300mA CMOS LDO with Shutdown ERROR Output and Bypass

Features

- Extremely Low Supply Current for Longer Battery Life
- Very Low Dropout Voltage
- 300mA Output Current
- Standard or Custom Output Voltages
- ERROR Output Can Be Used as a Low Battery Detector or Processor Reset Generator
- Power Saving Shutdown Mode
- Bypass Input for Ultra Quiet Operation
- Over Current and Over Temperature Protection
- Space-Saving MSOP Package Option

Applications

- Battery Operated Systems
- Portable Computers
- Medical Instruments
- Instrumentation
- Cellular/GSM/PHS Phones
- Linear Post-Regulators for SMPS
- Pagers

Device Selection Table

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
<th>Junction Temp. Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC1173-xxVOA</td>
<td>8-Pin SOIC</td>
<td>-40°C to +125°C</td>
</tr>
<tr>
<td>TC1173-xxVUA</td>
<td>8-Pin MSOP</td>
<td>-40°C to +125°C</td>
</tr>
</tbody>
</table>

NOTE: xx indicates output voltages
Available Output Voltages: 2.5, 2.8, 3.0, 3.3, 5.0.
Other output voltages are available. Please contact Microchip Technology Inc. for details.

General Description

The TC1173 is a precision output (typically ±0.5%) CMOS low dropout regulator. Total supply current is typically 50μA at full load (20 to 60 times lower than in bipolar regulators).

TC1173 key features include ultra low noise operation (plus optional Bypass input); very low dropout voltage (typically 240mV at full load) and internal feed-forward compensation for fast response to step changes in load. An error output (ERROR) is asserted when the TC1173 is out-of-regulation (due to a low input voltage or excessive output current). ERROR can be set as a low battery warning or as a processor RESET signal (with the addition of an external RC network). Supply current is reduced to 0.05μA (typical) and VOUT and ERROR fall to zero when the shutdown input is low.

The TC1173 incorporates both over temperature and over current protection. The TC1173 is stable with an output capacitor of only 1µF and has a maximum output current of 300mA.

Typical Application

![Typical Application Diagram]

Package Type

8-Pin MSOP

8-Pin SOIC
1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings*

Input Voltage .........................................................6.5V
Output Voltage.............. (VSS – 0.3V) to (VIN + 0.3V)
Power Dissipation..............Internally Limited (Note 6)
Maximum Voltage on Any Pin ....... V_IN +0.3V to -0.3V
Operating Temperature Range...... -40°C < T_J < 125°C
Storage Temperature.................-65°C to +150°C

