INTRODUCTION

There are various ways on how to implement the Analog-to-Digital (A/D) conversion in a circuit. For a simple and low bandwidth analog application such as DC voltmeter, it is desirable to have a low cost yet high resolution A/D converter.

This application note describes a method to implement A/D conversion on the PIC16C5X and PIC16F5X series of microcontrollers. The converter requires only five external components and is software and hardware configurable for conversion resolutions from six bits up to ten bits, and conversion times of 250 us or longer. The method is usable for both voltage and current conversion and uses a software calibration technique that compensates for time and temperature drift, as well as component errors. Following are reasons why PIC16C5X and PIC16F5X microcontroller families are ideal for simple analog applications:

- Very low cost
- Few external components required
- Fully programmable; PIC16C5X microcontrollers for One-Time-Programmable (OTP) EEPROM devices and PIC16F5X for Flash devices

THEORY OF OPERATION

Figure 1 shows a simplified schematic of the A/D converter circuit. There are two input voltages connected one at a time to op amp U1. VREF is the fixed reference voltage used in calibration and VMEAS is the unknown voltage to be converted. Resistor R1 and Capacitor C1 form a charging circuit used to convert input voltage to time. The existence of U1 in the circuit removes the logarithmic characteristic that would occur if the input voltage is directly applied to R1 and C1. The microcontroller controls the U1 operation by turning ON/OFF the four switches, S1-S4 of Analog Switch IC, at different conversion stages. Additionally, the microcontroller measures the time and calculates the digital representation of the unknown input voltage.

The circuit can also be used as a Current mode A/D converter. In this case, the input voltage to the current converter is not needed and the reference current and input current are both routed via analog switches directly into the capacitor.
In order to visualize the different stages of conversion, let us refer to U1 output voltage V_O waveform shown in Figure 2.

FIGURE 2: OPERATIONAL AMPLIFIER OUTPUT VOLTAGE WAVEFORM

At t_0-t_1, S1 and S3 are ON, S2 and S4 are OFF and RA0 is pulled to ground by the software. This yields the equivalent circuit in Figure 3. V_O is equal to V_{REF} since V_{IN} is equal to V_{REF} and S3 force unity gain feedback. C1 is discharging or is initially discharged after the Reset state. In any case, this stage ensures that C1 is fully discharged before going to the next stage. At the end of t_1, S1 remains ON, S2 remains OFF, S3 is OFF, S4 is ON and RA0 is configured as an input pin. This yields the equivalent circuit in Figure 4. As a function of V_{REF}, V_O is started to ramp-up linearly while C1 is charging. The V_O ramp-up continues until the threshold voltage input V_{th} of the microcontroller trips. This generates a software calibration value equal to t_{ref}. This calibration value is measured and used to calibrate out most circuit errors, including inaccuracies in the resistor and capacitor, changes in the V_{th}, and temperature variation.

FIGURE 3: EQUIVALENT CIRCUIT DURING DISCHARGING

After the software calibration value is measured at t_2, S2 and S3 are ON, S1 and S4 are OFF and RA0 is pulled to ground again by the software. This yields the same equivalent circuit in Figure 3. However, V_O is equal to V_{MEAS} since V_{IN} is equal to V_{MEAS} and S3 force unity feedback. C1 is discharging from t_2 to t_3. At the end of t_3, S2 remains ON, S1 remains OFF, S3 is OFF, S4 is ON and RA0 is configured as an input pin. This yields the same equivalent circuit in Figure 4. As a function of V_{MEAS}, V_O is started to ramp-up linearly while C1 is charging. The V_O ramp-up continues until the V_{th} of the microcontroller trips. This generates a software V_{MEAS} value equal to t_{meas}. This value is compared to the software calibration value to determine the actual digital representation of V_{MEAS}.
A/D CONVERTER EQUATIONS

Based on the circuit operation, equation is used by the microcontroller in order to calculate the final conversion result.

In Figure 4, current through R1 is equal to the current through C1.

