IC Temperature Sensor Accuracy Compensation with a PIC® Microcontroller

INTRODUCTION

Microchip Technology Inc. provides a number of analog and serial output Integrated Circuit (IC) temperature sensors. Typically, these sensors are accurate at room temperature within one degree Celsius (±1°C). However, at hot or cold temperature extremes, the accuracy decreases nonlinearly. Normally, that nonlinearity has a parabolic shape.

This application note derives an equation to describe the typical nonlinear characteristics of a sensor, which is used to determine compensation for the sensor’s accuracy error over a specified range of operating temperatures. A PIC® microcontroller unit (MCU) can compute the equation and provide a temperature reading with higher accuracy.

This application note is based on MCP9700 and MCP9701 analog-output temperature sensors and MCP9800 serial-output temperature sensors.

SOLUTION APPROACH

Silicon characterization data is used to determine the nonlinear sensor characteristics. From this data, an equation is derived that describes the typical performance of a sensor. When the corresponding coefficients for the equation are determined, the coefficients are used to compute the compensation for the typical sensor’s nonlinearity.

The error distribution is provided using an average and ±1 standard deviation (±σ) before and after compensation. A total of 100 devices were used as representative for the MCP9700 and MCP9701, while 160 devices were used for the MCP9800.

Figure 1 shows the typical sensor accuracy before and after compensation. It illustrates that the compensation provides an accurate and linear temperature reading over the sensor operating temperature range.

A PIC MCU is used to compute the equation and compensate the sensor output to provide a linear temperature reading.

![Typical Sensor Accuracy Before and After Compensation](image-url)
SENSOR ACCURACY

The typical sensor accuracy over the operating temperature range has an accuracy error curve. At hot and cold temperatures, the magnitude of the error increases exponentially, resulting in a parabolic-shaped error curve. The following figures show the average and ±1°C standard deviation of the sensor accuracy curve for the MCP9800, MCP9700 and MCP9701 sensors.

The accuracy specification limits for these sensors are published in the corresponding data sheets as plotted in Figure 2, Figure 3 and Figure 4. Note that due to the sensor nonlinearity at temperature extremes, the accuracy specification limits are widened. The reduced accuracy at temperature extremes can be compensated to improve sensor accuracy over the range of operating temperatures.
SENSOR THEORY

Temperature sensors use a fully turned-on PNP transistor to sense the ambient temperature. The voltage drop across the base-emitter junction has the characteristics of a diode. The junction drop is temperature dependent, which is used to measure the ambient temperature. Equation 1 shows a simplified equation that describes the diode forward voltage.

EQUATION 1: DIODE FORWARD VOLTAGE

\[
V_F = \frac{kT_A}{q} \ln \left(\frac{I_F}{I_S} \right) \
\]

Where:
- \(k \) = Boltzmann’s Constant \((1.3807 \times 10^{-23} \text{ J/K})\)
- \(q \) = Electron Charge \((1.602 \times 10^{-19} \text{ coulombs})\)
- \(T_A \) = Ambient Temperature
- \(I_F \) = Forward Current
- \(I_S \) = Saturation Current

\(I_S \) is a constant variable defined by the transistor size. A constant forward current \((I_F)\) is used to bias the diode, which makes the temperature \(T_A \) the only changing variable in the equation. However, \(I_S \) varies significantly over process and temperature. The variation makes it impossible to reliably measure the ambient temperature using a single transistor.

To minimize \(I_S \) dependency, a two-diode solution is used. If both diodes are biased with constant forward currents of \(I_{F1} \) and \(I_{F2} \), and the currents have a ratio of \(N \) \((I_{F2}/I_{F1} = N)\), the difference between the forward voltages \(\Delta V_F \) has no dependency on the saturation currents of the two diodes, as shown in Equation 2. \(\Delta V_F \) is also called Voltage Proportional to Absolute Temperature \((V_{PTAT}) \).