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

TC1173 ELECTRICAL SPECIFICATIONS

Electrical Characteristics: V_IN = V_OUT +1V, I_L = 0.1mA, C_L = 3.3μF, SHDN > V_H, T_A = 25°C, unless otherwise noted. Boldface type specifications apply for junction temperatures of -40°C to +125°C.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_IN</td>
<td>Input Operating Voltage</td>
<td>2.7</td>
<td>—</td>
<td>6.0</td>
<td>V</td>
<td>Note 8</td>
</tr>
<tr>
<td>I_OUTMAX</td>
<td>Maximum Output Current</td>
<td>300</td>
<td>—</td>
<td>—</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>V_OUT</td>
<td>Output Voltage</td>
<td>—</td>
<td>V_R ±0.5%</td>
<td>—</td>
<td>V</td>
<td>Note 1</td>
</tr>
<tr>
<td>∆V_OUT/∆T</td>
<td>V_OUT Temperature Coefficient</td>
<td>—</td>
<td>40</td>
<td>—</td>
<td>ppm/°C</td>
<td>Note 2</td>
</tr>
<tr>
<td>∆V_OUT/∆V_IN</td>
<td>Line Regulation</td>
<td>—</td>
<td>0.05</td>
<td>0.35</td>
<td>%</td>
<td>(V_R + 1V) ≤ V_IN ≤ 6V</td>
</tr>
<tr>
<td>∆V_OUT/V_OUT</td>
<td>Load Regulation</td>
<td>—</td>
<td>0.5</td>
<td>2.0</td>
<td>%</td>
<td>I_L = 0.1mA to I_OUTMAX (Note 3)</td>
</tr>
<tr>
<td>V_IN-V_OUT</td>
<td>Dropout Voltage</td>
<td>—</td>
<td>20</td>
<td>30</td>
<td>mV</td>
<td>I_L = 0.1mA</td>
</tr>
<tr>
<td>—</td>
<td>80</td>
<td>160</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>—</td>
<td>240</td>
<td>480</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_SSS</td>
<td>Supply Current</td>
<td>—</td>
<td>50</td>
<td>90</td>
<td>μA</td>
<td>SHDN = V_H</td>
</tr>
<tr>
<td>I_SSS2</td>
<td>Shutdown Supply Current</td>
<td>—</td>
<td>0.05</td>
<td>0.5</td>
<td>μA</td>
<td>SHDN = 0V</td>
</tr>
<tr>
<td>PSRR</td>
<td>Power Supply Rejection Ratio</td>
<td>—</td>
<td>60</td>
<td>—</td>
<td>dB</td>
<td>F Thể ≤ 1kHz</td>
</tr>
<tr>
<td>I_OUTSIC</td>
<td>Output Short Circuit Current</td>
<td>—</td>
<td>550</td>
<td>650</td>
<td>mA</td>
<td>V_OUT = 0V</td>
</tr>
<tr>
<td>∆V_OUT/∆P_D</td>
<td>Thermal Regulation</td>
<td>—</td>
<td>0.04</td>
<td>—</td>
<td>V/W</td>
<td>Note 5</td>
</tr>
<tr>
<td>eN</td>
<td>Output Noise</td>
<td>—</td>
<td>260</td>
<td>—</td>
<td>nV/√Hz</td>
<td>F = 1kHz, C_OUT = 1μF, R_LOAD = 50Ω</td>
</tr>
<tr>
<td>SHDN Input</td>
<td>V_H</td>
<td>SHDN Input High Threshold</td>
<td>45</td>
<td>—</td>
<td>—</td>
<td>%V_IN</td>
</tr>
<tr>
<td>V_L</td>
<td>SHDN Input Low Threshold</td>
<td>—</td>
<td>—</td>
<td>15</td>
<td>%V_IN</td>
<td></td>
</tr>
<tr>
<td>ERROR Output</td>
<td>V_MIN</td>
<td>Minimum Operating Voltage</td>
<td>1.0</td>
<td>—</td>
<td>—</td>
<td>V</td>
</tr>
<tr>
<td>V_O</td>
<td>Output Logic Low Voltage</td>
<td>—</td>
<td>—</td>
<td>400 mV</td>
<td>1 mA Flows to ERROR</td>
<td></td>
</tr>
<tr>
<td>V_TH</td>
<td>ERROR Threshold Voltage</td>
<td>—</td>
<td>0.95 x V_R</td>
<td>—</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_O</td>
<td>ERROR Positive Hysteresis</td>
<td>—</td>
<td>50</td>
<td>—</td>
<td>mV</td>
<td>Note 7</td>
</tr>
</tbody>
</table>

Note 1: V_R is the user-programmed regulator output voltage setting.
2: TC V_OUT = (V_OUT_MAX – V_OUT_MIN) x 10^6
3: Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested over a load range from 0.1mA to the maximum specified output current. Changes in output voltage due to heating effects are covered by the thermal regulation specification.
4: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value measured at a 1V differential.
5: Thermal Regulation is defined as the change in output voltage at a time T after a change in power dissipation is applied, excluding load or line regulation effects. Specifications are for a current pulse equal to I_MAX at V_IN = 6V for T = 10 msec.
6: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction-to-air (i.e., T_A, T_J, θ_JA). Exceeding the maximum allowable power dissipation causes the device to initiate thermal shutdown. Please see Section 4.0 Thermal Considerations for more details.
7: Hysteresis voltage is referenced by V_R.
8: The minimum V_IN has to justify the conditions: V_IN ≥ V_R + VDROPOUT and V_IN ≥ 2.7V for I_L = 0.1mA to I_OUTMAX.
2.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 2-1.