When input voltage V_{IN} is equal to V_{REF}, the relation between the two currents are represented as (see Equation 1):

EQUATION 1: R1 AND C1 CURRENT EQUATION WHEN INPUT VOLTAGE IS V_{REF}

$$\frac{V_{ref}}{R1} = C1 \frac{dV_0}{dt}$$

and when V_{IN} is equal to V_{MEAS}, the relation between the two currents are represented as (see Equation 2):

EQUATION 2: R1 AND C1 CURRENT EQUATION WHEN INPUT VOLTAGE IS V_{MEAS}

$$\frac{V_{meas}}{R1} = C1 \frac{dV_0}{dt}$$

Integrating Equation 1 and 2 results (see Equation 3 and Equation 4):

EQUATION 3: INTEGRATION RESULT OF EQUATION 1

$$V_0 = \frac{1}{R1C1} \int_{0}^{t_{ref}} V_{ref} dt$$

and

EQUATION 4: INTEGRATION RESULT OF EQUATION 2

$$V_0 = \frac{1}{R1C1} \int_{0}^{t_{meas}} V_{meas} dt$$

Since V_{REF} and V_{MEAS} is constant input, Equation 3 and Equation 4 can be reduced further to:

EQUATION 5: U1 VOLTAGE OUTPUT EQUATION AS A FUNCTION OF V_{REF}

$$V_0 = \frac{V_{ref} t_{ref}}{R1C1}$$

and

EQUATION 6: U1 VOLTAGE OUTPUT EQUATION AS A FUNCTION OF V_{MEAS}

$$V_0 = \frac{V_{meas} t_{meas}}{R1C1}$$

At the end of each measurement, V_O of Equation 5 and Equation 6 are both equal to V_{th}, therefore, equating both equations yields:

EQUATION 7: RESULT OF EQUATIONS 5 AND 6

$$V_{ref} t_{ref} = V_{meas} t_{meas}$$

In Equation 7, R1 and C1 can be eliminated and solved for V_{MEAS}, the unknown input voltage.

EQUATION 8: FINAL CONVERSION

$$V_{meas} = \frac{V_{ref} t_{ref}}{t_{meas}}$$

In Equation 8, it is apparent that the measurement is independent of the value of circuit elements R1 and C1. This makes the conversion insensitive to errors in R1 and C1 value, due to the inaccuracy or temperature variation. However, this does not mean that the value of R1 and C1 is unimportant in the design of the A/D converter. The values of R1 and C1 should be selected based upon the number of bits of resolution. Looking back at Equation 6 and solving $R1C1$ (see Equation 9):
EQUATION 9: CALCULATION OF R1C1 VALUE

\[
R1C1 = \frac{V_{\text{meas}} \cdot t_{\text{meas}}}{V_0}
\]

where

- \(V_{\text{meas}} \) = Lowest voltage to be measured (at least ten LSBs)
- \(t_{\text{meas}} \) = Time to do the number of bits of resolution desired
 \((2^N \times fosc \times 4 \text{ clock/cycle} \times \text{instruction cycles per count} \times \text{desired bits per count}) \)
- \(V_0 = V_{\text{th}} \) = Threshold Voltage input of the PIC16C5x/PIC16F5x being used (3V estimated)

The actual value for R1C1 should be slightly smaller than calculated, to ensure that the PIC16C5X or PIC16F5X does not over count during the measurement.
CIRCUIT CONFIGURATIONS

C and Assembly code implementing the circuit of Figure 1 is listed in Appendix A: “Source Code in C” and Appendix B: “Source Code in Assembly”.

These codes measure the time up to 16 bits. The full implementation of algorithm can be seen in the flowchart shown in Figure 5.

FIGURE 5: A/D CONVERSION FLOWCHART

There is a difference between the R1C1 value when implementing in Assembly and C. This is because the instruction cycles per count, when using C, is greater than the Assembly.

Using the 4 MHz external RC clock oscillator, the value of R1C1 can be calculated as follows (see Equation 10):

For the C code:

EQUATION 10: R1C1 CALCULATION IN C

\[R1C1 = \frac{100 mV \times 2^{16} \times \frac{1}{4 MHz} \times 4 \times \text{clocks per cycle} \times 16 \text{ cycles per count}}{3V} \]

For the Assembly code (see Equation 11):

EQUATION 11: R1C1 CALCULATION IN ASSEMBLY

\[R1C1 = \frac{100 mV \times 2^{16} \times \frac{1}{4 MHz} \times 4 \times \text{clocks per cycle} \times 6 \text{ cycles per count}}{3V} \]
In actual applications, if measurement accuracy permits, it may be advantageous to use lower resolution bits and higher clock source. The math code can be substantially reduced and the measure time is reduced by the simpler code and shorter count.

CIRCUIT PERFORMANCE

The calibration value removes all first order errors (offset, gain, R and C inaccuracy, power supply voltage and temperature) except the reference voltage drift. Any change in the reference voltage, including noise, may result in measurement errors. Other error sources may be analog switch leakage, resistor and capacitor non-linearities, input threshold uncertainty and time measurement uncertainty (± one instruction cycle time). Measured performance shows the converter to be accurate within ±1% of full scale.

