Sample Rate Conversion Library for dsPIC® User’s Guide
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KeelOo, KeelOo logo, MPLAB, PIC, PICmicro, PICSTART, PICmicro logo, rPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICWorks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, MIndi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. & KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2011-2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 978-1-62077-327-7

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV

ISO/TS 16949

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KeelOo® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
Table of Contents

Chapter 1. Introduction
 1.1 Algorithm Overview .. 9

Chapter 2. Installation
 2.1 Installation Procedure ... 11
 2.2 Resource Usage ... 11

Chapter 3. Application Programming Interface (API)
 3.1 Sample Rate Conversion Library API Functions ... 14
Preface

INTRODUCTION

This chapter contains general information that will be useful to know before you use the Sample Rate Conversion Library for dsPIC®. Items discussed in this Preface include:

• Document Layout
• Conventions Used in this Guide
• Warranty Registration
• Recommended Reading
• The Microchip Web Site
• Development Systems Customer Change Notification Service
• Customer Support
• Document Revision History

DOCUMENT LAYOUT

This document describes how to use the Sample Rate Conversion (SRC) library with the dsPIC33E family of devices. The document layout is as follows:

• Chapter 1. “Introduction” – This chapter provides an overview of the SRC library.
• Chapter 2. “Installation” – This chapter describes the installation procedure for the SRC library.
• Chapter 3. “Application Programming Interface (API)” – This chapter outlines how the API functions provided in the SRC library can be included in your application software via the Application Programming Interface.
CONVENTIONS USED IN THIS GUIDE

This manual uses the following documentation conventions:

DOCUMENTATION CONVENTIONS

<table>
<thead>
<tr>
<th>Description</th>
<th>Represents</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Italic characters</td>
<td>Referenced books</td>
<td>MPLAB® IDE User’s Guide</td>
</tr>
<tr>
<td>Emphasized text</td>
<td>...is the only compiler...</td>
<td></td>
</tr>
<tr>
<td>Initial caps</td>
<td>A window</td>
<td>the Output window</td>
</tr>
<tr>
<td>A dialog</td>
<td>the Settings dialog</td>
<td></td>
</tr>
<tr>
<td>A menu selection</td>
<td>select Enable Programmer</td>
<td></td>
</tr>
<tr>
<td>Quotes</td>
<td>A field name in a window or dialog</td>
<td>“Save project before build”</td>
</tr>
<tr>
<td>Underlined, italic text with right angle bracket</td>
<td>A menu path</td>
<td>File>Save</td>
</tr>
<tr>
<td>Bold characters</td>
<td>A dialog button</td>
<td>Click OK</td>
</tr>
<tr>
<td>A tab</td>
<td>Click the Power tab</td>
<td></td>
</tr>
<tr>
<td>Text in angle brackets < ></td>
<td>A key on the keyboard</td>
<td>Press <Enter>, <F1></td>
</tr>
<tr>
<td>Plain Courier New</td>
<td>Sample source code</td>
<td><code>#define START</code></td>
</tr>
<tr>
<td>Filenames</td>
<td><code>autoexec.bat</code></td>
<td></td>
</tr>
<tr>
<td>File paths</td>
<td><code>c:\mcc18\h</code></td>
<td></td>
</tr>
<tr>
<td>Keywords</td>
<td><code>_asm, _endasm, static</code></td>
<td></td>
</tr>
<tr>
<td>Command-line options</td>
<td><code>-Opa+, -Opa-</code></td>
<td></td>
</tr>
<tr>
<td>Bit values</td>
<td><code>0, 1</code></td>
<td></td>
</tr>
<tr>
<td>Constants</td>
<td><code>0xFF, ‘A’</code></td>
<td></td>
</tr>
<tr>
<td>Italic Courier New</td>
<td>A variable argument</td>
<td>file.o, where file can be any valid filename</td>
</tr>
<tr>
<td>Square brackets []</td>
<td>Optional arguments</td>
<td><code>mcc18 [options] file [options]</code></td>
</tr>
<tr>
<td>Curly brackets and pipe character:{{}}</td>
<td>Choice of mutually exclusive arguments; an OR selection</td>
<td>`errorlevel {0</td>
</tr>
<tr>
<td>Ellipses...</td>
<td>Replaces repeated text</td>
<td><code>var_name [, var_name...]</code></td>
</tr>
<tr>
<td>Represents code supplied by user</td>
<td><code>void main (void) { ... }</code></td>
<td></td>
</tr>
<tr>
<td>Notes</td>
<td>A Note presents information that we want to re-emphasize, either to help you avoid a common pitfall or to make you aware of operating differences between some device family members. A Note can be in a box, or when used in a table or figure, it is located at the bottom of the table or figure.</td>
<td>Note: This is a standard note box.</td>
</tr>
<tr>
<td></td>
<td>Note 1: This is a note used in a table.</td>
<td>CAUTION</td>
</tr>
<tr>
<td></td>
<td>This is a caution note.</td>
<td></td>
</tr>
</tbody>
</table>
WARRANTY REGISTRATION