TABLE 2-1: PIN FUNCTION TABLE

<table>
<thead>
<tr>
<th>Pin No. (8-Pin SOIC) (8-Pin MSOP)</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V_{OUT}</td>
<td>Regulated voltage output.</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>Ground terminal.</td>
</tr>
<tr>
<td>3</td>
<td>NC</td>
<td>No connect.</td>
</tr>
<tr>
<td>4</td>
<td>Bypass</td>
<td>Reference bypass input. Connecting a 470pF to this input further reduces output noise.</td>
</tr>
<tr>
<td>5</td>
<td>ERROR</td>
<td>Out-of-Regulation Flag. (Open drain output). This output goes low when V_{OUT} is out-of-tolerance by approximately – 5%.</td>
</tr>
<tr>
<td>6</td>
<td>SHDN</td>
<td>Shutdown control input. The regulator is fully enabled when a logic high is applied to this input. The regulator enters shutdown when a logic low is applied to this input. During shutdown, output voltage falls to zero and supply current is reduced to 0.05\mu A (typical).</td>
</tr>
<tr>
<td>7</td>
<td>NC</td>
<td>No connect.</td>
</tr>
<tr>
<td>8</td>
<td>V_{IN}</td>
<td>Unregulated supply input.</td>
</tr>
</tbody>
</table>
3.0 DETAILED DESCRIPTION

The TC1173 is a fixed output, low drop-out regulator. Unlike bipolar regulators, the TC1173’s supply current does not increase with load current. In addition, V\text{OUT} remains stable and within regulation over the entire 0mA to I\text{OUTMAX} operating load current range, (an important consideration in RTC and CMOS RAM battery back-up applications).

Figure 3-1 shows a typical application circuit. The regulator is enabled any time the shutdown input (SHDN) is at or above V\text{IH}, and shutdown (disabled) when SHDN is at or below V\text{IL}. SHDN may be controlled by a CMOS logic gate, or I/O port of a microcontroller. If the SHDN input is not required, it should be connected directly to the input supply. While in shutdown, supply current decreases to 0.05\mu\text{A} (typical), V\text{OUT} falls to zero and ERROR is disabled.

3.1 ERROR Output

ERROR is driven low whenever V\text{OUT} falls out of regulation by more than – 5% (typical). This condition may be caused by low input voltage, output current limiting, or thermal limiting. The ERROR threshold is 5% below rated V\text{OUT} regardless of the programmed output voltage value (e.g., ERROR = V\text{OL} at 4.75V (typ.) for a 5.0V regulator and 2.85V (typ.) for a 3.0V regulator). ERROR output operation is shown in Figure 3-2.

Note that ERROR is active when V\text{OUT} is at or below V\text{TH}, and inactive when V\text{OUT} is above V\text{TH} + V\text{H}.

As shown in Figure 3-1, ERROR can be used as a battery low flag, or as a processor RESET signal (with the addition of timing capacitor C3). R1 x C3 should be chosen to maintain ERROR below V\text{IH} of the processor RESET input for at least 200 msec to allow time for the system to stabilize. Pull-up resistor R1 can be tied to V\text{OUT}, V\text{IN} or any other voltage less than (V\text{IN} + 0.3V).

3.2 Output Capacitor

A 1\mu\text{F} (min) capacitor from V\text{OUT} to ground is recommended. The output capacitor should have an effective series resistance greater than 0.1\Omega and less than 5.0\Omega. A 1\mu\text{F} capacitor should be connected from V\text{IN} to GND if there is more than 10 inches of wire between the regulator and the AC filter capacitor, or if a battery is used as the power source. Aluminum electrolytic or tantalum capacitor types can be used. (Since many aluminum electrolytic capacitors freeze at approximately -30°C, solid tantalums are recommended for applications operating below -25°C.) When operating from sources other than batteries, supply-noise rejection and transient response can be improved by increasing the value of the input and output capacitors and employing passive filtering techniques.

3.3 Bypass Input

A 470pF capacitor connected from the Bypass input to ground reduces noise present on the internal reference, which in turn significantly reduces output noise. If output noise is not a concern, this input may be left unconnected. Larger capacitor values may be used, but results in a longer time period to rated output voltage when power is initially applied.
4.0 THERMAL CONSIDERATIONS

4.1 Thermal Shutdown

Integrated thermal protection circuitry shuts the regulator off when die temperature exceeds 150°C. The regulator remains off until the die temperature drops to approximately 140°C.