FIGURE 6: PERCENT ERROR AT FULL-SCALE CONVERSION

V_{REF} = 2.5V; R1 = 33K ohm; C1 = 1uF

<table>
<thead>
<tr>
<th>V_{IN}</th>
<th>Computed</th>
<th>Actual</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HEX</td>
<td>DEC</td>
</tr>
<tr>
<td>2.5</td>
<td>9A3</td>
<td>2467</td>
</tr>
<tr>
<td></td>
<td>9A1</td>
<td>2465</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>%ERROR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.081%</td>
</tr>
</tbody>
</table>

CONCLUSION

For a simple and low bandwidth analog application, it usually requires a low cost yet high resolution A/D converter. By using the PIC16C5X and PIC16F5X baseline family of microcontrollers, this application note demonstrates how to meet such requirements. The A/D converter does not only use fewer components but also has a capability to calibrate out most circuit errors.
APPENDIX A: SOURCE CODE IN C

Software License Agreement
The software supplied herewith by Microchip Technology Incorporated (the “Company”) is intended and supplied to you, the Company’s customer, for use solely and exclusively with products manufactured by the Company.

The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved. Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil liability for the breach of the terms and conditions of this license.

THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
EXAMPLE A-1: A/D CONVERTER PROGRAM IN C

/**
File Name:
PIC16F5xADC.c

Summary:
This is the main file used for the Application Note AN00513

Hardware implementation requires:
R1 = 33K ohm
C1 = 1uF
RC oscillator value are 4.7K ohm and 22pF, respectively.
Vref = 2.5V

Generation Information :
Device : PIC16F57
Compiler : XC8 v1.21
MPLAB : MPLAB X 1.90
**/

/**
Copyright (c) 2013 released Microchip Technology Inc. All rights reserved.

Microchip licenses to you the right to use, modify, copy and distribute
Software only when embedded on a Microchip microcontroller or digital signal
controller that is integrated into your product or third party product
(pursuant to the sublicense terms in the accompanying license agreement).

You should refer to the license agreement accompanying this Software for
additional information regarding your rights and obligations.

SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY, TITLE, NON-INFRINGEMENT AND FITNESS FOR A PARTICULAR PURPOSE.
IN NO EVENT SHALL MICROCHIP OR ITS LICENSORS BE LIABLE OR OBLIGATED UNDER
CONTRACT, NEGLIGENCE, STRICT LIABILITY, CONTRIBUTION, BREACH OF WARRANTY, OR
OTHER LEGAL EQUITABLE THEORY ANY DIRECT OR INDIRECT DAMAGES OR EXPENSES
INCLUDING BUT NOT LIMITED TO ANY INCIDENTAL, SPECIAL, INDIRECT, PUNITIVE OR
CONSEQUENTIAL DAMAGES, LOST PROFITS OR LOST DATA, COST OF PROCUREMENT OF
SUBSTITUTE GOODS, TECHNOLOGY, SERVICES, OR ANY CLAIMS BY THIRD PARTIES
(INCLUDING BUT NOT LIMITED TO ANY DEFENSE THEREOF), OR OTHER SIMILAR COSTS.
**/

#include <xc.h>

// CONFIG
#pragma config OSC = RC // Oscillator selection bits (RC oscillator)
#pragma config WDT = OFF // Watchdog timer enable bit (WDT disabled)
#pragma config CP = OFF // Code protection bit (Code protection off)

void initPORTS()
{
 PORTA = 0x00; //set RA0 low (on when activated)
 TRISB = 0x00; //set all pins in PORTB as output
 OPTION = 0x28; //select positive edge for TMRO
}
EXAMPLE A-2: A/D CONVERTER PROGRAM IN C

```c
void DSCHRG_CAP()
{
    TRISA = 0x00;  // RA0 on
    _delay(5000);  // RC discharging time
    TRISA = 0x01;  // set RA0 to have high impedance
}

void main()
{
    unsigned int Tcount, Tmeas, Tref, Vref, Vmeas;
    unsigned long mpy;

    Vref = 0x09A3;  // Digital Equivalent of Vref voltage
    Vmeas = 0;      // Initiate Vmeas to 0
    initPORTS();   // Initialize I/O pin
    while(1)
    {
        PORTB = 0x05;  // S1 and S3 activated (Vref)
        DSCHRG_CAP();  // discharge capacitor charge
        PORTB = 0x09;  // S1 and S4 activated
        TMR0 = 0x00;   // reset counter and TMR0
        Tcount = 0;
        while(!TMR0)  // increment Tcount until TMR0 trips
        {
            Tcount++;
        }
        Tref = Tcount;
        PORTB = 0x06;  // S2 and S3 activated (Vmeas)
        DSCHRG_CAP();  // discharge capacitor charge
        PORTB = 0x0A;  // S2 and S4 activated
        TMR0 = 0x00;   // reset counter and TMR0
        Tcount = 0;
        while(!TMR0)  // increment Tcount until TMR0 trips
        {
            Tcount++;
        }
        Tmeas = Tcount;
        mpy = (long) Tref*Vref;  // perform mathematical operation to get Vin
        Vmeas = mpy / Tmeas;    // result
    }
}
```
APPENDIX B: SOURCE CODE IN ASSEMBLY