Please complete the enclosed Warranty Registration Card and mail it promptly. Sending in the Warranty Registration Card entitles you to receive new product updates. Interim software releases are available at the Microchip web site.

RECOMMENDED READING

This user’s guide describes how to use the Sample Rate Conversion Library for dsPIC®. The following are available and recommended as supplemental reference resources.

dsPIC33E/PIC24E Family Reference Manual Sections

Family Reference Manual sections are available, which explain the operation of the dsPIC33E device family architecture and peripheral modules. The specifics of each device family are discussed in the individual family's device data sheet.

MPLAB® C Compiler for PIC24 MCUs and dsPIC DSCs User’s Guide (DS50001284)

This document details the use of Microchip’s MPLAB C Compiler for dsPIC Digital Signal Controllers to develop 16-bit applications.

MPLAB® IDE User’s Guide (DS50001519)

Consult this document for more information pertaining to the installation and implementation of the MPLAB IDE software, as well as the MPLAB Editor and MPLAB SIM Simulator software that are included with it.

THE MICROCHIP WEB SITE

Microchip provides online support via our web site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** – Data sheets and errata, application notes and sample programs, design resources, user’s guides and hardware support documents, latest software releases and archived software
- **General Technical Support** – Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip consultant program member listing
- **Business of Microchip** – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives
DEVELOPMENT SYSTEMS CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip’s customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

The Development Systems product group categories are:

- **Compilers** – The latest information on Microchip C compilers and other language tools. These include the MPLAB® C compiler; MPASM™ and MPLAB 16-bit assemblers; MPLINK™ and MPLAB 16-bit object linkers; and MPLIB™ and MPLAB 16-bit object librarians.

- **Emulators** – The latest information on the Microchip in-circuit emulator, MPLAB REAL ICE™

- **In-Circuit Debuggers** – The latest information on the Microchip in-circuit debugger, MPLAB ICD 3.

- **MPLAB IDE** – The latest information on Microchip MPLAB IDE, the Windows® Integrated Development Environment for development systems tools. This list is focused on the MPLAB IDE, MPLAB SIM simulator, MPLAB IDE Project Manager and general editing and debugging features.

- **Programmers** – The latest information on Microchip programmers. These include the MPLAB PM3 device programmer and the PICkit™ 3 development programmers.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at:
http://www.microchip.com/support

DOCUMENT REVISION HISTORY

Revision A (September 2011)

This is the initial release of the document.

Revision B (July 2013)

Document title was changed and all references to PIC32 were removed. Refer to the “Sample Rate Conversion Library for PIC32 User’s Guide” (DS60001190) for this content.
Chapter 1. Introduction

The Sample Rate Conversion Library for dsPIC®, which can be used with Microchip’s dsPIC33E family of devices, provides the ability to upconvert the sampling rate of real-time 16-bit stereo audio data. At run-time, the input sampling rate can be selected between 32 kHz or 44.1 kHz, with a fixed output sample rate of 48 kHz.