4.2 Power Dissipation

The amount of power the regulator dissipates is primarily a function of input and output voltage, and output current. The following equation is used to calculate worst case actual power dissipation:

\[
P_D = (V_{IN\text{MAX}} - V_{OUT\text{MIN}})I_{LOAD\text{MAX}}
\]

Where:
- \(P_D\) = Worst case actual power dissipation
- \(V_{IN\text{MAX}}\) = Maximum voltage on \(V_IN\)
- \(V_{OUT\text{MIN}}\) = Minimum regulator output voltage
- \(I_{LOAD\text{MAX}}\) = Maximum output (load) current

The maximum allowable power dissipation (Equation 4-2) is a function of the maximum ambient temperature \(T_{AMAX}\), the maximum allowable die temperature \(T_{JMAX}\) and the thermal resistance from junction-to-air \(\theta_{JA}\). The 8-Pin SOIC package has a \(\theta_{JA}\) of approximately 160°C/Watt, while the 8-Pin MSOP package has a \(\theta_{JA}\) of approximately 200°C/Watt.

\[
P_{DMAX} = \frac{(T_{JMAX} - T_{AMAX})}{\theta_{JA}}
\]

Where all terms are previously defined.

Equation 4-1 can be used in conjunction with Equation 4-2 to ensure regulator thermal operation is within limits. For example:

Given:
- \(V_{IN\text{MAX}} = 3.0V \pm 10\%
- \(V_{OUT\text{MIN}} = 2.7V \pm 0.5\%
- I_{LOAD\text{MAX}} = 250mA
- T_{JMAX} = 125°C
- T_{AMAX} = 55°C
- \theta_{JA} = 200°C/W

8-Pin MSOP Package

Find: 1. Actual power dissipation
   2. Maximum allowable dissipation

Actual power dissipation:
\[
P_D = (V_{IN\text{MAX}} - V_{OUT\text{MIN}})I_{LOAD\text{MAX}}
\]
\[
= [(3.0 x 1.1) - (2.7 x 0.995)]250 x 10^{-3}
\]
\[
= 155mW
\]

Maximum allowable power dissipation:
\[
P_{DMAX} = \frac{(T_{JMAX} - T_{AMAX})}{\theta_{JA}}
\]
\[
= \frac{(125 - 55)}{200}
\]
\[
= 350mW
\]

In this example, the TC1173 dissipates a maximum of 155mW; below the allowable limit of 350mW. In a similar manner, Equation 4-1 and Equation 4-2 can be used to calculate maximum current and/or input voltage limits. For example, the maximum allowable \(V_IN\) is found by substituting the maximum allowable power dissipation of 250mW into Equation 4-1, from which \(V_{IN\text{MAX}}\) = 4.1V.

4.3 Layout Considerations

The primary path of heat conduction out of the package is via the package leads. Therefore, layouts having a ground plane, wide traces at the pads, and wide power supply bus lines combine to lower \(\theta_{JA}\) and therefore increase the maximum allowable power dissipation limit.
5.0 TYPICAL CHARACTERISTICS

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.
6.0 PACKAGING INFORMATION

6.1 Package Marking Information
Package marking data not available at this time.

6.2 Taping Form

Component Taping Orientation for 8-Pin MSOP Devices

User Direction of Feed

Standard Reel Component Orientation for TR Suffix Device

Carrier Tape, Number of Components Per Reel and Reel Size

<table>
<thead>
<tr>
<th>Package</th>
<th>Carrier Width (W)</th>
<th>Pitch (P)</th>
<th>Part Per Full Reel</th>
<th>Reel Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-Pin MSOP</td>
<td>12 mm</td>
<td>8 mm</td>
<td>2500</td>
<td>13 in</td>
</tr>
</tbody>
</table>

Component Taping Orientation for 8-Pin SOIC (Narrow) Devices

User Direction of Feed

Standard Reel Component Orientation for TR Suffix Device

Carrier Tape, Number of Components Per Reel and Reel Size

<table>
<thead>
<tr>
<th>Package</th>
<th>Carrier Width (W)</th>
<th>Pitch (P)</th>
<th>Part Per Full Reel</th>
<th>Reel Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-Pin SOIC (N)</td>
<td>12 mm</td>
<td>8 mm</td>
<td>2500</td>
<td>13 in</td>
</tr>
</tbody>
</table>
6.3 Package Dimensions

### 8-Pin MSOP

- **PIN 1**
- Dimensions: inches (mm)

