INTRODUCTION

Conventional wisdom says smaller is better where battery operated wireless systems are concerned. Higher silicon integration and smaller package technology have shrunk system electronics to the point where system size is dictated by the size of the battery pack and user interface (keyboard and display).

Reducing the size of the user interface in consumer devices, such as, cellular phones and pagers is largely an ergonomic issue. On the other hand, reducing battery size means reducing the number (or size) of the cells in the pack, or changing to a higher energy density battery chemistry, such as, Lithium-Ion (Li-Ion). Both options result in battery size reduction at the expense of lower battery energy capacity and/or lower terminal voltage. Reduced battery terminal voltage is one factor hastening the departure from 5V to 3V (and lower) system supplies.

Another more predominant factor has been the migration to sub-3V supply voltages by the digital supply base at large (i.e., suppliers of processors, memory, and logic). As these devices grew in complexity and speed, the transistor geometries used in fabricating these circuits had lower breakdown voltages and therefore required lower supply voltages. As a result, an industry-wide progression to lower supply voltages was established. Today, low voltage processors, logic, and memory are readily available from a number of different suppliers. These devices not only offer low supply voltage operation, but also often have low power standby modes that suspend operation and reduce supply current. For example, most low power microcontrollers have a low power “sleep” mode, where normal operation is suspended and supply current is dramatically reduced.

Analog circuit functions in wireless systems have also been migrating to lower supply voltages. Like their digital counterparts, these analog functions must also be driven to low power modes at various times to conserve battery life. Various semiconductor vendors have responded to this need with an assortment of linear device products that combine op-amps, comparators, and voltage references in single-package configurations. These products allow the user to create any number of analog circuits with complete flexibility, while still retaining the size and benefits of integration. These linear devices are particularly useful in the power management, radio, and audio sections of battery operated wireless devices such as cellular phones. Microchip’s extensive linear device family may be applied to solving problems in various sections of battery operated wireless devices.

LINEAR CIRCUIT DEVICES FAMILY

Microchip Technology offers linear circuit devices that combine op-amps, comparators and voltage references into a single package. These devices can operate from supply voltages as low as 1.4V, and their operating currents can be as low as 600 nA depending on the device. These products are available in a variety of packages ranging from a 5-pin SC-70 to a 16-pin QSOP. Table 1 summarizes the family of linear circuit products offered by Microchip Technology.

Because of lower supply voltage requirements in battery powered wireless applications, a greater emphasis is placed on rail-to-rail amplifier and comparator inputs and outputs. In addition, these inputs are frequently used to monitor the battery or power supply voltage, making low input bias current a requirement. Several members of the linear circuit family have rail-to-rail inputs and outputs with input currents of 100 pico-amperes (pA) - perfect for battery-level monitoring and other applications requiring low input loading. Figure 1 depicts a precision battery, low battery and dead monitoring circuit. Typically, the battery low output warns the user that a battery-dead condition is imminent. Battery-dead typically initiates a forced shutdown to prevent operation at low internal supply voltages (which can cause unstable system operation).