EXAMPLE B-1: A/D CONVERTER PROGRAM IN ASSEMBLY

;**
; Revision Date:
; 12-10-2013
;
; File Name:
; PIC16F5xADCasm.asm
;
; Summary:
; This is the main file used for the Application Note AN00513
;
; Hardware implementation requires:
; R1 = 13K ohm
; C1 = 1uF
; RC oscillator value are 4.7K ohm and 22pF, respectively.
;
; Generation Information :
; Device : PIC16F54
; Compiler : MPASM v5.52
; MPLAB : MPLAB X 1.90
;**

#INCLUDE <P16F54.INC>

__config 0xFFFFB ; configuration setting:
; OSC_RC, WDT_OFF, CP_OFF

; Digital Equivalent of Vref voltage

#define VCALMS 009 ; VCAL MSB VALUE IN HEX
#define VCALLS 02E ; VCAL LSB VALUE IN HEX
EXAMPLE B-2: A/D CONVERTER PROGRAM IN ASSEMBLY

```
ACCA EQU  8
ACCB EQU  0A
ACCC EQU  0C
ACCD EQU  0E
ACCE EQU  10
TMEAS EQU  12
TEMP EQU  14

TEMP1 EQU  16
TEMP2 EQU  17
TEMP3 EQU  18

ORG  0
GOTO VOLTS ;PROGRAM CODE

MADD    MOVF    ACCA+1,W
       ADDWF   ACCB+1, F ;ADD LSB
       BTFSC   3,0       ;ADD IN CARRY
       INCF    ACCB, F
       MOVF    ACCA,W
       ADDWF   ACCB, F ;ADD MSB
       RETLW   0
NOP

MPY      CALL    SETUP ;RESULTS IN B(16 MSB'S) AND C(16 LSB'S)
MLOOP    RRF     ACCD, F ;ROTATE D RIGHT
       RRF     ACCD+1, F
       SKPNC                   ;NEED TO ADD?
       CALL    MADD
       RRF     ACCB, F
       RRF     ACCB+1, F
       RRF     ACCC, F
       RRF     ACCC+1, F
       DECFSZ  TEMP, F         ;LOOP UNTIL ALL BITS CHECKED
       GOTO    MLOOP
       RETLW   0
NOP

SETUP    MOVLW   10
       MOVWF   TEMP
       MOVF    ACCB,W         ;MOVE B TO D
       MOVWF   ACCD
       MOVF    ACCB+1,W
       MOVWF   ACCD+1
       MOVF    ACCC,W
       MOVWF   ACCE
       MOVF    ACCC+1,W
       MOVWF   ACCE+1
       CLRIF   ACCB
       CLRIF   ACCB+1
       RETLW   0
```
EXAMPLE B-3: A/D CONVERTER PROGRAM IN ASSEMBLY