### 8-Pin SOIC

- **PIN 1**
- Dimensions: inches (mm)
SALES AND SUPPORT

Data Sheets
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

1. Your local Microchip sales office
2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277
3. The Microchip Worldwide Site (www.microchip.com)

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

New Customer Notification System
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.
Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip’s products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, MXDEV, MXLAB, PICC, PICDEM, PICDEM.net, rTPIC, Select Mode and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2002, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999 and Mountain View, California in March 2002. The Company’s quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, non-volatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001 certified.
WORLDWIDE SALES AND SERVICE

AMERICAS
Corporate Office
2335 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200 Fax: 480-792-7277
Technical Support: 480-792-7627
Web Address: http://www.microchip.com

Rocky Mountain
2335 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7966 Fax: 480-792-7456

Atlanta
500 Sugar Mill Road, Suite 200B
Atlanta, GA 30350
Tel: 770-640-0034 Fax: 770-640-0307

Boston
2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848 Fax: 978-692-3821

Chicago
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071 Fax: 630-285-0075

Dallas
4570 Westgrove Drive, Suite 160
Addison, TX 75001
Tel: 972-818-7924 Fax: 972-818-2924

Detroit
Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250 Fax: 248-538-2260

Kokomo
2767 S. Albright Road
Kokomo, Indiana 46902
Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles
18201 Von Karman, Suite 1090
Irving, CA 90212
Tel: 949-263-1888 Fax: 949-263-1338

New York
150 Motor Parkway, Suite 202
Hauppauge, NY 11788
Tel: 631-273-5305 Fax: 631-273-5335

San Jose
Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408-436-7950 Fax: 408-436-7955

Toronto
6285 Northam Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia
Microchip Technology Australia Pty Ltd
Suite 22, 41 Rawson Street
Epping 2121, NSW
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing
Microchip Technology Consulting (Shanghai) Co., Ltd., Beijing Liaison Office
Unit 915
Beijing, 100027, No. China
Tel: 86-10-85282100 Fax: 86-10-85282104

China - Chengdu
Microchip Technology Consulting (Shanghai) Co., Ltd., Chengdu Liaison Office
Rm. 3401, 24th Floor, Ming Xing Financial Tower
No. 88 TIDU Street
Chengdu 610016, China
Tel: 86-28-86766200 Fax: 86-28-86766599

China - Fuzhou
Microchip Technology Consulting (Shanghai) Co., Ltd., Fuzhou Liaison Office
Unit 7W1, World Trade Plaza
No. 71 WuSi Road
Fuzhou 350001, China
Tel: 86-591-7503506 Fax: 86-591-7503521

China - Shenzhen
Microchip Technology Consulting (Shanghai) Co., Ltd., Shenzhen Liaison Office
Rm. 1315, 13/F, Shenzhen Kerry Centre,
Renminnan Lu
Shenzhen 518001, China
Tel: 86-755-2366086 Fax: 86-755-2366069

Japan
Microchip Technology Japan K.K.
Benex S-1 6F
3-18-20, Shiryokokha
Kohoku-Ku, Yokohama-shi
Kanagawa, 222-0033, Japan
Tel: 81-45-471-6168 Fax: 81-45-471-6122

Korea
Microchip Technology Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea 135-822
Tel: 82-2-554-7200 Fax: 82-2-558-5934

Singapore
Microchip Technology Singapore Pte Ltd.
200 Middle Road
#07-02 Prime Centre
Singapore, 189890
Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan
Microchip Technology Taiwan
11F-3, No. 207
Tung Hua North Road
Taipei, 105, Taiwan
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE

Denmark
Microchip Technology Nordic ApS
Regus Business Centre
Lautrup høj 1-3
Ballrup DK-2750 Denmark
Tel: 45 4420 9895 Fax: 45 4420 9910

France
Microchip Technology SARL
Parc d’Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - ler Etage
91300 Massy, France
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany
Microchip Technology GmbH
Gustav-Heinemann Ring 125
D-81739 Munich, Germany
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44

Italy
Microchip Technology SRL
Centro Direzionale Colleoni
Palazzo Taurus 1 V. Le Colleoni 1
20041 Agrate Brianza
Milan, Italy
Tel: 39-039-65791-1 Fax: 39-039-6899883

United Kingdom
Microchip Ltd.
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44 118 921 5869 Fax: 44-118 921-5820

05/01/02