The circuit in Figure 1 uses a single TC1043 (one op-amp unused) and only six external resistors. AMP 1 is a simple buffer, while CMPTR1 and CMPTR2 provide precision voltage detection using VR as a reference. Resistors R2 and R4 set the detection threshold for BATT LOW, while resistors R1 and R3 set the detection threshold for BATT FAIL. The component values shown assert BATT LOW at 2.2V (typical) and BATT FAIL at 2.0V (typical). Total current consumed by this circuit is typically 22 µA at 3V. Resistors R5 and R6 provide hysteresis for comparators CMPTR1 and CMPTR2, respectively.
<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
<th>Comparators (Output)</th>
<th>Op Amps (GBWP)</th>
<th>Reference</th>
<th>Shutdown</th>
<th>Rail-to-Rail I/O</th>
<th>Total Active Supply Current (µA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC1025</td>
<td>Dual Comparator</td>
<td>2 Push-Pull</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>X</td>
<td>8</td>
</tr>
<tr>
<td>TC1026</td>
<td>Comparator, Op Amp and Reference</td>
<td>1 Push-Pull</td>
<td>1 (90 kHz)</td>
<td>—</td>
<td>X</td>
<td>—</td>
<td>X</td>
</tr>
<tr>
<td>TC1027</td>
<td>Quad Comparator and Reference</td>
<td>4 Push-Pull</td>
<td>—</td>
<td>X</td>
<td>—</td>
<td>X</td>
<td>18</td>
</tr>
<tr>
<td>TC1028</td>
<td>Dual Comparator and Reference with Shutdown</td>
<td>2 Push-Pull</td>
<td>—</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>10</td>
</tr>
<tr>
<td>TC1029</td>
<td>Dual Op Amp</td>
<td>—</td>
<td>2 (90 kHz)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>X</td>
</tr>
<tr>
<td>TC1030</td>
<td>Quad Op Amp with Shutdown Modes</td>
<td>—</td>
<td>4 (90 kHz)</td>
<td>—</td>
<td>X</td>
<td>X</td>
<td>20</td>
</tr>
<tr>
<td>TC1031</td>
<td>Single Comparator with Hysteresis and Reference with Shutdown</td>
<td>1 Push-Pull</td>
<td>—</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>6</td>
</tr>
<tr>
<td>TC1034</td>
<td>Single Op Amp</td>
<td>—</td>
<td>1 (90 kHz)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>X</td>
</tr>
<tr>
<td>TC1035</td>
<td>Single Op Amp with Shutdown</td>
<td>—</td>
<td>1 (90 kHz)</td>
<td>—</td>
<td>X</td>
<td>X</td>
<td>6</td>
</tr>
<tr>
<td>TC1037</td>
<td>Single Comparator</td>
<td>1 Push-Pull</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>X</td>
<td>4</td>
</tr>
<tr>
<td>TC1038</td>
<td>Single Comparator with Shutdown</td>
<td>1 Push-Pull</td>
<td>—</td>
<td>—</td>
<td>X</td>
<td>X</td>
<td>4</td>
</tr>
<tr>
<td>TC1039</td>
<td>Single Comparator and Reference</td>
<td>1 Push-Pull</td>
<td>—</td>
<td>X</td>
<td>—</td>
<td>X</td>
<td>6</td>
</tr>
<tr>
<td>TC1040</td>
<td>Dual Comparator and Reference with Shutdown</td>
<td>2 Push-Pull</td>
<td>—</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>10</td>
</tr>
<tr>
<td>TC1041</td>
<td>Dual Comparator with Hysteresis and Reference</td>
<td>2 Push-Pull</td>
<td>—</td>
<td>X</td>
<td>—</td>
<td>X</td>
<td>10</td>
</tr>
<tr>
<td>TC1043</td>
<td>Dual Comparator, Dual Op Amp and Reference with Shutdown</td>
<td>2 Push-Pull</td>
<td>2 (90 kHz)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>16</td>
</tr>
<tr>
<td>MCP601</td>
<td>Single Op Amp</td>
<td>—</td>
<td>1 (2.8 MHz)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>230</td>
</tr>
<tr>
<td>MCP602</td>
<td>Dual Op Amp</td>
<td>—</td>
<td>2 (2.8 MHz)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>460</td>
</tr>
<tr>
<td>MCP603</td>
<td>Single Op Amp with Chip Select</td>
<td>—</td>
<td>1 (2.8 MHz)</td>
<td>—</td>
<td>X</td>
<td>—</td>
<td>230</td>
</tr>
<tr>
<td>MCP604</td>
<td>Quad Op Amp</td>
<td>—</td>
<td>4 (2.8 MHz)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>920</td>
