INTRODUCTION

This application note describes how to use the Enhanced, Capture, Compare, PWM (ECCP) on PIC16F684 for bidirectional, brushed DC (BDC) motor control. Low-cost BDC motor control can be used in applications such as intelligent toys, small appliances and power tools. PIC16F684 takes Microchip's mid-range family of products to the next level with its new ECCP peripheral. The ECCP peripheral builds on the technology of the CCP module with added features such as four PWM channels for easy bidirectional motor control through the hardware. This application note focuses on full-bridge configuration using the ECCP in PWM mode. The ECCP allows easy interfacing to a full-bridge configuration for bidirectional BDC motor control.

This application note describes the following:

• Calculating ECCP PWM Parameters
• Initializing the ECCP in Full-Bridge PWM mode
• Bidirectional BDC Motor Control
• Sensorless Motor Control Feedback
• Example Application

Note: All equations referenced in this application note can be found in Appendix A.
INITIALIZING THE ECCP IN
FULL-BRIDGE PWM MODE

When initializing the ECCP in Full-Bridge PWM mode, four registers need to be initialized:

PR2

The PR2 register affects the PWM frequency/period. The value to use for the PR2 register is calculated using Equation A-6.

CCPR1L:CCP1CON<5:4>

The PWM duty cycle has a full resolution of ten bits. Since all registers on PIC16F684 are 8 bits wide, the ten bits are spread over two registers. CCPR1L contains the upper eight bits and CCP1CON<5:4> contains the lower two bits. The 10-bit value for CCPR1L:CCP1CON<5:4> is calculated using Equation A-7.

CCP1CON

In addition to storing the lower two bits of the 10-bit PWM duty cycle, CCP1CON is used to set up the ECCP in PWM mode using bits CCP1CON<3:0>. It can also change the motor direction using bits CCP1CON<7:6>. When setting up the ECCP in PWM mode, there are four possible configurations. These configurations accommodate H-bridges with MOSFETS that are active-high, active-low or a combination of both active-high and active-low. Motor direction can be changed in hardware by configuring bits CCP1CON<7:6> to be '01' for forward or '11' for reverse. The PIC16F684 ECCP hardware switches channels for activating and modulating the appropriate MOSFET drivers in the H-bridge.

T2CON

The T2CON register is used for setting up the Timer2 prescaler and turning on Timer2. The Timer2 prescaler is contained in bits T2CON<1:0> and is used in determining the PWM frequency, duty cycle and resolution. Timer2 must be turned on by setting bit T2CON<2> before the PWM signal starts. An algorithm that calculates the Timer2 prescaler and PR2 values for PWM frequencies is shown in Figure B-1.
BIDIRECTIONAL BDC MOTOR CONTROL

The ECCP makes changing the motor direction easy by configuring CCP1CON<7:6> to be '01' for forward (Figure 1) or '11' for reverse (Figure 2).

FIGURE 1: FULL-BRIDGE FORWARD CURRENT FLOW DIAGRAM

```
<table>
<thead>
<tr>
<th>PIC16F684</th>
<th>P1A</th>
<th>Logic '1'</th>
<th>FET Driver</th>
<th>QA</th>
<th>Logic '0'</th>
<th>FET Driver</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P1B</td>
<td>Logic '0'</td>
<td>FET Driver</td>
<td>QC</td>
<td>Logic '1'</td>
<td>FET Driver</td>
</tr>
<tr>
<td></td>
<td>P1C</td>
<td>Logic '0'</td>
<td></td>
<td>QC</td>
<td>Logic '0'</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P1D</td>
<td>Logic '0'</td>
<td></td>
<td>QC</td>
<td>Logic '0'</td>
<td></td>
</tr>
</tbody>
</table>

CCP1CON<3:0> = 1100
CCP1CON<7:6> = 01
```

FIGURE 2: FULL-BRIDGE REVERSE CURRENT FLOW DIAGRAM

```
<table>
<thead>
<tr>
<th>PIC16F684</th>
<th>P1A</th>
<th>Logic '0'</th>
<th>FET Driver</th>
<th>QA</th>
<th>Logic '1'</th>
<th>FET Driver</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P1B</td>
<td>Logic '0'</td>
<td>FET Driver</td>
<td>QC</td>
<td>Logic '0'</td>
<td>FET Driver</td>
</tr>
<tr>
<td></td>
<td>P1C</td>
<td>Logic '1'</td>
<td></td>
<td>QC</td>
<td>Logic '0'</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P1D</td>
<td>Logic '0'</td>
<td></td>
<td>QC</td>
<td>Logic '0'</td>
<td></td>
</tr>
</tbody>
</table>

CCP1CON<3:0> = 1100
CCP1CON<7:6> = 11
```
LOW COST SENSORLESS MOTOR CONTROL FEEDBACK