1.1 ALGORITHM OVERVIEW

The SRC algorithm converts real-time 16-bit audio data sampled at 44.1 kHz or 32 kHz, to a sampling rate of 48 kHz. The size of the input audio data in 1 ms interval will be 32 samples for 32 kHz input, and 44 or 456 samples for 44.1 kHz input. The output consists of 48 stereo samples per 1 ms interval.

Figure 1-1 shows the various blocks of the SRC algorithm. The incoming audio data passes through an upsampler or an interpolation stage. The signal then passes through an anti-aliasing low-pass filter followed by a downsampler or decimation stage.

FIGURE 1-1:

1.1.1 32 kHz to 48 kHz Sample Rate Conversion

The input is upsampled by a factor of 3 followed by a Finite Impulse Response (FIR) filter to smooth the signal. A gain factor is applied to the smoothed signal to compensate for the loss caused by inserting the zeros.

The resulting intermediate signal is then downsampled by a factor of 2 to obtain an output audio signal at a sampling rate of 48 kHz. Since downsampling creates redundancy in the filtering of the sample that is decimated, the filtering of this sample can be skipped, resulting in significant instruction cycle execution savings. This is a simplified form of the polyphase filtering technique, which improves the speed of the SRC.

In this mode, every 1 ms of audio frame is expected to have 32 stereo samples since the sample rate is 32 kHz.
1.1.2 44.1 kHz to 48 kHz Sample Rate Conversion

The input is upsampled by a factor of 2, by inserting a zero after every input sample followed by a FIR filter, which is applied to smooth the signal. A gain factor of 2 is applied to the smoothed signal to compensate for the loss caused by inserting the zeros.

Polynomial interpolation is used to reduce every sequence of 147 samples at 88.2 kHz to 80 samples at 48 kHz. This ensures the sampling rate of the output audio data to be 48 kHz. Polyphase filtering is also employed in this mode to reduce redundancy.

In this mode, the first nine audio frames are expected to contain 44 stereo samples and the tenth frame is expected to contain 45 stereo samples.

1.1.3 Filter design

For 32 kHz input, a low-pass filter is utilized with a very steep roll-off to limit aliasing effects. The corner frequency lies below one-sixth of the intermediate sample rate. This is below the Nyquist frequency, so that aliasing effects should not be a problem when downsampling. The corner frequency used here is 14.5 kHz, which may be desirable when optimizing the filter design to adjust the corner frequency so that the first stop-band null covers the input Nyquist frequency.

The overall processing load is dominated by the FIR filter; however, there is a trade-off between processing load (i.e., filter length) and the quality of the outputs.

For 44.1 kHz input, the corner frequency of the low-pass filter lies below one-fourth of the intermediate sample rate. The greater processing load at this frequency requires a shorter filter length. The corner frequency used here is 19.7 kHz.

A more aggressive optimization of the filter is needed, which can be provided by an equiripple design technique.

The code uses polynomial interpolation to convert intermediate data at 88.2 kHz to output data at 48 kHz.
Chapter 2. Installation

This chapter describes the installation procedure for the Sample Rate Conversion Library for dsPIC® and includes resource usage. Topics covered include:
• Installation Procedure
• Resource Usage

2.1 INSTALLATION PROCEDURE

The SRC library is available as a download from the Sample Rate Conversion Web page at www.microchip.com/SRC. After downloading and extracting the files, run the dsPIC SRC installer to install the library in the desired path.

Use the following procedure to add the library to the application:

1. In the application MPLAB workspace, right-click Library Files in the Project Window, and select Add files.
2. Browse to the location of the archive file (libSRC_LITE_dsPIC33E_v1_0.a or libSRC_FULL_dsPIC33E_v1_0.a), which is located in the libs folder within the installation directory.
3. Select the file and click Open. The SRC library is now added to the application.