</tr>
<tr>
<td>MCP606</td>
<td>Single Op Amp</td>
<td>—</td>
<td>1 (155 kHz)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>18.7</td>
</tr>
<tr>
<td>MCP607</td>
<td>Dual Op Amp</td>
<td>—</td>
<td>2 (155 kHz)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>37.4</td>
</tr>
<tr>
<td>Part No.</td>
<td>Description</td>
<td>Comparators (Output)</td>
<td>Op Amps (GBWP)</td>
<td>Reference</td>
<td>Shutdown</td>
<td>Rail-to-Rail I/O</td>
<td>Total Active Supply Current (µA)</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>----------------------</td>
<td>----------------</td>
<td>-----------</td>
<td>----------</td>
<td>------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>MCP608</td>
<td>Single Op Amp with Chip Select</td>
<td>—</td>
<td>1 (155 kHz)</td>
<td>—</td>
<td>X</td>
<td>—</td>
<td>18.7</td>
</tr>
<tr>
<td>MCP609</td>
<td>Quad Op Amp</td>
<td>—</td>
<td>4 (155 kHz)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>74.8</td>
</tr>
<tr>
<td>MCP616</td>
<td>Single Bi-CMOS Op Amp</td>
<td>—</td>
<td>1 (190 kHz)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>19</td>
</tr>
<tr>
<td>MCP617</td>
<td>Dual Bi-CMOS Op Amp</td>
<td>—</td>
<td>2 (190 kHz)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>38</td>
</tr>
<tr>
<td>MCP618</td>
<td>Single Bi-CMOS Op Amp with Chip Select</td>
<td>—</td>
<td>1 (190 kHz)</td>
<td>—</td>
<td>X</td>
<td>—</td>
<td>19</td>
</tr>
<tr>
<td>MCP619</td>
<td>Quad Bi-CMOS Op Amp</td>
<td>—</td>
<td>4 (190 kHz)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>76</td>
</tr>
<tr>
<td>MCP6001</td>
<td>Single Op Amp</td>
<td>—</td>
<td>1 (1 MHz)</td>
<td>—</td>
<td>—</td>
<td>X</td>
<td>108</td>
</tr>
<tr>
<td>MCP6002</td>
<td>Dual Op Amp</td>
<td>—</td>
<td>2 (1 MHz)</td>
<td>—</td>
<td>—</td>
<td>X</td>
<td>216</td>
</tr>
<tr>
<td>MCP6004</td>
<td>Quad Op Amp</td>
<td>—</td>
<td>4 (1 MHz)</td>
<td>—</td>
<td>X</td>
<td>X</td>
<td>432</td>
</tr>
<tr>
<td>MCP6021</td>
<td>Single Op Amp with Mid-Supply</td>
<td>—</td>
<td>1 (10 MHz)</td>
<td>—</td>
<td>—</td>
<td>X</td>
<td>1000</td>
</tr>
<tr>
<td>MCP6022</td>
<td>Dual Op Amp</td>
<td>—</td>
<td>2 (10 MHz)</td>
<td>—</td>
<td>—</td>
<td>X</td>
<td>2000</td>
</tr>
<tr>
<td>MCP6023</td>
<td>Single Op Amp with Mid-Supply and Chip Select</td>
<td>—</td>
<td>1 (10 MHz)</td>
<td>—</td>
<td>X</td>
<td>X</td>
<td>1000</td>
</tr>
<tr>
<td>MCP6024</td>
<td>Quad Op Amp</td>
<td>—</td>
<td>4 (10 MHz)</td>
<td>—</td>
<td>—</td>
<td>X</td>
<td>4000</td>
</tr>
<tr>
<td>MCP6041</td>
<td>Single Op Amp</td>
<td>—</td>
<td>1 (14 kHz)</td>
<td>—</td>
<td>—</td>
<td>X</td>
<td>0.6</td>
</tr>
<tr>
<td>MCP6042</td>
<td>Dual Op Amp</td>
<td>—</td>
<td>2 (14 kHz)</td>
<td>—</td>
<td>—</td>
<td>X</td>
<td>1.2</td>
</tr>
<tr>
<td>MCP6043</td>
<td>Single Op Amp with Chip Select</td>
<td>—</td>
<td>1 (14 kHz)</td>
<td>—</td>
<td>X</td>
<td>X</td>
<td>0.6</td>
</tr>
<tr>
<td>MCP6044</td>
<td>Quad Op Amp</td>
<td>—</td>
<td>4 (14 kHz)</td>
<td>—</td>
<td>—</td>
<td>X</td>
<td>2.4</td>
</tr>
<tr>
<td>MCP6141</td>
<td>Single Op Amp (G ≥ 10)</td>
<td>—</td>
<td>1 (100 kHz)</td>
<td>—</td>
<td>—</td>
<td>X</td>
<td>0.6</td>
</tr>
<tr>
<td>MCP6142</td>
<td>Dual Op Amp (G ≥ 10)</td>
<td>—</td>
<td>2 (100 kHz)</td>
<td>—</td>
<td>—</td>
<td>X</td>
<td>1.2</td>
</tr>
<tr>
<td>MCP6143</td>
<td>Single Op Amp with Chip Select (G ≥ 10)</td>
<td>—</td>
<td>1 (100 kHz)</td>
<td>—</td>
<td>X</td>
<td>X</td>
<td>0.6</td>
</tr>
<tr>
<td>MCP6144</td>
<td>Quad Op Amp (G ≥ 10)</td>
<td>—</td>
<td>4 (100 kHz)</td>
<td>—</td>
<td>—</td>
<td>X</td>
<td>2.4</td>
</tr>
</tbody>
</table>
TABLE 1: MICROCHIP LINEAR DEVICES FAMILY (CONTINUED)