Sensorless RPM Measurement

Low-cost RPM measurement can be performed with a BDC motor by measuring the back EMF voltage from the motor (see Figure 3). The BDC RPM is directly proportional to the back EMF voltage. Since a BDC motor can be modeled as an inductive load, the voltage across the motor is equivalent to the inductance multiplied by dI/dt. In this application, a 12V, 9600 max RPM BDC motor was used. To measure the back EMF voltage, turn off the modulated FET. This will cause the current to flow in the opposite direction. After initially shutting off the FET, dI/dt must stabilize before taking the measurement. In order to use the PIC microcontroller A/D converter, the measured voltage must be between 0V and VDD. Since the back EMF voltage can be between 0V-12V, a voltage divider circuit is used to scale the back EMF voltage between 0V and VDD. Using Microchip’s MSP6S26 Programmable Gain Amplifier (PGA), a gain of 1 is used for buffering the scaled voltage that is being measured by the PIC16F684 A/D channel (see Equation A-8 for calculating RPM).

Sensorless Current Measurement

Low-cost current measurements can be performed by using a current sensing resistor between the MOSFETS and ground (see Figure 4). To select a value appropriate for the resistance, consider the maximum amount of current allowed to flow through the resistor and the maximum amount of power dissipation.

In this application, a 0.1 ohm, 1W current sensing resistor was used with a maximum current of 3A. When 3A flow through the resistor, the ideal power dissipated in the resistor is 0.9W (see Equation A-9) and the voltage across the resistor is 0.3V (see Equation A-10). In order to get the most resolution from the 10-bit A/D converter, the voltage across the resistor at 3A must be amplified as close as possible to the PIC16F684 VDD, which is 5V in this application. Using Microchip’s MSP6S26 PGA, a gain of 16 will ideally give 4.8V, at the maximum 3A specified current (see Equation A-11). A gain of 16 gives a 9.94-bit A/D resolution for measuring current (see Equations A-12 and A-13). The current through the resistor can then be computed using Equations A-14, A-15 and A-16.

Since a PWM signal is used to drive the BDC motor, the H-bridge circuit only draws current during the high pulse-width of the PWM period. To obtain a current measurement, the voltage across the current sensing resistor is sampled over a PWM period. A sampling and averaging algorithm of taking measurements over multiple PWM periods is shown in Figure B-2.

FIGURE 3: FULL-BRIDGE FORWARD CONFIGURATION WITH BACK EMF MEASUREMENT

![Diagram of Full-Bridge Forward Configuration with Back EMF Measurement]

Legend:
- PIC16F684
- FET Driver
- QA, QC, QB, QD
- Logic '1'
- Logic '0'
- V+ (Supply Voltage)
- BDC (Buck-Converter Drive)
- VBACKEMF
- CCP1CON<3:0> = 1100
- CCP1CON<7:6> = 01
EXAMPLE APPLICATION

This example application demonstrates a low-cost BDC motor control system using the ECCP configured in Full-Bridge PWM mode (see Figure 5). The user interface allows the user to easily configure a BDC motor with PIC16F684, adjust the PWM frequency and duty cycle, change the PIC16F684 internal oscillator frequency in real-time, and view RPM and current measurements. This application source code was written using the HI-TECH C® compiler, MPLAB® IDE, and the Microsoft Visual C++® 6.0 development platform.

FIGURE 5: MECHATRONICS BLOCK DIAGRAM
Firmware

The example firmware is responsible for many operations:

- Initializing the PIC16F684
- Sending bit-banged SPI commands to the PGA
- Receiving commands from the PC
- Modifying the PWM frequency and duty cycle
- Changing the motor’s direction
- Changing the internal oscillator frequency
- Taking A/D converter measurements for RPM and current

The PIC16F684 firmware implements a bit-banged RS-232 USART running at 9600 bps. See Appendix C for the RS-232 serial protocol used in this application note. The C source code can be downloaded from www.microchip.com. See Figure B-3 for the main program flow.

Software

The Windows® user interface provides the user a friendly environment for interfacing the BDC motor. The user interface allows the user to adjust the PWM frequency, duty cycle, motor direction and internal oscillator frequency. The user interface also displays the PWM frequency, duty cycle, resolution, RPM and current. The PC software is the host and sends commands to the PIC16F684 using RS-232. The Windows user interface source code can also be downloaded from www.microchip.com. The Windows user interface example is shown in Figure 6.