2.2 RESOURCE USAGE

<table>
<thead>
<tr>
<th>SRC Library Version</th>
<th>SRC Mode</th>
<th>MIPS</th>
<th>Code Size (bytes)</th>
<th>Data Size (bytes)</th>
<th>SNR (dB)(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lite Version</td>
<td>32k to 48 kHz</td>
<td>6.1</td>
<td>7624</td>
<td>2744</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>32k to 44.1 kHz</td>
<td>9.1</td>
<td></td>
<td></td>
<td>82</td>
</tr>
<tr>
<td>Full Version</td>
<td>32k to 48 kHz</td>
<td>7.2</td>
<td>7704</td>
<td>2866</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>32k to 44.1 kHz</td>
<td>10.1</td>
<td></td>
<td></td>
<td>82</td>
</tr>
</tbody>
</table>

Note 1: Tested with a 1 kHz full-scale sinusoidal signal.
Chapter 3. Application Programming Interface (API)

This chapter describes the Application Programming Interface (API) to the Sample Rate Conversion Library for dsPIC®.

Topics covered include:

- Sample Rate Conversion Library API Functions

The API functions of the SRC Library are easy to use. The prototype declaration of the API functions, the state buffer used, and buffer sizes to be used for the two SRC modes are located in the header file, src_api.h.

The archive file, libSRC_x_dsPIC33E_v1_0.a (x= LITE or FULL), is the library file to be used in the project workspace.

EXAMPLE 3-1:

```
|----- h
| src_api.h  (header file for SRC APIs)
|----- libs
| libSRC_x_dsPIC33E_v1_0.a (SRC library archive)
```
3.1 SAMPLE RATE CONVERSION LIBRARY API FUNCTIONS

This section lists and describes the two API functions that are available in the SRC Library.

SRC_init()

Description

The API function, SRC_init(), configures the conversion mode to be used and initializes the local state buffer required by the SRC library. The SRC state contains buffer pointers, split buffers needed for the filters, and buffers for polynomial interpolation.

Prototype

```c
void SRC_init(int* ptrSRC_state, int cd_flag);
```

Arguments

- `ptrSRC_state`: A pointer to the state memory for this instance of SRC.
- `cd_flag`:
 - `SRC_32KHZ_TO_48KHZ`: 32 kHz to 48 kHz conversion mode
 - `SRC_44_1KHZ_TO_48KHZ`: 44.1 kHz to 48 kHz conversion mode

Example

```c
#define CD_FLAG SRC_32KHZ_TO_48KHZ
.
.
.
int srcStateMem[SRC_STATE_MEM_SIZE_INT];
.
.
SRC_init(srcStateMem, CD_FLAG);
```
Application Programming Interface (API)

SRC_apply()

Description

The API function, `SRC_apply()`, is the function call that performs sample rate conversion on the input audio signal. The API takes pointer to the input buffer, pointer to the output buffer along with a pointer to the SRC state. It also takes the size of the input audio buffer as a parameter. The size of the input audio data buffer is 64 for input sample rate of 32 kHz and 88 or 90 for the input sample rate of 44.1 kHz. The sample count includes both the left and right channels of the stereo audio.

Prototype

```c
int SRC_apply(int* ptrSRC_state, short* Sin, short* Sout, int readCount);
```

Arguments

- `ptrSRC_state`: a pointer to the state memory for this instance of SRC
- `Sin`: a pointer to the input buffer of size with incoming audio signal `SRC_IN_PROC_SIZE`
- `Sout`: a pointer to the output buffer of size `SRC_OUT_PROC_SIZE`
- `readCount`: the actual number of samples to be read from the input buffer