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
<th>Comparators (Output)</th>
<th>Op Amps (GBWP)</th>
<th>Reference</th>
<th>Shutdown</th>
<th>Rail-to-Rail I/O</th>
<th>Total Active Supply Current (µA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCP6541</td>
<td>Single Comparator</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>X</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>MCP6542</td>
<td>Dual Comparator</td>
<td>2</td>
<td>—</td>
<td>—</td>
<td>X</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>MCP6543</td>
<td>Single Comparator with Chip Select</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>X</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>MCP6544</td>
<td>Quad Comparator</td>
<td>4</td>
<td>—</td>
<td>—</td>
<td>X</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>MCP6546</td>
<td>Single Comparator</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>X</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>MCP6547</td>
<td>Dual Comparator</td>
<td>2</td>
<td>—</td>
<td>—</td>
<td>X</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>MCP6548</td>
<td>Single Comparator with Chip Select</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>X</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>MCP6549</td>
<td>Quad Comparator</td>
<td>4</td>
<td>—</td>
<td>—</td>
<td>X</td>
<td>2.4</td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 1: Precision Battery Monitor

- **TC1043**
- **AMP1**
- **CMPTR1**
- **CMPTR2**
- **R1, 270k, 1%**
- **VR**
- **R2, 330k, 1%**
- **R4, 470k, 1%**
- **R5, 7.5M**
- **R6, 7.5M**
- **R3, 470k, 1%**
- **3V Alkaline**
- **+5V**

Note: AMP1, VR, CMPTR1, and CMPTR2 are contained in a single TC1043.
RF APPLICATION

Bias Supply Generation for a Gallium Arsenide (GaAs) Power Amplifier

Many cellular phones use Gallium Arsenide (GaAs) technology in their transmitter section. Most GaAs Power Amplifiers (PAs) require a negative voltage supply for operation, whether it is generated internally or taken from an external source. This voltage is used in the PA for DC biasing of internal gates of the GaAs FETs, and usually has two major performance requirements: It must be low noise, and it must be adjustable. The low noise requirement is to meet strict out-of-band rejection limits for the PA. If the PA receives a noisy bias supply, it will inevitably transmit some of the noise to its output. Depending upon the PA’s power supply rejection ratio, the bias voltage may require <1 mVp-p ripple/noise.

The schematic shown in Figure 2 illustrates a typical GaAs PA circuit, including the negative bias sub-circuit of interest. The main power source is a single +3.6V Li-Ion cell. The voltage of commercially available battery packs can be as high as +4.2V or as low as +2.8V. This circuit will work under any condition within this range. Since digital wireless standards such as TDMA and CDMA operate the transmit section in “burst mode,” the PA circuit will be switched off most of the time. Therefore, a digitally controlled power switch is included (high-side N-Channel FET switch). The main requirements of this switch are: TTL/CMOS compatible control input, low “on” resistance, and high-side switching capability. “Tx_ENABLE” signifies the power switch control signal.

The voltage inverter is the core of the bias generator. The TCM829 is used to invert the +3.6V from the battery to a -3.6V output. It is a switched capacitor (charge pump) voltage converter, and C2 and C3 are the only external components. The TCM829’s output has a source resistance dependent on C2 and a ripple voltage magnitude dependent on C3. The output ripple waveform is superimposed on the nominal -3.5 DC and has a fundamental frequency of 35 kHz. Assuming a nominal 0.5 mA load current, the ripple voltage for the values of C2 and C3 is <15 mVp-p. This is usually too much ripple voltage to feed directly into a PA VDD input, thus a filter circuit is required.