Hardware

The hardware used in this application note contains three major sections:

- Power stage for motor control
- Communication for RS-232
- Measurement for RPM and current

The power stage consists of a full H-bridge used for bidirectional BDC motor control. PIC16F684 uses RC2-RC5 as the four ECCP pins that interface with the full H-bridge circuit.

The communication section consists of an RS-232 serial communication configuration. PIC16F684 uses RA5 for sending and receiving RS-232 data.

The measurement section consists of Microchip’s MSC6S26 multi-channel PGA and a voltage divider circuit for scaling the back EMF voltage, as discussed in Section “Sensorless RPM Measurement”.

PIC16F684 communicates to the PGA via a 3-wire bit-banged SPI interface. The CS pin is connected to RA1. The SCK pin is connected to RA2. The SI pin is connected to RC0. The VREF pin is connected to GND. The RA0 pin is used as an analog input for measuring RPM and current. The RA0 pin is connected to the VOUT pin on the PGA. Channel 0 on the PGA is used for RPM measurements. Channel 1 on the PGA is used for current measurements. See Figure D-1 for the schematic diagram of the hardware.
CONCLUSION

PIC16F684 is well suited for low-cost bidirectional BDC motor control. This application note demonstrates how easy it is to calculate the necessary parameters for using the ECCP in PWM mode, to initialize the necessary ECCP registers, use the ECCP for bidirectional BDC motor control and implement sensorless RPM and current measurements. This application note concludes by showing a full application implementation using PC Windows software, PIC16F684 firmware and motor control hardware.

REFERENCES

1. PIC16F684 14-Pin, Flash-Based 8-Bit CMOS Microcontrollers with nanoWatt Technology Data Sheet (DS41202): www.microchip.com/PIC16F684
3. MPLAB® IDE: www.microchip.com/archives
APPENDIX A: EQUATIONS

EQUATION A-1: PWM FREQUENCY (HZ)

\[\text{Frequency} = \frac{1}{\text{Period}} \]

EQUATION A-2: PWM PERIOD (SECONDS)

\[\text{Period} = [(PR2 + 1)] \times 4 \times \text{Tosc} \times \text{TMR2Prescaler} \]

EQUATION A-3: DUTY CYCLE (SECONDS)

\[DC = \frac{\text{CCPRIL:CCP1CON<5:4>}}{\text{Tosc} \times \text{TMR2Prescaler}} \times \text{DC} \]

EQUATION A-4: VOLTAGE ACROSS BDC MOTOR (VOLTS)

\[V_{BDC} = V_{DD} \times \left(\frac{DC}{\text{Period}} \right) \]

EQUATION A-5: RESOLUTION (BITS)

\[\text{Resolution} = \log_{2} \left(\frac{\text{Fosc}}{\left(\text{FPWM} \times \text{TMR2Prescaler} \right)} \right) \]

EQUATION A-6: PR2

\[PR2 = \left(\frac{\text{Period}}{4 \times \text{Tosc} \times \text{TMR2Prescaler}} \right) - 1 \]

EQUATION A-7: CCPR1L:CCP1CON<5:4>

\[\text{CCPRIL:CCP1CON<5:4>} = \frac{DC}{\text{Tosc} \times \text{TMR2Prescaler}} \]

EQUATION A-8: RPM

\[RPM = \left(1 - \left(\frac{\text{ADRESH}:\text{ADRESL}}{1024} \right) \right) \times \text{RPM}_{\text{MAX}} \]
EQUATION A-9: POWER (W)

\[P = I_{MAX}^2 \times R = 3^2 \times 0.1 = 0.9W \]

EQUATION A-10: MAXIMUM VOLTAGE ACROSS RESISTOR (VOLTS)

\[V_{NOMINAL MAX} = I_{MAX} \times R = 3 \times 0.1 = 0.3V \]

EQUATION A-11: MAXIMUM VOLTAGE AFTER AMPLIFICATION (VOLTS)

\[V_{GAIN MAX} = V_{NOMINAL MAX} \times Gain = 0.3 \times 16 = 4.8V \]

EQUATION A-12: BITS OF RESOLUTION

\[2^X = \frac{V_{GAIN MAX}}{V_{DD}} \times 1024, \text{ where } X \text{ is bits of resolution} \]

EQUATION A-13: BITS OF RESOLUTION SOLVED FOR X

\[X = \log \left(\frac{V_{GAIN MAX} \times 1024}{V_{DD}} \right) = \frac{\log(4.8 \times 1024)}{\log(2)} = 9.94 \text{ bits} \]