EQUATION 2: V_{PTAT}

\[
\Delta V_F = V_{F1} - V_{F2} \\

\Delta V_F = \frac{kT_A}{q} \left(\ln \left(\frac{I_{F1}}{I_{S}} \right) - \ln \left(\frac{I_{F2}}{I_{S}} \right) \right) \\

\Delta V_F = \frac{kT_A}{q} \ln(N) \\

\Delta V_F = V_{PTAT}
\]

Where:
- \(V_F \) = Forward Voltages
- \(I_F \) = Forward Currents
- \(V_{PTAT} \) = Voltage Proportional to Absolute Temperature

\(V_{PTAT} \) provides a linear voltage change with a slope of \((86 \mu\text{V}/\degree\text{C}) \ln(N)|_{N=10} = 200 \mu\text{V}/\degree\text{C}\). The voltage is either amplified for analog output sensors or is interfaced to an Analog-to-Digital Converter (ADC) for digital sensors. The accuracy of \(V_{PTAT} \) over the specified temperature range depends on the matching of both forward current \((I_F)\) and saturation current \((I_S)\) of the two sensors [1]. Any mismatch in these variables creates inaccuracy in the temperature measurement. The mismatch contributes to the temperature error or nonlinearity. The nonlinearity is described using a 2nd order polynomial equation.
FITTING POLYNOMIALS TO THE ERRORS

The accuracy characterization data is used to derive a 2nd order equation that describes the sensor error. The equation is used to improve the typical sensor accuracy by compensating for the sensor error.

Linear Fit Derivation

Figure 5 shows a typical accuracy curve which indicates that the accuracy error magnitudes are not the same at hot and cold temperatures. There is a 1st order error slope, or temperature error coefficient (EC₁), from -55° to +125°C. The error coefficient is calculated using an end-point-fit method:

EQUATION 3: ERROR SLOPE

\[
\Delta T_A = T_{hot} - T_{cold} \\
EC_1 = \frac{\Delta Error}{\Delta T_A}
\]

Where:

- \(T_{hot}\) = Highest Operating Temperature
- \(T_{cold}\) = Lowest Operating Temperature
- \(Error_{T_{hot}}\) = Error at Highest Operating Temperature
- \(Error_{T_{cold}}\) = Error at Lowest Operating Temperature
- \(EC_1\) = 1st Order Error Coefficient

Once the error slope is calculated, the corresponding offset is determined at cold by adjusting the error at cold temperature as shown in Equation 4.

EQUATION 4: 1ST ORDER ERROR

\[
Error_{T_{-1}} = EC_1(T_A - T_{cold}) + Error_{T_{cold}}
\]

Where:

- \(Error_{T_{-1}}\) = 1st order temperature error

Quadratic Fit Derivation

To capture the parabolic-shaped accuracy error between the temperature extremes (Figure 5), a 2nd order term and the corresponding coefficient must be computed.

EQUATION 5: 2ND ORDER ERROR

\[
Error_{T_{2}} = EC_2(T_{hot} - T_A) \cdot (T_A - T_{cold}) + Error_{T_{-1}}
\]

Where:

- \(Error_{T_{2}}\) = 2nd order temperature error
- \(EC_2\) = 2nd order error coefficient

Equation 5 shows that the 2nd order temperature error coefficient, \(EC_2\), is solved by specifying a temperature \(T_A\) where the calculated 2nd order error, \(Error_{T_{2}}\), is equal to the known error at \(T_A\). For example, if \(T_A\) is +25°C and \(Error_{T_{2}}\) is equal to the temperature error at +25°C, then Equation 5 is rearranged to solve for \(EC_2\) as shown in Equation 6.

EQUATION 6: 2ND ORDER ERROR COEFFICIENT

\[
EC_2 = \frac{(Error_{T_{2}} - Error_{T_{-1}})}{(T_{hot} - T_A) \cdot (T_A - T_{cold})}
\]

Equation 7 shows the complete 2nd order polynomial equation that is used to compensate the sensor error.

