNAL RIPPLE INJECTION

In case of low input voltage, low power DC-DC converters using low ESR ceramic output capacitors, the ripple injection components (feed-forward capacitor and the series injection RC cell) are frequently integrated on the regulator die.

This is convenient for customer applications, since the number of external components needed for regulator integration is lower. Additionally, the ripple injection components are already dimensioned for stable loop performance, and for the best compromise between ripple amplitude, the line regulation and the transient response time.

However, to make monolithic integration practical, the value of the DC blocking capacitor is typically limited to some picofarads. Therefore, even if the switching frequency is in the MHz range, the values of Ri and the feedback resistors must be high.

In case of fixed output voltage versions, the feedback resistors are also integrated in the regulator package. That further reduces the number of external components.

Since the switching frequency is internally fixed, a limited range of inductors and a minimum output capacitance are typically suggested for these monolithic regulators to avoid any possible stability issues in customer applications.

FIGURE 5: Internal Ripple Injection Network Used for Low-power COT Regulators.

MICROCHIP REGULATORS WITH INTERNAL RIPPLE INJECTION

There are many buck hysteretic COT regulators with internal ripple injection in the Microchip portfolio, refer to Table 1.

TABLE 1: MICROCHIP BUCK COT REGULATORS WITH INTERNAL RIPPLE REJECTION

<table>
<thead>
<tr>
<th>Product</th>
<th>No. of Outputs</th>
<th>Input Min Voltage (V)</th>
<th>Input Max Voltage (V)</th>
<th>Switching Frequency (Hz)</th>
<th>VFB (V) (adj.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIC23158</td>
<td>2</td>
<td>2.7</td>
<td>5.5</td>
<td>3000</td>
<td>0.62</td>
</tr>
<tr>
<td>MIC23159</td>
<td>2</td>
<td>2.7</td>
<td>5.5</td>
<td>3000</td>
<td>0.62</td>
</tr>
<tr>
<td>MIC23250</td>
<td>2</td>
<td>2.7</td>
<td>5.5</td>
<td>4000</td>
<td>0.72</td>
</tr>
<tr>
<td>MIC23254</td>
<td>2</td>
<td>2.5</td>
<td>5.5</td>
<td>4000</td>
<td>N.A. (1)</td>
</tr>
<tr>
<td>MIC23030</td>
<td>1</td>
<td>2.7</td>
<td>5.5</td>
<td>8000</td>
<td>0.62</td>
</tr>
<tr>
<td>MIC23031</td>
<td>1</td>
<td>2.7</td>
<td>5.5</td>
<td>4000</td>
<td>0.62</td>
</tr>
<tr>
<td>MIC23050</td>
<td>1</td>
<td>2.7</td>
<td>5.5</td>
<td>4000</td>
<td>N.A. (1)</td>
</tr>
<tr>
<td>MIC23051</td>
<td>1</td>
<td>2.7</td>
<td>5.5</td>
<td>4000</td>
<td>N.A. (1)</td>
</tr>
<tr>
<td>MIC23150</td>
<td>1</td>
<td>2.7</td>
<td>5.5</td>
<td>4000</td>
<td>N.A. (1)</td>
</tr>
<tr>
<td>MIC23153</td>
<td>1</td>
<td>2.7</td>
<td>5.5</td>
<td>4000</td>
<td>0.62</td>
</tr>
<tr>
<td>MIC23155</td>
<td>1</td>
<td>2.7</td>
<td>5.5</td>
<td>3000</td>
<td>0.62</td>
</tr>
<tr>
<td>MIC23201</td>
<td>1</td>
<td>2.7</td>
<td>5.5</td>
<td>2000</td>
<td>0.62</td>
</tr>
<tr>
<td>MIC23303</td>
<td>1</td>
<td>2.9</td>
<td>5.5</td>
<td>4000</td>
<td>0.62</td>
</tr>
<tr>
<td>MIC4930</td>
<td>1</td>
<td>2.7</td>
<td>5.5</td>
<td>3300</td>
<td>0.625</td>
</tr>
<tr>
<td>MIC4950</td>
<td>1</td>
<td>2.7</td>
<td>5.5</td>
<td>3300</td>
<td>0.625</td>
</tr>
<tr>
<td>MIC23603</td>
<td>1</td>
<td>2.9</td>
<td>5.5</td>
<td>4000</td>
<td>0.62</td>
</tr>
<tr>
<td>MIC23450</td>
<td>3</td>
<td>2.7</td>
<td>5.5</td>
<td>3000</td>
<td>0.62</td>
</tr>
<tr>
<td>MIC23451</td>
<td>3</td>
<td>2.7</td>
<td>5.5</td>
<td>3000</td>
<td>0.62</td>
</tr>
</tbody>
</table>