EQUATION A-14: GAIN VOLTAGE MEASURED (VOLTS)

\[V_{GAIN} = \left(\frac{ADRESH:ADRESL}{2^X} \right) \times V_{GAIN MAX} \]

EQUATION A-15: ACTUAL VOLTAGE ACROSS RESISTOR (VOLTS)

\[V_{ACTUAL} = \frac{V_{GAIN}}{Gain} \]

EQUATION A-16: CURRENT THROUGH RESISTOR (VOLTS)

\[I = \frac{V_{ACTUAL}}{R} \]
FIGURE B-1: CALCULATING TIMER2 PRESCALER AND PR2 ALGORITHM GIVEN A PWM FREQUENCY

Legend:
PR2 = unsigned int.
Prescaler = unsigned char.
i = unsigned char.
FIGURE B-2: PWM SAMPLING AND AVERAGING ALGORITHM

Start

Measure PWM Period

All samples taken?

Yes

Average Samples

No

Synchronize on PWM High-Edge

Delay

Start A/D Conversion

Is A/D conversion complete?

Yes

Log Sample

No

Increment Delay

FIGURE B-3: MAIN ROUTINE

Start

Initialize PIC16F684

Is command received?

No

Is command valid?

Yes

Process Command

Send Response
APPENDIX C: RS-232 SERIAL COMMUNICATIONS PROTOCOL

Since one-wire communication is being implemented, the command sent from the PC to PIC16F684 will be echoed back. An example of this can be seen on the firmware version box in the Windows GUI. The firmware version box contains (f)[F1.0]. The PC command sent is (f). The PIC16F684 firmware response is [F1.0]. The general form of the command and response are described below as well as the commands implemented in the example application.

C.1 General Form

PC Command:
<command start><command><data> <command end>
Ex: (f).

PIC16F684 Response:
<response start><response><data><response end>
Ex: [F1.0]

Note 1: The <command> is lower case.
2: The <response> is the upper case of the <command>.
3: If there is no <data> to be sent, the <command end> can be the next character sent.
4: All <data> is sent in Hex format.
5: All <data> is sent Most Significant Byte first.
6: Invalid commands are ignored and responded with a [?].
7: Invalid <command start> is ignored and not responded to.
8: Commands and responses are currently set to ten characters each, this can be adjusted in the source code on both the Windows software and PIC16F684 firmware.

C.2 Example Application Command Set

PR2 Command: Loads data into the PR2 register.
PC Command: (aAF)
P1C16F684 Response: [A]

CCPR1L Command: Loads data into the CCPR1L register.
PC Command: (b1F)
P1C16F684 Response: [B]

CCP1CON<5:4> Command: Loads data into CCP1CON<5:4>.
PC Command: (c3)
P1C16F684 Response: [C]

Timer2 Prescaler Command: Loads data into T2CON<1:0>.
PC Command: (d0)
P1C16F684 Response: [D]

PC Command: (e6)
P1C16F684 Response: [E]

FW Command: Requests the PIC16F684 firmware version.
PC Command: (f)
P1C16F684 Response: [F1.0]

Motor Control Command: Loads data into CCP1CON<7:6>.
PC Command: (g3)
P1C16F684 Response: [G]

RPM Measurement Command: Requests a RPM measurement.
PC Command: (h)
P1C16F684 Response: [H3FF]

Current Measurement Command: Requests a Current measurement.
PC Command: (i)
P1C16F684 Response: [I2BC]
APPENDIX D: SCHEMATICS