EQUATION 7: 2ND ORDER POLYNOMIAL EQUATION

\[
Error_{T_{2}} = EC_2(T_{hot} - T_A) \cdot (T_A - T_{cold}) + EC_1(T_A - T_{cold}) + Error_{T_{cold}}
\]
Typical Results

Equations 8, 9 and 10 show the 2nd order error equation of the tested parts for the MCP9800, MCP9700 and MCP9701, respectively. Since these devices have functional differences, the operating temperature range and temperature error coefficients differ.

EQUATION 8: MCP9800 2ND ORDER EQUATION

\[
\text{Error}_{T_2} = EC_2(125 \degree C - T_A) \cdot (T_A - 55 \degree C)
+ EC_1(T_A - 55 \degree C) + \text{Error}_{55}
\]

Where:
- \(EC_2 = 150 \times 10^{-6} \degree C/\degree C^2\)
- \(EC_1 = 7 \times 10^{-3} \degree C/\degree C\)
- \(\text{Error}_{55} = -1.5 \degree C\)

EQUATION 9: MCP9700 2ND ORDER EQUATION

\[
\text{Error}_{T_2} = EC_2(125 \degree C - T_A) \cdot (T_A - 40 \degree C)
+ EC_1(T_A - 40 \degree C) + \text{Error}_{40}
\]

Where:
- \(EC_2 = -244 \times 10^{-6} \degree C/\degree C^2\)
- \(EC_1 = 2 \times 10^{-12} \degree C/\degree C \approx 0 \degree C/\degree C\)
- \(\text{Error}_{40} = 2 \degree C\)

EQUATION 10: MCP9701 2ND ORDER EQUATION

\[
\text{Error}_{T_2} = EC_2(125 \degree C - T_A) \cdot (T_A - 15 \degree C)
+ EC_1(T_A - 15 \degree C) + \text{Error}_{15}
\]

Where:
- \(EC_2 = -200 \times 10^{-6} \degree C/\degree C^2\)
- \(EC_1 = 1 \times 10^{-3} \degree C/\degree C\)
- \(\text{Error}_{15} = 1.5 \degree C\)

The preceding equations describe the typical device temperature error characteristics.

ACCURACY COMPENSATION

To achieve higher accuracy in a temperature monitoring application, using Equations 8, 9 and 10 can compensate for the sensor error as shown in Equation 11.

EQUATION 11: TEMPERATURE COMPENSATION

\[
T_{\text{compensated}} = T_{\text{sensor}} - Error_{T_2} \big|_{T_A = T_{\text{sensor}}}
\]

Where:
- \(T_{\text{sensor}} = \) Sensor Output
- \(T_{\text{compensated}} = \) Compensated Sensor Output

For example, if the MCP9800 temperature output \(T_{\text{sensor}} = +65 \degree C\), the compensated temperature \(T_{\text{compensated}}\) is 64.6°C as shown below.

\[
T_{\text{compensated}} = 65 \degree C - Error_{T_2} \big|_{T_A = 65 \degree C} = 65 \degree C + EC_2(125 \degree C - 65 \degree C)(65 \degree C - 55 \degree C)
+ EC_1(T_A - 55 \degree C) + \text{Error}_{55}
= 64.6 \degree C
\]

Figures 6, 7 and 8 show the average sensor accuracy with the 2nd order error compensation for all tested devices. The figures indicate that, on average, the sensor accuracy over the operating temperature can be improved to ±0.2°C for the MCP9800, and ±0.05°C for the MCP9700 and MCP9701.

FIGURE 6: MCP9800 Average Accuracy After Compensation (160 parts).
Figures 9, 10 and 11 show an average and ±1 standard deviation of sensor accuracy for the tested parts with the 2nd order error compensation.

When comparing the compensated accuracy from Figures 9, 10 and 11 with the uncompensated accuracy from Figures 2, 3 and 4, the accuracy error distribution is shifted towards 0°C accuracy, providing a linear temperature reading.
The 2nd Order Temperature Coefficient

Among the compensations, the 2nd order temperature coefficient variable EC2 was evaluated at +25°C. For most applications, the compensation characteristics at this temperature are adequate. However, changing the temperature at which EC2 is evaluated provides relatively higher accuracy at narrower temperature ranges. For example, Figure 12 shows the MCP9700 EC2 evaluated at 0°, +25° and +90°C.