Example

```c
#define CD_FLAG SRC_32KHZ_TO_48KHZ
.
.
.
short    Sin[SRC_IN_PROC_SIZE];
short    Sout[SRC_OUT_PROC_SIZE];
int      srcStateMem[SRC_STATE_MEM_SIZE_INT];
int      read_count;
int      write_count;
.
.
read_count = 64;
.
.
SRC_init(srcStateMem, CD_FLAG);
.
.
write_count = SRC_apply(srcStateMem, Sin, Sout, read_count);
```
Worldwide Sales and Service

AMERICAS

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277

Technical Support: http://www.microchip.com/support
Web Address: www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Cleveland
Independence, OH
Tel: 216-447-0048
Fax: 216-447-0049

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260

Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

Santa Clara
Santa Clara, CA
Tel: 408-961-8444
Fax: 408-961-6445

Toronto
Mississauga, Ontario, Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 85-2-2846-5511
Fax: 85-2-2846-5511

China
- **Beijing**
 Tel: 86-10-8569-7000
 Fax: 86-10-8528-2104
- **Chengdu**
 Tel: 86-28-8665-5511
 Fax: 86-28-8665-7889
- **Chongqing**
 Tel: 86-23-8900-9588
 Fax: 86-23-8900-9500
- **Hangzhou**
 Tel: 86-571-2819-3817
 Fax: 86-571-2819-3819
- **Hong Kong SAR**
 Tel: 852-2943-9100
 Fax: 852-2401-3431
- **Nanjing**
 Tel: 86-25-8473-2460
 Fax: 86-25-8473-2470
- **Qingdao**
 Tel: 86-532-8502-7355
 Fax: 86-532-8502-7300
- **Shanghai**
 Tel: 86-21-3407-5553
 Fax: 86-21-3407-5506
- **Shenyang**
 Tel: 86-24-2334-2829
 Fax: 86-24-2334-2393
- **Shenzhen**
 Tel: 86-755-8864-2200
 Fax: 86-755-8203-1760
- **Wuhan**
 Tel: 86-27-5980-5000
 Fax: 86-27-5980-5118
- **Xian**
 Tel: 86-29-8833-7252
 Fax: 86-29-8833-7256
- **Xiamen**
 Tel: 86-592-2388138
 Fax: 86-592-2388130
- **Zhuhai**
 Tel: 86-756-3210040
 Fax: 86-756-3210049

ASIA/PACIFIC

India
- **Bangalore**
 Tel: 91-80-3090-4444
 Fax: 91-80-3090-4123
- **New Delhi**
 Tel: 91-11-4160-8631
 Fax: 91-11-4160-8632
- **Pune**
 Tel: 91-20-2566-1512
 Fax: 91-20-2566-1513
- **Osaka**
 Tel: 81-6-6152-7160
 Fax: 81-6-6152-9310
- **Tokyo**
 Tel: 81-3-8880-3770
 Fax: 81-3-8880-3771
- **Daegu**
 Tel: 82-53-744-4301
 Fax: 82-53-744-4302
- **Seoul**
 Tel: 82-2-554-5200
 Fax: 82-2-554-5000
- **Kuala Lumpur**
 Tel: 60-3-6201-9857
 Fax: 60-3-6201-9859
- **Penang**
 Tel: 60-4-227-8870
 Fax: 60-4-227-4068
- **Manila**
 Tel: 63-2-634-9065
 Fax: 63-2-634-9069
- **Singapore**
 Tel: 65-6534-8870
 Fax: 65-6534-8890
- **Hsin Chu**
 Tel: 886-3-5770-955
 Fax: 886-3-5770-959
- **Kaohsiung**
 Tel: 886-7-213-7828
 Fax: 886-7-213-7829
- **Taipei**
 Tel: 886-2-2508-8000
 Fax: 886-2-2508-0102
- **Bangkok**
 Tel: 66-2-694-3151
 Fax: 66-2-694-3150

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4465-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

UK - Wokingham
Tel: 44-118-921-8869
Fax: 44-118-921-8820

11/29/12