The op amp circuit centered on the TC1034 performs two functions on the raw inverted voltage from the TCM829. It acts as a ripple rejection filter and allows an external analog control voltage (CV) to set the output voltage that is applied to the PA. The TC1034 op amp is extremely suited to perform this function since it operates over a VDD range of 1.8V to 5.5V. It has full rail-to-rail inputs and outputs and a quiescent current of <6 µA. Additionally, excellent power supply rejection (80 dB, typical) allows it to function as a very good ripple rejection filter. The VDD is connected to Ground, and the VSS to the output of the TCM829 (-3.6V). The feedback network sets a gain of -2V/V, which allows a control voltage of 0V to +1.25V to produce an output of 0V to -2.5V. With the specified component values, the TCM829 will have a DC output of -3.57V and a 35 kHz ripple of 15 mVp-p. The TC1034, with its 80 dB PSRR, will attenuate that by roughly a factor of ten-thousand, and will yield <1.5 µVp-p of ripple. This is much more acceptable for the gate bias input for the PA. The total supply current for the TCM829 and TC1034 is approximately 70 µA.

![Bias Supply Generation for GaAs Power Amplifier Diagram](image-url)
AUDIO APPLICATION

Voice Band Receive Filter

The majority of spectral energy for human voices is found to be in a 2.7 kHz frequency band from 300 Hz to 3 kHz. To properly recover a voice signal in applications such as radios, cellular phones, and voice pagers, a low power bandpass filter that is matched to the human voice spectrum can be implemented using the MCP607 dual op-amp. Figure 3 shows a unity gain, multi-pole Butterworth filter with ripple less than 0.15 dB in the human voice band. The lower 3 dB cutoff frequency is 70 Hz (single order response, while the upper 3 dB cutoff frequency is 3.5 kHz (fifth order response)).

FIGURE 3: Multi-pole Butterworth Voice Band Receive Filter

SUMMARY

Linear circuit devices offer the user the benefits of integration with the flexibility of discrete circuits. Their low voltage, low power operation makes them ideal for battery powered systems, saving space, power, and cost. Linear circuits are often used in power management, radio, and audio sections of low voltage wireless consumer devices.
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip’s products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, KEELOG, MPLAB, PIC, PICmicro, PICSTART, PRO MATE and PowerSmart are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, microID, MXDEV, MXLAB, PICMASTER, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Accuron, dsPIC, dsPICDEM.net, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, PICC, PICkit, PICDEM, PICDEM.net, PowerCal, PowerInfo, PowerTool, rPIC, Select Mode, SmartSensor, SmartShunt, SmartTel and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2003, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.
AMERICAS
Corporate Office
2335 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200 Fax: 480-792-7277
Technical Support: 480-792-7627
Web Address: http://www.microchip.com

Rocky Mountain
2335 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7966 Fax: 480-792-4338

Atlanta
3780 Mansell Road, Suite 130
Alpharetta, GA 30022
Tel: 770-640-0034 Fax: 770-640-0307

Boston
2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848 Fax: 978-692-3821

Chicago
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071 Fax: 630-285-0075

Dallas
4570 Westgrove Drive, Suite 160
Addison, TX 75001
Tel: 972-818-7200 Fax: 972-818-7277

Los Angeles
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888 Fax: 949-263-1338

San Jose
Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA 95134
Tel: 408-436-7950 Fax: 408-436-7955

San Diego
5150 Westgate Drive, Suite 108
San Luis Obispo, CA 93401
Tel: 805-573-0999 Fax: 805-573-0999

Toronto
6385 Northam Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC
Australia
Microchip Technology Australia Pty Ltd
Marketing Support Division
Suite 22, 41 Rawson Street
Epping 2121, NSW
Australia
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing
Microchip Technology Consulting (Shanghai) Co., Ltd., Beijing Liaison Office
Unit 915
Beijing 100027, No. China
Tel: 86-10-85282100 Fax: 86-10-85282104