FIGURE D-1: HARDWARE SCHEMATIC

![Diagram of a hardware schematic for PIC16F684](image-url)
FIGURE D-2: BDC MOTOR CONTROL SCHEMATIC
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks
The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, mTouch, PIC, PICmicro, PICSTART, PIC®32 logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICKit, PICtail, REAL ICE, rflAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2003-2014, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, K64F® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
<table>
<thead>
<tr>
<th>Region</th>
<th>Location</th>
<th>Address Details</th>
<th>Phone Numbers</th>
<th>Fax Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Americas</td>
<td>Corporate Office</td>
<td>2355 West Chandler Blvd. Chandler, AZ 85224-6199</td>
<td>Tel: 480-792-7200</td>
<td>Fax: 480-792-7277</td>
</tr>
<tr>
<td>Asia/Pacific</td>
<td>Asia Pacific Office</td>
<td>Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong</td>
<td>Tel: 852-2943-5100</td>
<td>Fax: 852-2401-3431</td>
</tr>
<tr>
<td></td>
<td>Australia - Sydney</td>
<td>Tel: 61-2-9868-6733</td>
<td>Fax: 61-2-9868-6755</td>
<td></td>
</tr>
<tr>
<td></td>
<td>China - Beijing</td>
<td>Tel: 86-10-8569-7000</td>
<td>Fax: 86-10-8528-2104</td>
<td></td>
</tr>
<tr>
<td></td>
<td>China - Chengdu</td>
<td>Tel: 86-28-8665-5511</td>
<td>Fax: 86-28-8665-7889</td>
<td></td>
</tr>
<tr>
<td></td>
<td>China - Chongqing</td>
<td>Tel: 86-23-8980-9588</td>
<td>Fax: 86-23-8890-9500</td>
<td></td>
</tr>
<tr>
<td></td>
<td>China - Hangzhou</td>
<td>Tel: 86-571-8792-8115</td>
<td>Fax: 86-571-8792-8116</td>
<td></td>
</tr>
<tr>
<td></td>
<td>China - Hong Kong SAR</td>
<td>Tel: 852-2943-5100</td>
<td>Fax: 852-2401-3431</td>
<td></td>
</tr>
<tr>
<td></td>
<td>China - Nanjing</td>
<td>Tel: 86-25-8473-2460</td>
<td>Fax: 86-25-8473-2470</td>
<td></td>
</tr>
<tr>
<td></td>
<td>China - Qingdao</td>
<td>Tel: 86-532-8502-7355</td>
<td>Fax: 86-532-8502-7205</td>
<td></td>
</tr>
<tr>
<td></td>
<td>China - Shanghai</td>
<td>Tel: 86-21-5407-5533</td>
<td>Fax: 86-21-5407-5066</td>
<td></td>
</tr>
<tr>
<td></td>
<td>China - Shenyang</td>
<td>Tel: 86-24-2334-2829</td>
<td>Fax: 86-24-2334-2393</td>
<td></td>
</tr>
<tr>
<td></td>
<td>China - Shenzhen</td>
<td>Tel: 86-755-8864-2200</td>
<td>Fax: 86-755-8203-1760</td>
<td></td>
</tr>
<tr>
<td></td>
<td>China - Wuhan</td>
<td>Tel: 86-27-5980-5300</td>
<td>Fax: 86-27-5980-5118</td>
<td></td>
</tr>
<tr>
<td></td>
<td>China - Xian</td>
<td>Tel: 86-29-8833-7252</td>
<td>Fax: 86-29-8833-7256</td>
<td></td>
</tr>
<tr>
<td></td>
<td>China - Xiamen</td>
<td>Tel: 86-592-2388138</td>
<td>Fax: 86-592-2388130</td>
<td></td>
</tr>
<tr>
<td></td>
<td>China - Zhuhai</td>
<td>Tel: 86-756-3210040</td>
<td>Fax: 86-756-3210049</td>
<td></td>
</tr>
<tr>
<td>Europe</td>
<td>Austria - Wels</td>
<td>Tel: 43-7242-2244-39</td>
<td>Fax: 43-7242-2244-39</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Denmark - Copenhagen</td>
<td>Tel: 45-4450-2828</td>
<td>Fax: 45-4485-2829</td>
<td></td>
</tr>
<tr>
<td></td>
<td>France - Paris</td>
<td>Tel: 33-1-69-53-63-20</td>
<td>Fax: 33-1-69-30-90-79</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Germany - Dusseldorf</td>
<td>Tel: 49-2129-376640</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Germany - Munich</td>
<td>Tel: 49-89-627-144-0</td>
<td>Fax: 49-89-627-144-44</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Germany - Pforzheim</td>
<td>Tel: 49-7231-424750</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Italy - Milan</td>
<td>Tel: 39-0331-742611</td>
<td>Fax: 39-0331-466781</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Italy - Venice</td>
<td>Tel: 39-049-762528</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Netherlands - Drunen</td>
<td>Tel: 31-416-690399</td>
<td>Fax: 31-416-690340</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Poland - Warsaw</td>
<td>Tel: 48-22-332573</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spain - Madrid</td>
<td>Tel: 34-91-708-08-90</td>
<td>Fax: 34-91-708-08-91</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sweden - Stockholm</td>
<td>Tel: 46-8-5090-4654</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>UK - Wokingham</td>
<td>Tel: 44-118-921-5800</td>
<td>Fax: 44-118-921-5820</td>
<td></td>
</tr>
</tbody>
</table>