Note 1: N.A.: adjustable version not available; only fixed output voltage options are offered.
DESIGN CONSTRAINTS FOR MICROCHIP INTERNAL RIPPLE INJECTION REGULATORS

For all COT regulators with internal ripple injection (MIC23XXX and MIC49XX), precise indications related to design application rules are provided in the corresponding data sheets (all documents can be reviewed and downloaded from the Microchip website at http://www.microchip.com).

For all adjustable output voltage versions, recommended values for feedback divider resistors are clearly specified (usually hundreds of kiloohms for both top and bottom resistors). For the fixed output voltage versions, these feedback resistors are inside the regulator package, so they cannot be changed by the end user.

One common recommendation for feedback voltage resistor divider values show in Table 2.

<table>
<thead>
<tr>
<th>VOUT</th>
<th>R1</th>
<th>R2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2V</td>
<td>274 kΩ</td>
<td>294 kΩ</td>
</tr>
<tr>
<td>1.5V</td>
<td>316 kΩ</td>
<td>226 kΩ</td>
</tr>
<tr>
<td>1.8V</td>
<td>301 kΩ</td>
<td>160 kΩ</td>
</tr>
<tr>
<td>2.5V</td>
<td>316 kΩ</td>
<td>105 kΩ</td>
</tr>
<tr>
<td>3.3V</td>
<td>309 kΩ</td>
<td>71.5 kΩ</td>
</tr>
</tbody>
</table>

The typically recommended feedback resistor values table is applicable to regulators like MIC4930, MIC4950, MIC23450, MIC23451 and MIC23153.

Some of the data sheets also indicate an optimum range for the external feed-forward capacitors (usually a few tens of picofarads) if they are not already included in the regulator internal circuitry.

The same documents also specify the optimal ranges for the external inductors used in the buck step down topology (usually between 0.47 µH and 4.7 µH), and the recommended input/output capacitor types and values.

Designers must pay attention to all application recommendations and implement them in their designs. Otherwise, they may encounter stability issues, or the ripple fed into the feedback path might not be large enough to ensure optimal functionality of the COT control loop.

The internal ripple injection network is typically sufficient for the desired ripple on the feedback path, if the recommended divider resistors and feed-forward capacitor are used. If significantly lower feedback divider resistors and/or a higher feed-forward capacitor are used, the amount of ripple at the feedback pin might not be sufficient for stable regulator operation. In this case, external ripple injection is needed. This is accomplished by connecting a series RC circuit between the SW and the FB regulator pins and placing a feed-forward capacitor in parallel with the top resistor of the feedback resistive divider (see Figure 4).

The injected ripple is calculated using Equation 2:

\[ \Delta V_{FB(pp)} = V_{IN} \times K_{DIV} \times D \times (1 - D) \times \frac{1}{f_{SW} \times \tau} \]

where:

\[ K_{DIV} = \frac{(R_1 \parallel R_2)}{(R_{INJ} \parallel R_1 \parallel R_2)} \]

\[ D = \frac{V_{OUT}}{V_{IN}} \]

\[ V_{IN} = \text{Input Voltage}, \ V_{OUT} = \text{Output Voltage} \]

In the derivation of Equation 2, it is assumed that the condition expressed by Equation 6 is satisfied:

\[ \frac{1}{f_{SW} \times \tau} \ll 1 \]

where \( f_{SW} \) = Switching Frequency.