China - Chengdu
Microchip Technology Consulting (Shanghai) Co., Ltd., Chengdu Liaison Office
Rm. 2401-2402, 24th Floor,
Ming Xing Financial Tower
No. 88 TIOU Street
Chengdu 610016, China
Tel: 86-28-86766200 Fax: 86-28-86766599

China - Fuzhou
Microchip Technology Consulting (Shanghai) Co., Ltd., Fuzhou Liaison Office
Unit 28F, World Trade Plaza
No. 71 Wusi Road
Fuzhou 350001, China
Tel: 86-591-7503506 Fax: 86-591-7503521

China - Hong Kong SAR
Microchip Technology Hong Kong Ltd.
Unit 901-6, Tower 2, Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2401-3431 Fax: 852-2401-3431

China - Shanghai
Microchip Technology Consulting (Shanghai) Co., Ltd.
Room 701, Bldg. A
Far East International Plaza
No. 317 Xian Xia Road
Shanghai, 200051
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060

China - Shenzhen
Microchip Technology Consulting (Shanghai) Co., Ltd., Shenzhen Liaison Office
Rm. 1812, 18/F, Building A, United Plaza
Shenzhen 518033, China
Tel: 86-755-82901380 Fax: 86-755-82966626

China - Qingdao
Rm. B505A, Fullhope Plaza,
No. 12 Hong Kong Central Rd.
Qingdao 266071, China
Tel: 86-532-5027355 Fax: 86-532-50272025

India
Microchip Technology Inc.
India Liaison Office
Marketing Support Division
Divyasree Chambers
1 Floor, Wing A (A3/A4)
No. 11, O’Shaugnessey Road
Bangalore, 560 025, India
Tel: 91-80-2290601 Fax: 91-80-2290062

Japan
Microchip Technology Japan K.K.
Benex S-1 6F
3-18-20, Shinoyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa, 222-0033, Japan
Tel: 81-45-471-6168 Fax: 81-45-471-6122

Korea
Microchip Technology Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea 135-982
Tel: 82-2-554-7200 Fax: 82-2-558-5934

Singapore
Microchip Technology Singapore Pte Ltd.
200 Middle Road
#07-02 Prime Centre
Singapore, 188980
Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan
Microchip Technology (Barbados) Inc.,
Taiwan Branch
11F-3, No. 207
Tung Hua North Road
Taipei, 106, Taiwan
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE
Austria
Microchip Technology Austria GmbH
Durisolstrasse 2
A-4600 Wels
Austria
Tel: 43-7242-2244-399 Fax: 43-7242-2244-393

Denmark
Microchip Technology Nordic ApS
Regus Business Centre
Lautrup høj 1-3
Ballerup DK-2750 Denmark
Tel: 45 4420 9895 Fax: 45 4420 9910

France
Microchip Technology SARL
Parc d’Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - ler Etage
91300 Massy, France
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany
Microchip Technology GmbH
Steinheilstrasse 10
D-85737 Ismaning, Germany
Tel: 49-089-627-144-44 Fax: 49-089-627-144-100

Italy
Microchip Technology SRL
Via Quasimodo, 12
20025 Legnano (MI)
Milan, Italy
Tel: 39-0331-742611 Fax: 39-0331-466781

United Kingdom
Microchip Ltd.
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44 118 921 5869 Fax: 44 118 921-5870

EUROPE
Austria
Microchip Technology Austria GmbH
Durisolstrasse 2
A-4600 Wels
Austria
Tel: 43-7242-2244-399 Fax: 43-7242-2244-393

Denmark
Microchip Technology Nordic ApS
Regus Business Centre
Lautrup høj 1-3
Ballerup DK-2750 Denmark
Tel: 45 4420 9895 Fax: 45 4420 9910

France
Microchip Technology SARL
Parc d’Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - ler Etage
91300 Massy, France
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany
Microchip Technology GmbH
Steinheilstrasse 10
D-85737 Ismaning, Germany
Tel: 49-089-627-144-100 Fax: 49-089-627-144-44

Italy
Microchip Technology SRL
Via Quasimodo, 12
20025 Legnano (MI)
Milan, Italy
Tel: 39-0331-742611 Fax: 39-0331-466781

United Kingdom
Microchip Ltd.
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44 118 921 5869 Fax: 44 118 921-5870

© 2003 Microchip Technology Inc.