NOP
DIV CALL SETUP
MOV1W 20
MOVWF TEMP
CLRF ACCC
CLRF ACCC+1
DLOOP CLC
RLF ACCE+1, F
RLF ACCE, F
RLF ACCD+1, F
RLF ACCD, F
RLF ACCC+1, F
MOVF ACCC, W
SUBWF ACCC, W ;CHECK IF A>C
SKPZ GOTO NOCHK
MOVF ACCA+1, W
SUBWF ACCC+1, W ;IF MSB EQUAL THEN CHECK LSB
NOCHK SKPC ;CARRY SET IF C>A
GOTO NOGO
MOVF ACCA+1, W
SUBWF ACCC+1, F
BTFSS 3,0
DECF ACCC, F
MOVF ACCA, W
SUBWF ACCC, F
SETC ;SHIFT A 1 INTO B (RESULT)
NOGO RLF ACCB+1, F
RLF ACCB, F
DECSFSZ TEMP, F ;LOOP UNTILL ALL BITS CHECKED
GOTO DLOOP
RETLW 0
DSCHRG MOV1W B'00001110' ;DISCHARGE C (RA0 ON)
TRIS 5
MOV1W 0FF
MOVWF TEMP1
MOVWF TEMP2
MOVWF TEMP3
LOOP1 DECSFSZ TEMPI, F ;WAIT
GOTO LOOP1
LOOP2 DECSFSZ TEMP2, F ;WAIT
GOTO LOOP2
LOOP3 DECSFSZ TEMP3, F ;WAIT
GOTO LOOP3
MOV1W B'00001111' ;ALL RA HIGH Z
TRIS 5
RETLW 0
M_TIME CLRF 1 ;CLEAR RTCC REGISTER
CLRF ACCA+1 ;CLEAR 16 BIT COUNTER
CLRF ACCA
EXAMPLE B-4: A/D CONVERTER PROGRAM IN ASSEMBLY

```assembly
TLOOP  INCFSZ ACCA+1, F
      GOTO ENDCHECK
      INCFSZ ACCA, F
      GOTO ENDCHECK
      GOTO END_M
ENDCHECK BTFSS 1,0             ;CHECK FOR RTCC TRIP
      GOTO TLOOP
END_M   MOVF 1,W
        RETLW 0

VOLTS    MOVLW B'00000110'     ;SET S2 AND S3 HIGH(ON WHEN ACTIVATED)
          MOVWF 6
          MOVLW B'00000000'     ;ACTIVATE SWITCHES S1-S4
          TRIS 6
          MOVLW B'00101000'     ;SELECT POSITIVE EDGE FOR RTCC
          OPTION
          MOVLW B'00000000'
          MOVWF 5               ;SET RA0 LOW (ON WHEN ACTIVATED)
          CALL DSCHRG           ;CHARGE CAPACITOR TO VIN
          MOVLW B'00001010'     ;S2 AND S4 ON
          MOVWF 6
          CALL M_TIME           ;MEASURE TIME
          MOVF ACCA+1,W
          MOVWF TMEAS+1         ;STORE LSB
          MOVF ACCA,W
          MOVWF TMEAS           ;STORE MSB
          CALL DSCHRG           ;CHARGE CAPACITOR TO VREF
          MOVLW B'00001001'     ;S1 AND S4 ON
          MOVWF 6
          CALL M_TIME           ;MEASURE TIME
          MOVLW VCALLS
          MOVWF ACCB+1
          MOVLW VCALMS
          MOVWF ACCB
          CALL MPY               ;MULTIPLY ACCA(TCAL) * ACCB(VREF)
          MOVF TMEAS+1,W
          MOVWF ACCA+1
          MOVF TMEAS,W
          MOVWF ACCA
          CALL DIV               ;DIVIDE ACCB(TCAL * V) BY ACCA(TMEAS)
          GOTO VOLTS

END
```

© 1997-2014 Microchip Technology Inc.
Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks
The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELoo, KEELoo logo, MPLAB, PIC, PICmicro, PICSTART, PIC32 logo, rFIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MFP, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rFLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 1997-2014, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 9781620778142

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
Worldwide Sales and Service

AMERICAS

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/support
Web Address:
www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Austin, TX
Tel: 512-257-3370

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Novi, MI
Tel: 248-848-4000

Houston, TX
Tel: 281-894-5983

Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

New York, NY
Tel: 631-435-6000

San Jose, CA
Tel: 408-735-9110

Canada - Toronto
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431

Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500

China - Hangzhou
Tel: 86-571-2819-3187
Fax: 86-571-2819-3189

China - Hong Kong SAR
Tel: 852-2943-5100
Fax: 852-2943-5100

China - Nanjing
Tel: 86-25-3090-4444
Fax: 86-25-3090-4123

China - Qingdao
Tel: 86-10-6152-7160
Fax: 86-10-6152-9310

China - Shanghai
Tel: 86-21-3090-4444
Fax: 86-21-3090-4123

China - Shenzhen
Tel: 86-755-8864-2200
Fax: 86-755-8203-1760

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130

China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-3019-1500

Japan - Osaka
Tel: 81-6-6152-7160
Fax: 81-6-6152-9310

Japan - Tokyo
Tel: 81-3-6880-3770
Fax: 81-3-6880-3771

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955

Taiwan - Kaohsiung
Tel: 886-7-213-7830

Taiwan - Taipei
Tel: 886-2-2508-8600
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Dusseldorf
Tel: 49-2129-3766400

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Germany - Pforzheim
Tel: 49-7231-424750

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Italy - Venice
Tel: 39-049-7625286

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Poland - Warsaw
Tel: 48-22-3325737

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

Sweden - Stockholm
Tel: 46-8-5090-4654

UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

10/28/13