Please note that the external ripple injection network and feedback network impedance levels must be set low enough to override the effects of the internal ripple injection.
PRACTICAL EXAMPLE (MIC4930/50)

The MIC4930/50 are Microchip buck regulators that feature internal ripple injection (see Figure 5). The components used for their internal ripple injection network are $R_{INJ} = 360\, \Omega$ and $C_{INJ} = 1.3\, \text{pF}$.

**FIGURE 6:** MIC4930/50 Internal Injection Path from the SW Node to the FB Pin.

The A node DC voltage is equal to $V_{OUT}$, because the RC network is the low pass type. This can be better understood by considering that $C_{INJ}$ is a DC blocking capacitor, so no net DC current can flow through $R_{INJ}$ in steady-state. Therefore, the DC (average) values at node SW and at node A must be equal, and the DC value (average) of node SW is $D \times V_{IN} = V_{OUT}$ (assuming a loss-less inductor). So, when SW voltage is equal to $V_{IN}$, the current injected in the feed-forward capacitor ($C_{FF}$) is calculated in **Equation 7** (neglecting the small amount of current flowing through $R_1$ and $R_2$).

**EQUATION 7:**

$$\frac{(V_{IN} - V_{OUT})}{R_{INJ}}$$

The peak-to-peak amplitude of the voltage ripple injected into the feedback node will then be:

**EQUATION 8:**

$$\Delta V_{FB(pp)} = \frac{(V_{IN} - V_{OUT})}{R_{INJ}} \times \frac{T_{ON}}{C_{FF}}$$

where $T_{ON}$ is the measured regulator ON time. It can be shown that **Equation 2** and **Equation 8** yield the same result by using Equations 3, 4 and 5.

Calculating the feedback ripple amplitude for a particular use case ($V_{IN} = 5.0\, \text{V}$, $V_{OUT} = 1.8\, \text{V}$, $I_{OUT} = 1\, \text{A}$, $C_{IN} = C_{OUT} = 10\, \text{uF}$ and $C_{FF} = 22\, \text{pF}$), the result is 48 mV_{pp}, as the measured $T_{ON}$ is 119 ns.

In order to confirm the theoretical expected value, the feedback ripple amplitude can be measured using a differential oscilloscope probe (usually less than 1 pF differential capacitance) to avoid adding a higher capacitance in parallel with the feedback path by using a normal oscilloscope probe. Nevertheless, the parasitic capacitances on the board will still affect the measured result.

For this particular use case, the measured feedback ripple is 46 mV_{pp} for MIC4930, and 47 mV_{pp} for MIC4950, which is close to the theoretically predicted value.

**FIGURE 7:** MIC4930 Feedback Ripple Amplitude for $V_{IN} = 5.0\, \text{V}$, $V_{OUT} = 1.8\, \text{V}$, $I_{OUT} = 1\, \text{A}$, $C_{FF} = 22\, \text{pF}$.

**FIGURE 8:** MIC4950 Feedback Ripple Amplitude for $V_{IN} = 5.0\, \text{V}$, $V_{OUT} = 1.8\, \text{V}$, $I_{OUT} = 1\, \text{A}$, $C_{FF} = 22\, \text{pF}$.
REFERENCES

1. MIC23158/59, MIC23250/54, MIC23030/31, MIC23150/51, MIC23150/53/55, MIC23201, MIC23303, MIC23450/51, MIC23603, MIC4930/50 Microchip data sheets.


6. 20096 PC6 - Simplify Your Buck Converter Design with Constant-On-Time Control.
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademark

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBox, KEELOQ, KEELOQ logo, Kleer, LANCheck, LINK MD, maXSlyus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestiC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2017 Microchip Technology Incorporated, All Rights Reserved.
ISBN: 978-1-5224-2175-7