![Figure 12: MCP9700 Average Accuracy with Varying EC2.](image)

When comparing EC2 at 0° and +25°C, accuracy is higher at cold rather than hot temperatures. However, for EC2 evaluated at temperatures higher than +25°C, accuracy is higher at hot rather than cold temperatures. However, the magnitude of accuracy error difference among the various EC2 values is not significant. Therefore, EC2 evaluated at +25°C provides practical results.

CALIBRATION

Calibration of individual IC sensors at a single temperature provides superior accuracy for high-performance, embedded-system applications. Figure 13 shows that if the MCP9700 is calibrated at +25°C and the 2nd order error compensation is implemented, the typical sensor accuracy becomes ±0.5°C over the operating temperature range.

![Figure 13: MCP9700 Calibrated Sensor Accuracy.](image)
COMPENSATION USING PIC® MICROCONTROLLERS

A PIC MCU can implement the 2nd order accuracy error compensation for embedded temperature-monitoring systems. The equation is relatively easy to implement in a 16-bit core MCU since built-in math functions are readily available. However, 12 and 14-bit cores require firmware implementation of some math functions, such as 16-bit add, subtract, multiply and divide. This application note includes firmware that can compute and implement the compensation variables.

The file AN1001 Source Code.zip includes the MCP9700 and MCP9800 compensation firmware versions. These firmware versions are intended to be included in an existing embedded system firmware that uses a PIC MCU. All registers required to execute this routine are listed within the firmware. Once the temperature data from the device is retrieved using a serial interface or ADC input, the binary data must be loaded to the Bargb0 and Bargb1 registers. Detailed instructions are included in the firmware files.

Figure 14 shows the firmware flowchart.

FIGURE 14: Firmware Flowchart.

TEST RESULTS

The MCP9800 and MCP9700 demo boards (MCP9800DM-PCTL and MCP9700DM-PCTL, respectively) were used to evaluate the compensation firmware. A constant temperature air stream was applied directly to the temperature sensors. A thermocouple was used to accurately measure the air stream temperature and compare the sensor outputs.

TABLE 1: MEASUREMENT ACCURACY TEST RESULTS

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Temperature Error</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MCP9700</td>
</tr>
<tr>
<td>-40°C</td>
<td>0.9</td>
</tr>
<tr>
<td>-25°C</td>
<td>0.6</td>
</tr>
<tr>
<td>0°C</td>
<td>0.4</td>
</tr>
<tr>
<td>+25°C</td>
<td>0.3</td>
</tr>
<tr>
<td>+40°C</td>
<td>0.4</td>
</tr>
<tr>
<td>+90°C</td>
<td>1.2</td>
</tr>
<tr>
<td>+110°C</td>
<td>1.8</td>
</tr>
<tr>
<td>+125°C</td>
<td>2.3</td>
</tr>
</tbody>
</table>

Note 1: The “W/O” and “W” columns indicate accuracy without and with compensation.

The test result in Table 1 shows the accuracy improvement achieved using compensation firmware routines. At hot and cold temperatures, accuracy is improved by approximately 1° to 2°C, respectively.

CONCLUSION

The nonlinear accuracy characteristics of a temperature sensor is compensated for higher-accuracy embedded systems. The nonlinear accuracy curve has a parabolic shape that is described using a 2nd order polynomial equation. Once the equation is determined, it is used to compensate the sensor output. On average, the accuracy improvement using compensation is ±2°C (for all tested devices) over the operating temperature range. The compensation also improves the wide temperature accuracy specification limits at hot and cold temperature extremes. A PIC MCU can compute the equation and compensate the sensor output using the attached firmware.

WORK CITED

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications.

MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks
The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, flexPWR, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC® logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

The Embedded Control Solutions Company and mTouch are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MFP, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total Endurance, TSHARC, USBCheck, VanSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2010-2015, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-63277-739-3

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.